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Abstract. We present the application of the theory of Padé approximants to extending
the perturbative solutions of acoustic wave equation for a three dimensional vertically
varying medium with one interface. These type of solutions have limited convergence
properties depending on either the degree of contrast between the actual and the ref-
erence medium or the angle of incidence of a plane wave component. We show that
the sequence of Padé approximants to the partial sums in the forward scattering series
for the 3D wave equation is convergent for any contrast and any incidence angle. This
allows the construction of any reflected waves including phase-shifted post-critical
plane waves and, for a point-source problem, refracted events or headwaves, and it
also provides interesting interpretations of these solutions in the scattering theory for-
malism.
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1 Introduction

Many fields of non-destructive evaluation of a medium properties involve an acoustic,
elastic or electro-magnetic experiment in which a natural or artificially created wave
propagates through that medium and is recorded outside of the medium. The goal in
such an experiment is to process the recorded wave, the data, to determine the medium’s
internal structure (imaging) and properties (inversion). Examples of such fields of appli-
cations are geophysical exploration for natural resources, medical imaging, remote sens-
ing in engineering, whole earth seismology, astronomy, military radar and underground
object detection, etc. Their tremendous economical, social and military importance is
evident.
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In order to extract meaningful and useful information from the recorded wave-field,
one needs to predict or model how the wave-field propagates in different types of com-
plex settings. Ideally, one would be able to solve exactly the differential equations de-
scribing the propagation of the wave-field and add boundary conditions to describe dif-
ferent structures embedded in that medium. The solutions of such a boundary value
problem would characterize the wave propagation through the medium, and its inter-
actions with the complex structures it encounters, and would construct the wave-field
everywhere inside and outside the medium. Unfortunately, such exact analytical solu-
tions are difficult (and most often impossible) to obtain. This lead to the development of
alternative methods, for example numerical, for modeling the propagation of the wave-
field in complex realistic settings; from these we mention least squares [12], finite differ-
ences [2,3,21], ray tracing [8], Fourier or pseudo-spectral methods [26], finite elements [9],
reflectivity [15] and [31] as well as other hybrid methods [14]. A compilation of classical
papers describing the finite differences and finite element methods in geophysics, their
accuracy and different types of boundary conditions appeared in [22].

Many other methods, either new or derived from these ones, have been developed
and implemented, each one trying to address a specific issue or downside in the methods
listed above. For example the modeling techniques based on Kirchhoff integral [16], f−k
solutions to the wave equation [39], paraxial extrapolators method [10], Gaussian beam
methods [24, 25], hyperbolic superposition [27], scattering theory [42], lattice Boltzmann
method [17] just to mention a few of them. All these methods have different assumptions,
strengths and limitations. One feature shared by all the modeling methods, is that, as the
complexity of the geological models increases, the computational requirements also in-
crease to very expensive, and sometimes prohibited, values. Often a lower and cheaper
alternative is chosen to model the wave-field in the detriment of accuracy. New meth-
ods and alternatives are sought and developed every year (see e.g. the Seismic Modeling
sections at the American Geophysical Union (AGU) and Society for Exploration Geo-
physicists (SEG) annual meetings) to address some of the difficulties, execution time and
computational costs in modeling wave-field propagation in complex sub-surface condi-
tions.

In this paper we discuss a recently developed tool, for modeling the propagation of
seismic wavefields, based on the scattering theory, the forward scattering series. Scatter-
ing theory is a powerful and useful method for analyzing wave propagation in a given
medium (see e.g. [32, 42]). As any form of perturbation theory, it relates the propagation
of the wave in that medium with the propagation of the wave in a reference medium
and a perturbation operator which describes the difference between the two media. The
forward problem is to construct the actual wave-field everywhere given the reference
wave-field and the perturbation operator; the inverse problem is to construct the per-
turbation operator (and hence the unknown medium) given the reference wave-field
everywhere and the actual wave-field on a measurement surface outside the unknown
medium (data). This relation between the three quantities is nonlinear and, to date, it can
only be represented using the Born or Neumann series (see e.g. [36]), which, when con-
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vergent, constructs the actual wave-field (in the forward problem) and the perturbation
operator (in the inverse problem).

