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Abstract. We construct a numerical scheme based on the Liouville equation of geo-
metric optics coupled with the Geometric Theory of Diffraction (GTD) to simulate the
high frequency linear waves diffracted by a half plane. We first introduce a condition,
based on the GTD theory, at the vertex of the half plane to account for the diffractions,
and then build in this condition as well as the reflection boundary condition into the
numerical flux of the geometrical optics Liouville equation. Numerical experiments
are used to verify the validity and accuracy of this new Eulerian numerical method
which is able to capture the moments of high frequency and diffracted waves without
fully resolving the high frequency numerically.
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Key words: High frequency waves, Liouville equation, geometric theory of diffraction, geometric
optics.

1 Introduction

In this paper, we construct a numerical scheme for the high frequency wave equation in
two-dimension:

utt−c(x)2∆u=0, t>0, (1.1)

u(0)= A(x,0)eiφ(x,0)/ǫ, (1.2)

∂u

∂t
(0)= B(x,0)eiφ(x,0)/ǫ, (1.3)
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here c(x) is the local wave speed and ǫ ≪ 1. When the essential frequencies in the wave
field are relatively high, and thus the wavelength is short compared to the size of the
computational domain, direct simulation of the standard wave equation will be very
costly, and approximate models for wave propagation based on geometric optics (GO)
are usually used [9, 12].

We are concerned with the case when there are some wedges in the computational
domain, i.e. the tips and discontinuity in the boundary. When waves hit the wedges,
there will be reflections and diffractions.

One of the approximate models for high frequency wave equation is the Liouville
equation, which arises in phase space description of geometric optics (GO) [9, 32]:

ft+Hv ·∇x f −Hx ·∇v f =0, t>0, x,v∈Rd, (1.4)

where the Hamiltonian H possesses the form

H(x,v)= c(x)|v|= c(x)
√

v2
1+v2

2+···+v2
d, (1.5)

f (t,x,v) is the energy density distribution of particles depending on position x, time t
and slowness vector v.

The bicharacteristics of this Liouville equation (1.4) satisfies the Hamiltonian systems:

dx

dt
= c(x)

v

|v| ,
dv

dt
=−cx|v|. (1.6)

The derivation of GO does not take into account the effects of geometry of the domain and
boundary conditions, which give rise to GO solutions that are discontinuous. Diffractions
are lost in the infinite frequency approximation such as the Liouville equation. In this
case, correction terms can be derived, as done in Geometric Theory of Diffraction (GTD) by
Keller in [25]. GTD provides a systematic technique for adding diffraction effects to the
GO approximations.

The methods for computing the GO solution can be divided into Lagrangian and
Eulerian methods.

Lagrangian methods are based on the ODEs (1.6). The simplest Lagrangian method
is the ray tracing method where the ODEs in (1.6) together with ODEs for the amplitude
are solved directly with numerical methods for ODEs. This approach is very popular in
standard free space GO, [6], and the diffractions, [2, 8]. The ray tracing method gives the
phase and amplitude of a wave along a ray tube, and interpolation must be applied to
obtain those quantities everywhere when rays diverge. Such interpolations can be very
complicated for diverging rays.

In the last decade, Eulerian methods based on PDEs have been proposed to avoid
some of the drawbacks of the ray tracing method [1]. Eulerian methods discretize the
PDEs on fixed computational grids to control errors everywhere and there is no need for
interpolation. The simplest Eulerian methods solves the eikonal and transport equations
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in GO. This technique has been used in standard GO [12]. However, the eikonal and
transport equations pick up the so-called viscosity solution [15]. When there are multi-
valued solutions, more elaborate schemes must be devised. Recently several phase space
based level set methods for high frequency waves, in particular the multivalued solutions
in GO are based on the Liouville equations, see [5, 10, 13, 18, 19, 30].

More recently, a class of Hamiltonian-preserving numerical schemes for the Liouville
equation (1.4)in inhomogeneous medias with partial transmissions and reflections was
constructed [17, 20–23].

There are very few results on Eulerian methods for diffractions. In this direction, we
mention recent numerical methods for creeping waves [28, 29, 37]. For curved interfaces,
the authors [24] constructed Eulerian method for diffraction at interfaces that takes into
consideration of partial transmissions, reflections and diffractions. The idea was to revise
the transmission/reflection interface condition used by Jin and Wen [20,22] for the Liou-
ville equation in the case of critical and tangent angles to account for diffractions. The
diffraction coefficients and decay rates derived in GTD are used in the interface condi-
tion. These interface conditions are then built into the numerical fluxes for the Liouville
solver. Such an Eulerian computational method is able to capture the moments of high
frequency waves without—at least away from the interfaces—numerically resolving the
high frequencies, yet still captures the correct interface scatterings and diffractions.