The importance and the main use of the forward scattering series until recently came
from the application of scattering theory to solving inverse problems. The central tool
in this case, the inverse scattering series, is presently the only non-linear, direct inver-
sion method, for the multi-dimensional acoustic or elastic wave equation, which does
not require any a priori information about the medium to be investigated. Initially de-
veloped by Jost and Kohn [20] and later applied to the seismic problem by Moses in [30],
its convergence has been studied, among others, by Prosser [37], who concluded that
the convergence of the forward series is necessary for the convergence of the inverse se-
ries. From the construction of the inverse series (see e.g. Jost and Kohn [20], Moses [30],
Weglein et al. [43]) it is not difficult to see that the convergence of the forward is also
necessary for the very existence of the inverse scattering series. As a modeling procedure
for the seismic wave-field, the forward scattering series was first studied by Matson [28],
for a 1D wave-field propagating in acoustic media, who showed that convergence occurs
for a ratio less than

√
2 between the reference and the actual velocity. The study was later

extended by Matson [29] and Nita et al. [34] to a 2D wave-field propagating in a vertically
varying acoustic medium; they showed that the forward series only converges for either
limited velocity contrast or limited incidence angle respectively. Innanen [18] studied
the forward scattering series for a 1D wave-field propagating in a visco-acoustic medium
and found, consistent with previous results, that the series converges only for a limited
contrast between the actual and the reference medium. Ramirez and Otnes [38] have fur-
ther extended the calculation of the series for the acoustic two parameter (velocity and
density) case showing the same limited convergence of the series. Nita [33] showed that,
using Padé approximants, it is possible to extend the convergence properties of the one
parameter forward scattering series to any velocity contrast for uni-dimensional propa-
gation in both acoustic and visco-acoustic media.

In this paper we use the method presented in [33] to analytically continue the for-
ward scattering series solutions for a simple one dimensional medium embedded in a
three dimensional space, and in which only one parameter (velocity) is allowed to vary.
We show that using the Padé approximants, and their continued fractions representa-
tions, one can extend the solutions to any velocity contrast and to any incidence angle
for both acoustic and visco-acoustic media. This extension leads to the construction of
post-critical events and headwaves and to their Feynman diagrammatic interpretation in
the scattering theory formalism.

Continued fractions have been used before, in a different context, to model seismic
wave-field propagation. Jacobs and Muir showed in [19] that Claerbout’s 15◦ and 45◦

approximations to the square root differential operator, involved in the one-way wave
equation (see [12]), are truncations in a continued fractions expansion of that same differ-
ential operator (see also [13]). These simplified equations can be used for precise and fast
modeling of the scattered field near the source of the wave and are not appropriate for
large offsets. Inversely, they can be used as a simplified migration procedure to down-
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ward continue the collected data and image the interior of the earth [40]. More recently,
Nkemzi and Paul [35] have used Padé approximants to model the scattering amplitude of
electromagnetic waves, when interacting with rough surfaces, with excellent numerical
results.

The structure of this paper is the following. In Section 2 we briefly present the for-
malism of the forward scattering series in both operator and functional form and fo-
cus on its expression for vertically varying acoustic media. The convergence properties
of the series written for one plane wave component are reviewed in Section 3 and the
tools for analytically continue these properties (the sequence of Padé approximants and
their continued fractions expressions) are also introduced. Section 4 discusses a point-
source point-receiver experiment and shows the construction of post-critical waves and
refracted wave events (headwaves) from the forward scattering series plane wave solu-
tions. Feynman diagrammatic interpretations of these events in relation to their forward
scattering series constructions are presented in Section 5. Conclusions and discussion of
future research are included in the final Section 6.

Throughout the paper we use the following conventions for Fourier transforming
over the space and time coordinates. For the Fourier transform over the horizontal vari-
able x, we are going to use the different sign convention for the transformation over the
source and receiver coordinates. Accordingly, the forward Fourier transform of a real
function f over the horizontal source coordinate xs is going to be

f (kxs)=
∫ ∞

−∞
f (xs)eikxs xs dx, (1.1)

where kxs is the associated horizontal wavenumber. The forward Fourier transform of f
over the horizontal receiver coordinate xg is going to be

f (kxg)=
∫ ∞

−∞
f (xg)e−ikxgxg dx, (1.2)

where kxg is, same as before, the associated horizontal wavenumber. The associated in-
verse Fourier transforms are

f (xs)=
1

2π

∫ ∞

−∞
f (kxs)e−ikxsxs dx (1.3)

and

f (xg)=
1

2π

∫ ∞

−∞
f (kxg)eikxgxg dx, (1.4)

respectively. The forward Fourier transform over the time coordinate t is

f (ω)=
∫ ∞

−∞
f (t)eiωtdt, (1.5)

where ω is the temporal frequency. Its corresponding inverse Fourier transform will be
given by

f (t)=
1

2π

∫ ∞

−∞
f (ω)e−iωtdω. (1.6)
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2 Forward scattering series for a vertically varying medium in a

3D space

In operator form, the differential equations describing wave propagation in an actual and
a reference medium can be written as

LG=−I, (2.1)

L0G0 =−I, (2.2)

where L, L0 and G, G0 are the actual and reference differential and Green’s operators,
respectively, for a single temporal frequency and I is the identity operator. The above
equations (2.1) and (2.2) assume that the source and receiver signatures have been de-
convolved. The perturbation, V, and the scattered field operator, ψs, are defined as

V=L−L0, (2.3)

ψs =G−G0. (2.4)

The fundamental equation of scattering theory, the Lippmann-Schwinger equation, re-
lates ψs, G0, V, and G (see, e.g., [42]):

ψs =G−G0 =G0VG. (2.5)

Expressions for L, L0 and V, in the case of a pressure wavefield propagating in inho-
mogeneous acoustic and elastic media, have been given in [11] and [41]. For a constant
density acoustic inhomogeneous medium, case which will be discussed in this paper,
these expressions are

L=∇+
ω2

c2(r)
, (2.6)

L0 =∇+
ω2

c2
0

, (2.7)

V=ω2

(

1

c2(r)
− 1

c2
0

)

, (2.8)

where ω is the temporal frequency, c(r) and c0 are the actual and the reference velocity
respectively and r is the three dimensional position vector.

Eq. (2.5) can be expanded in an infinite series by substituting

G=G0−G0VG

into the right-hand side repeatedly to obtain

ψs =G0VG0+G0VG0VG, (2.9)

ψs =G0VG0+G0VG0VG0+G0VG0VG0VG,

···
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and so on. By repeating this process an infinite number of times we imagine that we can
drop the last term containing the Green’s function of the actual medium, G, in favor of
an infinite series, and write the scattered field as

ψs ≡G−G0 =G0VG0+G0VG0VG0+··· . (2.10)

When convergent, this series, the forward scattering series, constructs the scattered field
operator ψs as a sum of terms representing propagations in the reference medium (G0)
and interactions with the inhomogeneity represented by the perturbation operator V.

For an acoustic constant density medium, we can define

k0 =
ω

c0
, α(r)=1− c2(r)

c2
0

and rewrite the perturbation V as

V= k2
0α(r). (2.11)

The forward scattering series then becomes

ψs

(

rg|rs
;ω
)

=
∫

G0

(

rg|r′;ω
)

k2
0α
(

r′
)

G0

(

r′|rs;ω
)

dr′

+
∫

G0

(

rg|r′;ω
)

k2
0α
(

r′
)

∫

G0

(

r′|r′′;ω
)

k2
0α
(

r′′
)

G0

(

r′′|rs;ω
)

dr′′dr′

+··· , (2.12)

where the integrals are 3D volume integrals taken over the whole space. A physical
interpretation of this series was given by [28] and [34]. In this paper we will discuss
the single horizontal interface case which, although simplistic, shows the construction of
some complex wave events like phase shifted post-critical arrivals and headwaves. For
this setting, the perturbation V becomes

V(z)= k2
0αH(z−z1), (2.13)

where α = 1−c2
1/c2

0 with c0 and c1 representing the speeds of propagation in the two
half-spaces, H is the Heaviside function and z1 the depth of the interface. Eq. (2.12) then
becomes

ψs

(

rg|rs;ω
)

=
∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

z1

dz′G0

(

rg|x′,y′,z′;ω
)

k2
0α(z′)G0

(

x′,y′,z′|rs;ω
)

+
∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

z1

dz′G0

(

rg|x′,y′,z′;ω
)

k2
0α(z′)

×
∫ ∞

−∞
dx′′

∫ ∞

−∞
dy′′

∫ ∞

z1

dz′′G0

(

x′,y′,z′|x′′,y′′,z′′;ω
)

k2
0α(z′′)

×G0

(

x′′,y′′,z′′|rs;ω
)

+··· . (2.14)
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Figure 1: Horizontal and vertical wavenumbers associated with one plane wave component and satisfying the
dispersion relation k2

x +k2
y+ν2

0 = ω2/c2
0. The picture also shows the total horizontal wavenumber, kh, defined

through the relation k2
x+k2

y = k2
h.