This paper is to revise our previous work [24] to a different geometry, namely, waves
through a half plane. When a wave hits a half plane, it usually reflects. However, at the
vertex of the half plane, it generates diffracted waves into all directions. In particular, the
diffracted waves can reach the shadow zone—the zone that the GO theory cannot cover.
We provide a diffraction condition, based on the GTD theory, at the vertex to reflect this
diffraction nature. We then build this condition, as well as the reflection boundary con-
dition, into the numerical flux of the Liouville solver, in order to capture the diffractions.

This paper is organized as follows. The GO approximations by the Wigner transform
for wave equation are sketched in Section 2. In Section 3, we present the behavior of
waves at a half plane based on the GTD theory, and provide the conditions for (1.4) that
account for reflections at the half plane and diffractions at the vertex of the half plane.
In Section 4, the diffraction conditions derived in the previous section is built into the
numerical flux in the two space dimension. Numerical examples are given in Section 5
to validate the model and to verify the accuracy of the scheme against the full simula-
tion based on the original wave equation (1.1)-(1.3). Finally, we make some concluding
remarks in Section 6.

2 Geometric optics approximation of the wave equation in the

phase space

Consider the two dimensional wave equation

utt−c(x)2∆u=0, x∈R2, t∈R, (2.1)
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u
∣

∣

t=0
=uI , ut

∣

∣

t=0
= sI . (2.2)

We introduce the new dependent variables

s=ut, r=∇u,

to obtain the system














∂r

∂t
−∇s=0,

1

c(x)2

∂s

∂t
−divr=0.

(2.3)

The energy density is given by

E(x,t)=
1

2

1

c(x)2
|ut|2+

1

2
|∇u|2. (2.4)

Let w=( ∂u
∂x1

, ∂u
∂x2

,s). System (2.3) can be put in the form of a symmetric hyperbolic system

A(x)
∂w

∂t
+∑

i

Di
∂w

∂xi
=0, (2.5)

with initial data
w(0,x)=w0(x).

The matrix A(x) = diag(1,1,c(x)−2), while each of the matrices Di is constant and sym-
metric with entries either 0 or −1.

To study the GO limit of solution of (2.5), we assume that the coefficients of the matrix
A(x) vary on a scale much longer than the scale on which the initial data vary. Let ǫ be
the ratio of these two scales. Rescaling space and time coordinates (x,t) by x→ǫx,t→ǫt,
one obtains

A(x)
∂wǫ

∂t
+∑

i

Di
∂wǫ

∂xi
=0, (2.6)

wǫ(0,x)=w0(
x

ǫ
) or u0(

x

ǫ
,x). (2.7)

Note that the parameter ǫ does not appear explicitly in (2.6). It enters through the initial
data (2.7). We are interested in the initial data of the standard GO form

wǫ(0,x)= A0(x)eiS0(x)/ǫ. (2.8)

Following [31], one can study the GO limit of (2.6) by using the Wigner distribution
matrix Wǫ:

Wǫ(t,x,k)=
( 1

2π

)n∫

eik·ywǫ(t,x−ǫy/2)wǫ(x+ǫy/2)
t
dy, (2.9)
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where n is the space dimension and wt is the conjugate transpose of w. Although Wǫ is
not positive definite, it becomes so as ǫ=0.

The energy density for (2.6) is given by

E ǫ(t,x)=
1

2
(A(x)wǫ(t,x),wǫ(t,x))=

1

2

∫

Tr(A(x)Wǫ(t,x,k))dk. (2.10)

Let
lim
ǫ→0

Wǫ(t,x,k)=W(0)(t,x,k).

As ǫ→0, the high frequency limit of E ǫ(t,x) is

E (0)(t,x)=
1

2

∫

Tr(A(x)W(0)(t,x,k))dk=
∫

a+(t,x,k)dk, (2.11)

where the amplitude a±(t,x,k) is given by

a±(t,x,k)=
1

(2π)2

∫

dyeik·y f±(t,x,x−y/2,k) f±(t,x,x+y/2,k), (2.12)

with

f±(t,x,z,k)=

√

1

2
(∇u(t,z)·k̂)±

√
2

2|c(x)|
∂u

∂t
(t,z), (2.13)

and k̂=(cosθ,sinθ)t. This shows that

a+(t,x,k)= a−(t,x,−k), (2.14)

and therefore one needs only to keep track of a+(t,x,k) which satisfies the Liouville equa-
tion [31]

∂a+

∂t
+c(x)k̂ ·∇xa+−|k|∇xc(x)·∇ka+ =0. (2.15)

Therefore, a+ can be interpreted as phase space energy density. It solves the Liouville
equations (1.4)-(1.5), with the zeroth moment giving the spatial energy density E (0)(t,x)
as in (2.11).

The GO approximation is good when ǫ is very small. For moderately small ǫ, diffrac-
tion can not be ignored. The Liouville equation (2.15), valid at ǫ=0, does not contain any
information about reflection, which occurs even for ǫ=0, nor diffraction which occurs for
ǫ>0. It is not valid near the half plane. In the next section, we will discuss the behavior
at an wedge.

3 Wave behavior on the half plane

In GO, a wave moves with its energy distribution governed by the Liouville equation
(1.4). When a wave hits the half plane, it will be completely reflected. However, according
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Figure 1: Diffraction by a half plane.

to GTD, when the wave hits the vertex of the half plane, it will produce diffracted waves
into all directions (see Fig. 1).

In the vicinity of the vertex Q of the half plane, there exist boundary layers [4]. A
boundary layer is a narrow zone through which the waves undergo rapid variations. Its
thickness is O(ǫ1/2). Diffraction coefficients Do away from the vertex of the half plane
(outside the boundary layer) is given [26] by

Do(θ,α)=
ǫ

8πr

[

sec
1

2
(θ−α)±csc

1

2
(θ+α)

]2
,

with α is the incident angle, θ is the diffracted angle, and r is the distance from Q. The “+”
sign applies when the boundary condition on the half plane is u = 0 (the soft boundary
condition), while the “–” sign applies if it is ∂u/∂n=0 (the hard boundary condition).

In GTD, the considered wave propagation phenomena are the incident direct illumi-
nation, reflection, and diffraction by vertex of the half plane. The surrounding area of the
half plane can be divided into three regions (Fig. 2):

• Region I, where the field is composed of incident, reflected and diffracted waves.

• Region II, where the diffracted waves are added to the incident waves.

• Region III, where only the diffracted waves, generated at the vertex of the half plane
exist. No incident and reflected wave reach this region .

Clearly, the above diffraction coefficient is not valid when θ = π+α or θ = 2π−α,
i.e., near the shadow boundary (boundary between Region II and Region III) and the
reflection boundary (boundary between Region I and Region II). There are boundary
layers near the shadow boundary and the reflection boundary with thickness of order√

ǫ.

The Uniform Geometric Theory of Diffraction (UTD) [27] can overcome the singulari-
ties at the shadow and reflection boundaries by introducing the transition functions. The
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Figure 2: Wave behavior near the wedge. RB denotes the reflection boundary, SB denotes the shadow boundary.

uniform diffraction coefficient for UTD is given by

DU
o =

ǫ

8πr

∣

∣

∣

∣

F
(

rǫ−1a(θ−α)
)

cos
[

(θ−α)/2
] ∓ F

(

ǫ−1ra(θ+α)
)

cos
[

(θ+α)/2
]

∣

∣

∣

∣

2

,

with a(β)=2cos2 β
2 and the transition function

F(X)=2i
√

Xexp(iX)
∫ ∞

√
X

exp(−iτ2)dτ,

in which one takes the principle (positive) branch of the integral, and

β= θ±α.

The diffraction coefficient in the boundary layer of the vertex of the half plane is [4]

Dl(θ,α)=

∣

∣

∣

∣

F
(

− 8r

ǫ
cos

θ−α

2

)

∓F
(

− 8r

ǫ
cos

θ+α+π

2

)

∣

∣

∣

∣

2

.

We match DU
o and Dl by finding r0, which is the r satisfying DU

o =Dl. And the matched
new diffraction coefficient for the half plane diffraction is

D(θ,α)±=
ǫ

8πr0

∣

∣

∣

∣

F
(

r0ǫ−1a(θ−α)
)

cos
[

(θ−α)/2
] ∓ F

(

r0ǫ−1a(θ+α)
)

cos
[

(θ+α)/2
]

∣

∣

∣

∣

2

, (3.1)

with D− for the soft boundary condition and D+ for the hard boundary condition. From
the above formula, we have D(θ,α)= D(α,θ).
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Figure 3: Relations between the diffraction coefficients and ǫ for different angles. Here the horizontal lines
correspond to a shadow boundary.

The relation between the diffraction coefficient and the relative wavelength ǫ is shown
in Fig. 3, for two representative angles. Near the shadow boundaries D± =O(1), while
elsewhere D±=O(

√
ǫ).

We now discuss the wave behavior in more details. Assume the half plane is
{

(x,y)
∣

∣ x= x0,y≤y0

}

, and the vertex of the half plane is at (x0,y0).

Let x=(x,y) and v=(ξ,η). Assume the incident wave hits the half plane with velocity
(ξ,η). There are two possibilities:

1. The wave hits the half plane at point (x0,y) with y<y0. In this case, the wave will
be completely reflected with a new velocity (−ξ,η).