The 3D Green’s function representing a spherical wave propagating with velocity c0

in a homogeneous acoustic medium of constant density is given by (see e.g. [1])

G0(rg|rs;ω)=
1

2π

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

eikx(xg−xs)+iky(yg−ys)+iν0|zg−zs|

iν0
, (2.15)

where rs = (xs,ys,zs) and rg = (xg,yg,zg) are the coordinates for the source and the ob-
servation point respectively. The temporal frequency is, as before, denoted by ω, kx and
ky are the horizontal wavenumbers associated with the x and y coordinates respectively,
and ν0 is the vertical wavenumber satisfying the dispersion relation

ν0 = sgn(ω)

√

ω2

c2
0

−k2
x−k2

y

(see Fig. 1). For later use, we also define the cumulative horizontal wavenumber kh to be

k2
h = k2

x +k2
y (2.16)

(see Fig. 1). For a non-evanescent plane wave component we can define the angle of
incidence θ by the relation

sinθ =
kh

k0
, (2.17)

or, alternatively,

cosθ =
ν0

k0
. (2.18)

Following [34] we first consider the problem of an incoming plane wave, described
by the temporal frequency ω and arbitrary horizontal wavenumbers kx and ky, and given
by

φ0(xg,yg,zg|kx,ky,zs;ω)= ei(kxxg+kyyg+ν0|zg−zs|). (2.19)
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With these considerations, we calculate the first term in the forward scattering series in
Eq. (2.14) to be

ψ1
s

(

xg,yg,zg|kx,ky,zs;ω
)

=
∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

z1

dz′k2
0α

× 1

2π

∫ ∞

−∞
dkgx

∫ ∞

−∞
dkgy

eikgx(xg−x′)+ikgy(yg−y′)+ikgz|zg−z′|

ikgz
eikx x′+ikyy′+ikz|z′−zs|.

Since the model we discuss is restricted to vertical variations, the perturbation α also
depends only on the depth z. This implies that, in the last formula, we can first integrate
over the horizontal coordinates, x′ and y′, to obtain two delta functions δ(kgx−kx) and
δ(kgy−ky), and then over the horizontal wavenumbers kgx and kgy, to obtain

ψ1
s

(

xg,yg,zg|kx ,ky,zs;ω
)

=2πk2
0α

eikx xg+ikyyg

ikz

∫ ∞

z1

dz′eikz(2z′−zg−zs). (2.20)

The last integral,
∫ ∞

z1

dz′eikz(2z′−zg−zs), (2.21)

is not defined in the Riemannian sense because the integrand oscillates, preserving its
amplitude, towards infinity. Consistently with [34], we are going to define this integral
to be the value of the anti-derivative of the integrand calculated at its finite boundary z1,
i.e.,

∫ ∞

z1

dz′eikz(2z′−zg−zs) =− eikz(2z1−zg−zs)

2ikz
. (2.22)

As showed in [34], this definition is equivalent with considering that the reference medium
attenuates the wave-field which, in consequence, vanishes at infinity. The final expres-
sion for ψ1

s is

ψ1
s

(

xg,yg,zg|kx ,ky,zs;ω
)

=4π
k2

0α

ν2
0

eikx xg+ikyyg+iν0(2z1−zg−zs). (2.23)

Similarly, one can calculate the higher order terms in the forward scattering series ψi
s with

i=1,2,3,··· , and find

ψ2
s

(

xg,yg,zg|kx ,ky,zs;ω
)

=4π
1

8

(

k2
0α

ν2
0

)2

eikxxg+ikyyg+iν0(2z1−zg−zs), (2.24)

ψ3
s

(

xg,yg,zg|kx ,ky,zs;ω
)

=4π
5

64

(

k2
0α

ν2
0

)3

eikx xg+ikyyg+iν0(2z1−zg−zs), (2.25)

... (2.26)
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Summing all these terms we find the total scattered field on the measurement surface,
produced by the interaction of one plane wave component of a point source, character-
ized by the horizontal wavenumbers kx and ky and the temporal frequency ω, with the
interface, to be

ψs

(

xg,yg,zg|kx,ky,zs;ω
)

=4πeikx xg+ikyyg+iν0(2z1−zg−zs)

[

1

4

k2
0α

ν2
0

+
1

8

(

k2
0α

ν2
0

)2

+
5

64

(

k2
0α

ν2
0

)3

···
]

. (2.27)

The modeled wavefield (data) should consist of primary (single) reflections and internal
and free surface multiple reflections (reverberations) when the geometry of the model
permits it (two interfaces or more and a free surface respectively). However, in this case,
since the solutions are represented as a series, the convergence of the forward scattering
series is also a necessary condition for the method to work. In the next section we briefly
review the convergence properties of this infinite series in terms of the characteristics
of the plane wave component (horizontal and vertical wavenumbers and/or angle of
incidence).