2. The wave hits the vertex (x0,y0) of the half plane. In this case, according to the
GTD, the wave can partly diffract and partly travel in the original direction. Introduce
the polar coordinates by

ξ = rcosα, η = rsinα, r=
√

ξ2+η2. (3.2)

With diffraction coefficient D(θ,α), the wave is diffracted with new velocities (ξd,ηd),
d=1,2,··· , where

D(θ,α)±=
ǫ

8πr0

∣

∣

∣

∣

F
(

r0ǫ−1a(θ−α)
)

cos
[

(θ−α)/2
] ∓ F

(

r0ǫ−1a(θ+α)
)

cos
[

(θ+α)/2
]

∣

∣

∣

∣

2

, (3.3)

with

ξd = rd cosθ, ηd = rdsinθ, rd =
√

ξ2
d+η2

d .
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To describe the correct reflection and diffraction at the half plane, we provide suitable
reflection boundary conditions at the half plane and a diffraction condition at the vertex.
This has been the strategy for transmission and reflection done in the work of Jin and Wen
[20,22] and for diffractions through curved interfaces by the authors [24]. The diffraction
condition here is different from the previous works, and is new.

For the wave hitting the half plane below the vertex, it will be completely reflected,

f (t,x0,y,ξ,η)= f (t,x0 ,y,−ξ,η). (3.4)

At the vertex of the half plane, we use the following condition to account for the diffrac-
tion:

f+(t,x0,y0,r,α)

=
∫ 3

2 π

− π
2

D(θ,α) f−(t,x0,y0,r,θ)dθ+
(

1−
∫ 3

2 π

− π
2

D(θ,α)dθ
)

f−(t,x0,y0,r,α), (3.5)

with f±(t,x,v) = limσ→0+ f (t,x±σv,v). These conditions corresponds to the following
physical picture. When a particle hits the half plane besides the vertex, it will be com-
pletely reflected with a negative momentum. But when a particle hits the vertex of the
half plane with an incident angle α, it will be diffracted at angle θ with diffraction coef-
ficient D(θ,α); and the energy of the particle c(x)|v|= c(x)

√

ξ2+η2 = r will not change.
In (3.5), the density function of waves f+(t,x0,y0,ξ,η) is a superposition of the incident
wave that passes through the vertex, and all diffracted waves, generated by other inci-
dent waves, that move in the direction of v=(ξ,η).

These conditions will be used in the next section to construct the numerical flux on
the half plane.

4 The numerical scheme

4.1 The numerical flux

Consider the 2D Liouville equation

ft+
c(x,y)ξ

√

ξ2+η2
fx+

c(x,y)η
√

ξ2+η2
fy−cx

√

ξ2+η2 fξ−cy

√

ξ2+η2 fη =0. (4.1)

Without loss of generality, we employ a uniform mesh with grid points at xi+ 1
2
,i=0,··· ,M

in the x direction, yj+ 1
2
, j=0,··· ,N in the y direction with mesh size ∆y, ξk+ 1

2
,k=0,··· ,K in

the ξ direction and ηl+ 1
2
,l =0,··· ,L in the η direction beside the neighborhood of the half

plane. The cells are centered at (xi,yj,ξk,ηl) with xi=
1
2(xi− 1

2
+xi+ 1

2
),yj=

1
2(yj− 1

2
+yj+ 1

2
),ξk=

1
2(ξk− 1

2
+ξk+ 1

2
),ηl =

1
2(ηl− 1

2
+ηl+ 1

2
). The mesh sizes are denoted by ∆x= xi+ 1

2
−xi− 1

2
,∆y=
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Figure 4: Meshes near the half plane.

yj+ 1
2
−yj− 1

2
,∆ξ = ξk+ 1

2
−ξk− 1

2
,∆η = ηl+ 1

2
−ηl− 1

2
. Assume the half plane is on the line x =

xi0+1/2, (see Fig. 4) and the vertex of the half plane is at the point (xi0+1/2,yj0).
Let ∆t be the time step, tn =n∆t. The cell average of f is defined as

fijkl =
1

∆x∆y∆ξ∆η

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ ξ
k+ 1

2

ξ
k− 1

2

∫ η
l+ 1

2

η
l− 1

2

f (x,y,ξ,η)dηdξdydx, (4.2)

while f n
ijkl = fijkl(tn). We approximate c(x,y) by a piecewise bilinear function, and for

simplicity, we always provide two values of c(x,y) at half plane. Let the half plane value
of c(x,y) be c±i±1/2,j =

1
∆y

∫ yj+1/2

yj−1/2
c(x±i±1/2,y)dy, where the superscripts ± indicate the right

and left limits of the quantity at the half plane. Note c+
i0+

1
2 ,j
6= c−

i0+
1
2 ,j

in general.

The 2D Liouville equation (4.1) can be semi-discretized as

( fijkl)t+
cijξk

∆x
√

ξ2
k +η2

l

( f−
i+ 1

2 ,jkl
− f +

i− 1
2 ,jkl

)+
cijηl

∆y
√

ξ2
k +η2

l

( fi,j+ 1
2 ,kl− fi,j− 1

2 ,kl)

−
c−

i+ 1
2 ,j
−c+

i− 1
2 ,j

∆x∆ξ

√

ξ2
k +η2

l ( fij,k+ 1
2 ,l− fij,k− 1

2 ,l)

−
ci,j+ 1

2
−ci,j− 1

2

∆y∆η

√

ξ2
k +η2

l ( fijk,l+ 1
2
− fijk,l− 1

2
)=0,

f−
i+ 1

2 ,jkl
= f +

i+ 1
2 ,jkl

and all the numerical fluxes are defined using the upwind discretization,
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except for f±
i0+

1
2 ,jkl

(for j≤ j0). Here we treat the half plane as an interface, and then, similar

to [20, 24], define the numerical flux here using conditions (3.4) and (3.5).
By (3.5), we can define the numerical flux at (xi0+

1
2
,yj0) in an upwind fashion. Firstly,

we divide the interval [− 1
2 π, 3

2 π] into 2I subinterval [θm,θm+1],θm = m∆θ,∆θ = π/I,m =
0,1,··· ,2I, then approximate the diffraction condition (3.5) by

fi0+
1
2 ,j0,kl =

I

∑
m=0

D(θm,α) f (t,xi0 ,yj0 ,r,θm)∆θ+
2I

∑
m=I+1

D(θm,α) f (t,xi0+1,yj0 ,r,θm)∆θ

+
[

1−
2I

∑
m=0

D(θm,α)∆θ
][1+sign(ξk)

2
fi0,j0 ,kl +

1−sign(ξk)

2
fi0+1,j0,kl

]

, (4.3)

with ξk=rcosα,ηl =rsinα. The first two terms are the diffraction from other waves hitting
the vertex with an incident angle θm,m = 0,1,··· ,2I. When m ≤ I, − 1

2 π ≤ θm ≤ 1
2 π, the

diffraction term comes from the waves hitting the vertex from the left to right, and when
m ≥ I, 1

2 π ≤ θm ≤ 3
2 π, the diffraction comes from the waves hitting the vertex from the

right to left. Since ξ′m = rcosθm,η′
m = rsinθm may not be grid points, we have to define

them approximately. One can first locate the cell centers that bound these velocities, and
then use a bilinear interpolation to evaluate the value at (ξ′m,η′

m).
Next we consider the numerical flux at half plane below the vertex point (xi0+1/2,yj0).

If ξk >0, from (3.4),

f−
i0+

1
2 ,j,k,l

= fi0,jkl , (4.4)

f +
i0+

1
2 ,j,kl

= fi0+1,j,k1,l, with ξk1
=−ξk, (4.5)

where the superscripts ± indicate the right and left side of the quantity at the half plane.
Similarly, if ξk <0,

f−
i0+

1
2 ,j,k,l

= fi0,j,k1,l, with ξk1
=−ξk, (4.6)

f +
i0+

1
2 ,j,kl

= fi0+1,j,k,l. (4.7)

After the spatial discretization is specified, one can use any time discretization for the
time derivative.

5 Numerical examples

In this section we present numerical examples to demonstrate the validity of our scheme
and to show its numerical accuracy. In the numerical computations the second order
Runge-Kutta time discretization is used.

Since it is difficult to get the exact solution for this problem, as in [24], we use the
numerical solution with the mesh size small enough to represent the exact solution. The
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two-dimensional Lax-Wendroff method with space meshsize ∆x=∆y= ǫ
20 and ∆t=∆x/2

are used to solve the system (1.1) in the form











∂r

∂t
−∇s=0,

1

c(x)2

∂s

∂t
−divr=0,

with s=∂u/∂t,r=∇u to get the energy density distribution

E(x,t)=
1

2

1

c(x)2
|s|2+

1

2
|r|2. (5.1)

The numerical energy density is defined as

Eij =
1

2

1

c2
ij

|sij|2+
1

2
|rij|2, (5.2)

where

sij =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

s(x,y)dxdy,

and rij can be defined similarly.
The discrete wave equation is quite dispersive [7], so one needs many grid points per

wavelength to compute it. The mesh size h = ǫ/20 is the biggest mesh size we can get
satisfactory numerical results for the discrete wave equation.

The limit energy density is the zeroth moment of the density distribution of Liouville
equation

E (0)(x,y,t)=
∫ ∫

f (x,y,ξ,η,t)dηdξ.