3 Convergence properties of the forward scattering series

The expression (2.27) is easily compared with Eq. (3.15) in [34]. When convergent, the
expression in parenthesis constructs the angle dependent reflection coefficient associated
with the contrast in velocity at the interface. The convergence properties for this series
have been discussed in Nita et al [34], which concluded that it is dependent on the angle
of incidence (here defined in Eqs. (2.17) and (2.18)) of the plane wave onto the interface.
Their results can be summarized as follows. For plane waves arriving at pre-critical and
critical angles, θ ≤ θc = sin−1(c0/c1), the series converges and it constructs the angle de-
pendent reflection coefficient

R=
ν1−ν0

ν1+ν0
, (3.1)

where ν1 and ν0 are the vertical wavenumbers defined by

ν1 =
√

ω2/c2
1−k2

x−k2
y, (3.2)

ν0 =
√

ω2/c2
0−k2

x−k2
y. (3.3)

The expression (2.27) of the scattered field due to an incoming plane wave described by
kx, ky and ω becomes in this case

ψs

(

xg,yg,zg|kx ,ky,zs;ω
)

=2πReikx xg+ikyyg+iν0(2z1−zg−zs). (3.4)

For plane waves arriving at post-critical angles, θ > θc = sin−1(c0/c1), the series di-
verges and hence the forward scattering series fails to construct the scattered field. The
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reasoning behind this limitation of the method was explained in [33]. Roughly speaking,
the divergence occurs because of the iterative construction of the forward scattering se-
ries from the Lippmann-Schwinger relationship (2.5) and the dropping of the last term
containing the actual medium’s Green’s function G in Eq. (2.9) in favor of the infinite
series in Eq. (2.10). Nita showed in [33] that this partial solution can, however, be ex-
tended by using a combination of Padé approximants and continued fractions approach.
In the following, we apply this method to the vertically varying three dimensional model
described above to analytically continue the forward scattering series solutions beyond
their domain of convergence.

By definition, a Padé approximant to the power series ∑anxn is a rational expression

PN
M(x)=

N

∑
n=0

Anxn

M

∑
n=0

Bnxn

(3.5)

whose Taylor series representation coincides with the series up to (N+M+1)−th or-
der. For a discussion of their properties and applications see e.g. [4]. For a 1D acoustic
or visco-acoustic medium and a normally incident plane wave onto one interface, Nita
shows in [33] that the sequence of Padé approximants P0

0 ,P0
1 ,P1

1 ,P1
2 ,P2

2 ,P2
3 ,··· converges to

the exact value of the reflection coefficient for any velocity contrast.
For an arbitrary plane wave, incident onto the interface at an angle θ, the discussion is

similar to the vertical incidence case, with the exception of the extra factor k2
0/ν2

0 (which
equals to 1 for the normal incidence case). Following [33] we can hence calculate

P0
0 =0, (3.6)

...

P1
2 =

1
2− 1

4 x

1− 3
4 x+ 1

16 x2
, (3.7)

P2
2 =

1
8 x− 1

16 x2

1−x+ 3
16 x2

, (3.8)

...

P3
4 =

1
8 x− 7

48 x2+ 7
192 x3

1− 5
3 x+ 13

16 x2− 5
48 x3− 1

768 x4
, (3.9)

...

P5
5 =

1
8 x− 1

4 x2+ 21
128 x3− 5

128 x4+ 5
2048 x5

1− 5
2 x+ 9

4 x2− 7
8 x3+ 35

256 x4− 3
512 x5

, (3.10)

and so on, where x = k2
0α/ν2

0 is the normalized secant of the incidence angle. Each Padé
approximant in the sequence above provides a more accurate value for the amplitude
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of the scattered wavefield than the forward scattering series. At each step, for example,
we can then compute different orders of approximations of the scattered field using the
formula

(ψs)M+N

(

xg,yg,zg|kx ,ky,zs;ω
)

=4πPN
Meikxxg+ikyyg+iν0(2z1−zg−zs), (3.11)

where PN
M represents the Padé approximation to the reflection coefficient with M = N

or M = N+1 (compare with Eq. (3.4)). By definition, the Taylor series for PN
M coincides

with the forward scattering series up to the (N+M+1)−th but it has different terms for
higher orders. Those different terms are able to counteract the divergence introduced by
dropping the actual medium’s Green’s function G in Eq. (2.9) in favor of the infinite series
in Eq. (2.10). The result is a sequence of approximants which converges to the actual value
of the scattering amplitude for all contrasts between the actual and the reference medium
and all incidence angles.