The computational tool we used is the super computer in Tsinghua National Labo-
ratory for Information Science and Technology, 512 Itanium 2 64 bit processor, the peak
computational speed is of 2.662×1013 , the total EMS memory is 1024G, the storage space
is 26T.

In the computation, we first approximate the delta function initial data of the Liouville
equation by the product of a discrete delta function in 1-D [11]:

δω(x)=

{

1
ω (1−| x

ω |), | x
ω |≤1,

0, | x
ω |>1,

(5.3)

with ω =∆ξ =∆η (For more recent numerical studies on the approximations of the delta
function, see [33–36]). Then the energy density distribution are recovered by

E (0)
ij =∑

kl

fijkl∆ξ∆η. (5.4)
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We use the L1-error in the cumulative distribution function (cdf), i.e., the antideriva-
tive of energy density [14]

∫ +∞

−∞

∫ +∞

−∞

∣

∣

∣

∫ x

−∞

∫ y

−∞
E (0)(s,z,t)−E(s,z,t)dsdz

∣

∣

∣
dxdy, (5.5)

which can be expected to flatten as ǫ is decreased, to measure the weak convergence in
the semiclassical limit. Lemma 2.1 in [3] ensures that (5.5) going to zero is equivalent to
the weak convergence of E (0)(x,y,t)

For a more through discussion about the model error and numerical discretization
error of this approach we refer to our previous work [24].

Example 5.1. First, we consider the wave equation in 2D with a half plane Γ



























∂2u

∂t2
−4∆u=0,

u(0)=4ǫei
(x2+y2)

5ǫ −100x2−100y2
,

∂u

∂t
(0)=4ei

(x2+y2)
5ǫ −100x2−100y2

,

(5.6)

with ǫ = 1/3000 and some suitable boundary conditions (to be specified later) on Γ =
{

(x,y)| x=0.2,y≤0.1
}

.

The approximate Liouville equation is

ft+
2ξ

√

ξ2+η2
fx +

2η
√

ξ2+η2
fy =0, (5.7)

with initial data

f (0,x,v)=
[

1.28(x+y)2+2
]

e−200x2−200y2
δ
(

ξ−0.4x
)

δ
(

η−0.4y
)

.

The choice of initial data is based on (2.12)-(2.15). So 1.28(x+y)2 comes from ∇u, and 2
comes from ∂u/∂t.

The computational domain for the Liouville equation is chosen to be [x,y,ξ,η] ∈
[−0.5,0.5]×[−0.5,0.5]×[−0.6,0.6]×[−0.6,0.6]. The time step is chosen as ∆t=∆x/3.

Firstly, we consider the problem with the soft boundary condition on Γ, i.e. u
∣

∣

Γ
= 0.

The physically relevant values for the diffraction coefficient D−(θ,α) are given by (3.3).

For convenience, we denote our scheme by GTD and the pure geometrical optics
method by GO. Fig. 5 shows the numerical energy densities E (0) of GTD and GO com-
pared with E at t =0.2,0.3. One can see that there are some diffracted waves behind the
half plane-the shadow zone. The numerical results of GTD is very close to the solution
of the wave equation, which shows that our method can capture the main feature of the
diffracted waves. But the GO can’t capture diffraction in the shadow region.
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Figure 5: Example 5.1 with the soft boundary, energy density E (0) and E at t = 0.2 (top) and 0.3 (bottom).

Left: E (0) by GTD; middle: E ; right, E (0) by GO.

Table 1: Errors of numerical density E (0) of Example 5.1 with the soft boundary.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.1 3.0032e-2 1.1623e-2 5.7521e-3 2.8282e-3
t=0.2 3.3943e-2 1.3945e-2 7.0934e-3 3.5082e-3
t=0.4 4.2894e-2 1.6402e-2 8.1006e-3 4.0097e-3

Table 1 presents the relative errors of the numerical energy density E (0) computed
with different meshes in the phase space at t=0.1,0.2 and 0.4. The l1 error is very small.
The convergence rate is about first order.

Table 2 shows the relative errors of the numerical energy density E (0) in the shadow
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Table 2: Errors of E (0) for Example 5.1 with the soft boundary in the shadow zones.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.1 10.6% 5.4% 2.7% 1.5%
t=0.2 13.4% 7.0% 3.9% 2.5%
t=0.4 16.7 % 10 % 7.0% 4.8%

Figure 6: Example 5.1 with the hard boundary, energy density E (0) and E at t = 0.2 (top) and 0.3 (bottom).

Left: E (0) by GTD; middle: E ; right: E (0) by GO.

zone (x≥ 0.2,y≤ 0.1). The GTD solution is a good approximation to the solution of the
wave equation in the shadow zones. Notice that the convergence rate in the shadow
region is smaller than first order. This is partly because that there is a boundary layer
near the shadow boundary, which is harder to resolve numerically then elsewhere.