The downside of using Padé approximants is that, at each step, one has to calculate
(N+M+1) new coefficients without being able to recycle the ones calculated for lower
orders. However, the special sequence of approximants in Eqs. (3.6)-(3.10) has a contin-
ued fractions representation of the form

FN(x)=
c0

1+
c1x

1+
c2x

1+. . . cN−1x

1+cN x

, (3.12)

where x, as before, is the normalized secant of the incidence angle x = k2
0α/ν2

0 . The se-
quence of Padé approximants P0

0 ,P0
1 ,P1

1 ,P1
2 ,P2

2 ,P2
3 ,··· , considered above is called normal

if every member exists and no two members are identically equal. It can be shown that
if this Padé sequence is normal, then the (N+1)th term has the continued fraction rep-
resentation (3.12) with the coefficients cn being the same for every term of the sequence.
In other words, PM

M+1(x), for M >0, is obtained from PM
M (x) by simply replacing cN x by

cN x/(1+cN+1x) where N=2M, and PM+1
M+1 (x), for M≥0, is obtained from PM

M+1(x) by re-
placing cN x by cN x/1+cN+1x where N =2M+1. For the seismic model considered here,
following Nita [33], we can write

fn(x)=
1/4

1−x fn−1(x)
, (3.13)

where either fn = PN
N if n is even and n=2N or fn = PN

N+1 if n is odd and n=2N+1. This
relation provides a fast iterative scheme to calculate the Padé approximants to any order.
In addition, we reiterate the fact that, in contrast to the Padé approximants representation
as a ratio of two polynomials, where, for each higher rank, every coefficient in the rational
fraction must be recomputed, in this representation, only one new coefficient need be
computed as we go from one term in the sequence to the next.
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Using the arguments presented in [33], one can show the convergence of the sequence
of continued fractions or, equivalently, the convergence of the sequence of Padé approxi-
mants for any value of k2

0α/ν2
0 in the complex plane, except the cut from 1 to ∞ along the

real axis. On this branch-cut, we have k2
0α/ν2

0 ≥0 which is equivalent to having
(

ν1

ν0

)2

≤0, (3.14)

where ν1 and ν0 are the vertical wavenumbers of the actual and the reference media re-
spectively,

ν1 =
√

ω2/c2
1−k2

h, ν0 =
√

ω2/c2
0−k2

h.

For post-critical incident plane waves, ν1 becomes imaginary and the condition in equa-
tion (3.14) is satisfied which implies the sequence of Padé approximants above will not
converge. To circumvent this apparent problem, we can consider an attenuating actual
medium by introducing an additional imaginary part in the velocity c1 through the rela-
tion (see e.g. [1])

1

cnew
1

=
1

c1
+iǫ, (3.15)

with ǫ being a small parameter such that ǫ>0 for ω>0. Since all real media have some at-
tenuation property, the introduction of this new effective velocity only makes the method
more realistic. It is easy to see that the quantity k2

0α/ν2
0 is now complex (and so no longer

along the branch-cut), and hence the condition (3.14) is never satisfied. This implies that
the sequence of Padé approximants for this model converges for all velocity contrasts
and all incidence angles.

In addition, the limit of Padé approximants in Eqs. (3.6)-(3.10) turns out to be

ν2
0

k2
0α

(

1− 1

2

k2
0α

ν2
0

−
√

1− k2
0α

ν2
0

)

=
1

2

ν1−ν0

ν1+ν0
, (3.16)

where ν1 is the vertical wavenumber of a particular plane wave component propagating
through the second medium, c1, and satisfying

ν2
1 =

ω2

c2
1

−k2
h.

This expression is recognized to be the angle dependent reflection coefficient (see e.g. [1])
and so the full expression of the scattered field produced by an incident plane wave
component at arbitrary incidence angle becomes

ψs

(

xg,yg,zg|kx,ky,zs;ω
)

=2πReikx xg+ikyyg+iν0(2z1−zg−zs). (3.17)

The convergence of the sequence of Padé approximants allows the construction of
the angle dependent reflection coefficient at any incident angle, and implicitly, the scat-
tered field for a point-source and point-receiver experiment. This construction will be
discussed in the following section.
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4 A point source experiment

To obtain the scattered field from a point source - point receiver experiment one has to
add together the scattered field created by all plane wave components with the appropri-
ate weighting

ψs

(

rg|rs
;ω
)

=
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkye−i(kxxs+kyys)

ψs

(

xg,yg,zg|kx,ky,zs;ω
)

2iν0
, (4.1)

where rg=(xg,yg,zg) and rs=(xs,ys,zs). Notice that this integration was not possible with
the solution obtained from the forward scattering series alone, since the expression was
divergent for large angles plane wave components. The solution obtained using Padé
approximants converges for all wavenumbers and allows the integration and hence the
construction of a point source response. Substituting the expression (3.17) into Eq. (4.1)

ψs

(

rg|rs
;ω
)

=
1

2π

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

Rei(kx(xg−xs)+ky(yg−ys)+ν0(2z1−zg−zs))

iν0
, (4.2)

where R is the angle dependent reflection coefficient.
To integrate the above expression we first change the integration variables (kx,ky) to

cylindrical coordinates (kh,φ) to obtain the Sommerfeld integral form. To that end we let

kx = kh cosφ′, ky = kh sinφ (4.3)

and notice that the Jacobian for this transformation is kh and so dkxdky = khdkhdφ′. With
the new ranges 0≤ kh <∞ and 0≤φ′