Next, we consider the problem with the hard boundary condition on Γ, i.e. ∂u
∂n

∣

∣

Γ
=0.
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Figure 7: Relation between logE and logǫ, E is the errors.

We use the extrapolation boundary condition for the Lax-Wendroff method in the fully
resolved simulation of the high frequency wave equation. The physically relevant values
for the diffraction coefficient D+(θ,α) are given by (3.3).

Fig. 6 shows the numerical energy densities E (0) and E at t = 0.2,0.3. One can see
that the energy of the diffracted waves behind the half plane-the shadow zone is stronger
than the case of the soft boundary conditions. The numerical results of GTD is very close
to the solution of the wave equation and the numerical results of GO are not right in the
shadow region.

Table 3 presents relative errors of the numerical energy density E (0) computed with
different meshes in the phase space at t=0.1,0.2 and 0.4. The convergence rate is of first
order.

Table 3: Errors of E (0) of Example 5.1 with the hard boundary.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.1 2.4953e-2 1.1299e-2 5.5003e-3 2.6706e-3
t=0.2 3.1014e-2 1.2596e-2 6.1806e-3 3.0848e-3
t=0.4 3.6141e-2 1.5024e-2 7.1363e-3 3.5453e-3

Table 4 shows the relative errors of the numerical energy density E (0) in the shadow
zone. The GTD solution is a good approximation to the solution of the wave equation in
the shadow zones.

The solution of GTD and GO depend on wavelength ǫ, Fig. 7 gives when t =0.2, the
relation between the relative errors of GTD and GO and the wavelength. One can see
that the error of solution of GO and GTD is of same order—near O(ǫ). The reason that
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Table 4: Errors of E (0) for Example 5.1 with hard boundary in the shadow zones.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.1 11.4% 5.8% 2.9% 1.8%
t=0.2 13.6% 7.6% 4.8% 3.4%
t=0.4 17.8 % 10.7 % 8.3% 5.3%

both GTD and GO are first order in ǫ is that the diffraction effect is only important near
the vertex, and along RB and SB which are lower dimensional things. So even if GTD
is more accurate in these places, the L1 error is based on the error of the entire domain
which is basically O(ǫ) for both GTD and GO.

Example 5.2. Consider the wave equation in 2D with a crack Ω:


























∂2u

∂t2
−c(x,y)2∆u=0,

u(0)=8ǫei
(x2+y2)

5ǫ −200x2−200y2
,

∂u

∂t
(0)=8ei

(x2+y2)
5ǫ −200x2−200y2

,

(5.8)

with ǫ=1/4000, c(x,y)=2(1−x)2, Ω=
{

(x,y) |0.1≤ x≤0.11,|y|≤0.2
}

and some suitable
boundary conditions on Ω.

The corresponding Liouville equation is

ft+
c(x,y)ξ

√

ξ2+η2
fx+

c(x,y)η
√

ξ2+η2
fy−cx

√

ξ2+η2 fξ−cy

√

ξ2+η2 fη =0, (5.9)

with initial data

f (0,x,v)=32

[

0.16(x+y)2 +
1

c(x,y)2

]

e−400x2−400y2
δ

(

ξ−0.4x

)

δ

(

η−0.4y

)

.

The computational domain is chosen to be [x,y,ξ,η]∈ [−0.4,0.4]×[−0.5,0.5]×[−0.6,0.6]×
[−0.6,0.6]. The time step is chosen as ∆t= 1

4 ∆x. The numerical fluxes at both vertices are
defined in a similar way.

Firstly, we simulate the problem with the soft boundary condition. The physically
relevant values for the diffraction coefficient D−(θ,α) is given by (3.3).

Fig. 8 shows the numerical energy densities E (0) and E at t = 0.3,0.4. The numerical
results of GTD is very close to the solution of the wave equation, which shows that our
method can capture the main feature of the diffracted waves. On the contrary, diffractions
are lost in the GO solutions.

Table 5 presents the relative errors of the numerical energy density E (0) computed
with different meshes in the phase space at t = 0.15,0.3 and 0.4. The error is very small.
The convergence rate is about first order.
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Figure 8: Example 5.2 with the soft boundary, energy density E (0) and E at t = 0.3 (top) and 0.4 (bottom).

Left: E (0) by GTD; middle: E ; right: E (0) by GO.

Table 5: Errors of numerical density E (0) of Example 5.2 with the soft boundary.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.15 2.0044e-2 9.2131e-3 4.6428e-3 2.3042e-3
t=0.3 2.5404e-2 1.1043e-2 5.4954e-3 2.7751e-3
t=0.4 3.1988e-2 1.2408e-2 6.1198e-3 3.0087e-3

Table 6 shows the relative errors of the numerical energy density E (0) in the shadow
zone. The GTD solution is a good approximation to the solution wave equation in the
shadow zones (x>0.11,|y|<0.2).

Finally, we consider the problem with the hard boundary condition on Ω. The physi-
cally relevant values for the diffraction coefficient D+(θ,α) are given by (3.3).



1124 S. Jin and D. Yin / Commun. Comput. Phys., 4 (2008), pp. 1106-1128

Table 6: Errors of E (0) for Example 5.2 with the soft boundary in the shadow zones.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.15 10% 5% 2.5% 1.5%
t=0.3 13.1% 7% 4% 3.2%
t=0.4 15.8% 10.5 % 5.4% 3.6%

Figure 9: Example 5.2 with the hard boundary, energy density E (0) and E at t = 0.3 (top) and 0.4 (bottom).

Left: E (0) by GTD; middle: E ; right: E (0) by GO.

Fig. 9 shows the numerical energy densities E (0) and E at t=0.3,0.4. GTD can capture
the diffractions, but GO can not capture the diffractions.

Table 7 presents the relative errors of the numerical energy density E (0) computed
with different meshes in the phase space at t = 0.15,0.3 and 0.4. The convergence rate is
about first order.

Table 8 shows the relative errors of the numerical energy density E (0) in the shadow



S. Jin and D. Yin / Commun. Comput. Phys., 4 (2008), pp. 1106-1128 1125

Table 7: Errors of numerical density E (0) of Example 5.2 with the hard boundary.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.15 1.7226e-2 8.1976e-3 4.0958e-3 1.9024e-3
t=0.3 1.8965e-2 9.4857e-3 4.6876e-3 2.3209e-3
t=0.4 2.0945e-2 1.0104e-2 4.8947e-3 2.4287e-3

Table 8: relative l1 error of E (0) for Example 5.2 with the hard boundary in the shadow zones.

mesh type 502×502 1002×1002 2002×2002 4002×4002

t=0.15 10.7% 5.3% 2.6% 1.6%
t=0.3 13.6% 7.2% 4.4% 2.7%
t=0.4 16.8% 11.6 % 5.8% 3.6%

zone. The GTD solution is a good approximation to the solution of wave equation in the
shadow zones.

Remark 5.1. The typical wave length of visible lights is 400-700 nanometers, or in the
order of 10−6 meters. To simulate such a high frequency wave in a domain of one meter
requires at least O(106) mesh points per spatial dimension. It means O(106) meshes in
one space dimension, O(1012) meshes in two space dimension and O(1018) meshes in
three dimension. And including the time direction, one needs O(1018) operations in two
space dimension and O(1024) in three space dimension. This is simply impossible for
today’s computational equipments.

On the other hand, by using the Liouville equation, although the dimension is dou-
bled, even to resolve the diffraction the mesh size is of O(

√
ǫ) = O(10−3), one needs

O(1012) meshes in two space dimension and O(1018) meshes in three space dimension
(six dimension in the phase space). But in the time direction, the mesh size is of O(

√
ǫ).

So including the time direction, one needs O(1015) operations in two space dimension
and O(1021) in three space dimension. This is about 1000 times less operations compared
to the full simulation based on the original wave equation. Thus double the dimension
using the Liouville equation provides a much more efficient approach to high frequency
waves when the frequency is very high.

It is important also to point out that only near the vertex we need to impose ∆x,∆y∼
O(

√
ǫ). Away from it we can use ∆x,∆y,∆ξ,∆η = o(1) if we program the method in the

adaptive mesh framework. Even though the time step is still required to be of O(
√

ǫ),
this is still a tremendous saving compared with the full wave simulation.

6 Conclusion

In this paper, we revise our previous work [24] to a different geometry, namely, high fre-
quency waves through a half plane. When a wave hits a half plane, it usually reflects.
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However, at the vertex of the half plane, it generates diffracted waves into all directions.
In particular, the diffracted waves can reach the shadow zone–the zone that the GO the-
ory cannot cover. We provide a diffraction condition, based on the GTD theory, at the
vertex to reflect this diffraction nature. We then build this condition, as well as the reflec-
tion boundary condition, into the numerical flux of the Liouville solver, in order to cap-
ture the diffractions. This gives an Eulerian computational method for high frequency
waves through a half plane, which is able to capture wave reflection and diffractions at a
half plane without fully resolving the high frequency waves in the entire computational
domain.

An immediate application of this method is to the problem of high frequency waves
diffracted by a wedge. Similar ideas, including those in our previous work [24], can also
be applied to other geometries, and to elastic and electromagnetic waves, which will be
the subjects of future research.
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