<2π the expression (4.2) becomes

ψs

(

rg|rs
;ω
)

=
1

2π

∫ ∞

0
dkh

Rkh J0(khh)eiν0(2z1−zg−zs)

iν0
, (4.4)

where the Cartesian coordinates (x,y) were changed to polar coordinates, offset-azimuthal
angle (h,φ), using x = hcosφ and y = hsinφ and we have introduced the Bessel function
of the first type

J0(khh)=
1

2π

∫ 2π

0
dΦeikh hcosΦ. (4.5)

The expression can further be simplified by changing integration variable in (4.4) from the
horizontal wavenumber kh to the horizontal slowness or ray parameter p related through
kh =ωp. The mapping between the (kh,ω) to (p,ω) domain has been studied extensively
by Bracewell (see [5, 6]). It mainly consists in reading the data along the lines going
through the origin of the (kh,ω) coordinate system instead of the original (kh,ω) grid
(see Fig. 2).

With this change, the scattered field can be written as

ψs

(

rg|rs
;ω
)

= iω
∫ ∞

0
dp

RpJ0(ωph)eiωζ(2z1−zg−zs)

iζ
, (4.6)
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Figure 2: The mapping (kh,ω) to (p,ω).

where ζ =
√

c−2
0 −p2. We can rewrite the integral above using Hankel functions of the

first type, H
(1)
0 , as

ψs

(

rg|rs
;ω
)

=
1

2
iω
∫ ∞

−∞
dp

RpH
(1)
0 (ωph)eiωζ(2z1−zg−zs)

iζ
(4.7)

and use the asymptotic approximation of the first order

H
(1)
0 =

√

2

πωph
eiωphe−iπ/4 (4.8)

to simplify the expression to

ψs

(

rg|rs
;ω
)

=
e−iπ/4

2
iω
∫ ∞

−∞
dp

√

2

πωph
eiωph Rpeiωζ(2z1−zg−zs)

iζ
. (4.9)

This integral can be solved numerically with very accurate results. However, for the sake
of interpretation, we are going to briefly look at how to solve it analytically using the
saddle point approximation method after distorting the path of integration to avoid the
three branch-cut singularities in the complex p plane. Recall that the formula for this type
of approximation is

∫

dkheiω f (p)≈
√

2πi

ω f ′′(ps)
eiω f (ps), (4.10)
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Figure 3: The main contribution in the saddle point approximation for the scattered field for the c0 > c1 and
pre-critical c0 < c1 cases. In this picture h represents the horizontal offset and d represents the total distance
traveled by the wave from source to interface to receiver.

where ps is the root of f ′(p)=0. Using this formula (the details can be found for example
in [1]), we find, for c0 > c1,

ψs

(

rg|rs
;ω
)

≈ R(ps)

d
eiωtR (4.11)

with tR = d/c0 being the total traveltime of the reflection (see Fig. 3). When c0 < c1, the
situation is more complicated, and the use of Eq. (4.10) has to take into consideration sev-
eral possibilities for the position of the saddle point ps on the real p axis. The discussion
is equivalent to considering the pre-critical and post-critical offsets between the source
and receiver in the experiment. For pre-critical we have

ψs

(

rg|rs
;ω
)

≈ R(ps)

d
eiωtR , (4.12)

which is essentially the same result as for the c0 > c1 case (see also Fig. 3). For the post-
critical case the integration path has to be distorted in a more complex way (see e.g. [1])
and an extra contribution appears due to an integration around one of the branch cut
singularities. This extra contribution describes the appearance of a, what is called in
seismology, conical wave or lateral wave or headwave. The expression of the scattered
field in this case is

ψs

(

rg|rs
;ω
)

≈ R(ps)

d
eiωtR +

2i

ω

c2
0

c1α

1√
hL3/2

eiωtH , (4.13)

where L is the horizontal part in the ray-like path of the headwave and, for large offsets,
can be approximated by h. The analytical derivation of Eqs. (4.11)-(4.13) provide excellent
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Figure 4: The main contribution in the saddle point approximation for the scattered field for the post-critical
c0 < c1 case. In this picture h represents the horizontal offset, d represents the total distance traveled by the
reflected wave from source to interface to receiver and L is the horizontal part (along the interface) in the path
of the headwave.

insights into the physical interpretation of the results. For the c0 > c1 and pre-critical
c0 < c1 cases, the main contribution in the reflection event arrives from the plane wave
component incident at the angle θ = tan−1(h/2z). For post-critical c0 < c1 case, we have
two distinct events in the data: a reflection for which the main contribution comes, as
before, from the plane wave component incident at the post-critical angle θ=tan−1(h/2z)
and a headwave, which combines contributions from all post-critically incident plane
waves with the most important one coming from the critical incident one. These insights
can be applied to the point-scatterer model of the medium to obtain scattering theory
descriptions of pre- and post-critically reflected waves and refracted waves (headwaves).

Eq. (4.1) can also be solved using the approximation to the scattered wavefield given
by the expression in (3.11). Although an approximation, the numerical results described
in [33] indicate two types of advantages when using this latter approach. First the low
orders of Padé approximants can approximate extremely well the actual values of the
reflection coefficient. In conclusion, one can work with the simpler function given by a
Padé approximant (rational function) instead of the actual reflection coefficient (irrational
function). Second, the discrete zeros of Padé approximants reconstruct the branch-cut
singularity of the reflection coefficient responsible for the expression of the headwave in
Eq. (4.13). The lower the order of a Padé approximant, the lower the number of singular-
ities to integrate, and hence the faster the procedure and the modeling algorithm.

For the example described above, the complete modeling method could hence be
described in three steps:

1. Model the response of the medium using the forward scattering series for an arbi-
trary incoming plane wave component.

2. Use the method of Padé approximants to obtain a complete representation and a
better approximation of the scattered field. Speed up the numerical calculation of
the approximants by using the continued fractions expressions.

3. Perform a weighted plane wave summation to construct the impulse response from
a point source.
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The example described above is for the simple case of an acoustic medium with one
parameter (velocity) varying and one single interface. In the last section, Discussion and
Conclusions, we will describe a generalization of the procedure to the multi-interface and
multi-dimensional cases which will be the object of future research.

5 Scattering theory diagrammatic interpretation

The discussion above can be implemented at the point scatterer level to provide scatter-
ing theory diagrammatic representations for pre- and post-critical reflections and head-
waves. Recall (see e.g. [28, 29, 34]) that forward scattering series in Eq. (2.10)

ψs≡G−G0 =G0VG0+G0VG0VG0+··· (5.1)

has a very simple and powerful physical interpretation. Usually, one considers the per-
turbation V to be composed of infinitely many point scatterers embedded in the reference
medium. The first term in the series can be thought of representing a summation over all
1-interaction events, i.e. events with only one interaction with a point scatterer in their
history. The second term represents a summation over all 2-interaction events and so on.
As it can be seen from the series, all propagations between source, receiver and scatterers
occur only in the reference medium, i.e., with the Greens function G0, even though the
speed of the wave in the actual medium is different from the speed of the wave in the ref-
erence medium. A diagrammatic representation of these interactions is shown in Fig. 5.
In [34], Nita et al. show how to calculate the terms in the forward scattering series for an
acoustic medium with a single interface using far field approximations. The analysis in
the previous sections, extends the physical interpretation and diagrams included in [34]
to the following cases.

receiver

sz gz

1z

source

Figure 5: Diagrammatic representation of the point-scatterer interactions described by the forward scattering
series. 1-, 2- and 3-interactions are shown with propagations from the source to the scatterers, between scatterers
and from the scatterers to the receiver in the reference medium only.
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(a) Diagrammatic representation of main
plane wave component contribution to the
expression of the scattered field for a point
source and a point receiver located at pre-
critical offset.
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s

(b) Scattering diagrams of main contribu-
tions to the expression of the scattered field
for a point source and a point receiver lo-
cated at pre-critical offset.

Figure 6: Pre-critical diagrams.
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(a) Diagrammatic representation of main
plane wave component contribution to the
expression of the reflected scattered field for
a point source and a point receiver located
at post-critical offset.
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1

zgzs

receiver

z

(b) Scattering diagrams of main contribu-
tions to the expression of the reflected scat-
tered field for a point source and a point re-
ceiver located at post-critical offset.

Figure 7: Post-critical diagrams.

For pre-critical offsets, the contribution of a plane wave component comes from ray-
like diagrams which share the same (pre-critical) angle of incidence and reflection as
the incoming plane wave (see Fig. 6). Summing all the different orders of interaction
in the forward scattering series one can find the medium’s response to that incoming
plane wave component. For a point source and a point receiver located at pre-critical
offset, the main contribution is given by the plane wave whose ray-like path satisfies the
Snell’s Law, i.e., for which the incidence angle is equal to the reflection angle. For this
case, after performing a saddle point approximation, we arrive at the expression for the
pre-critically scattered field given in Eq. (4.12).

For post-critical reflections, the situation is similar to the pre-critical case, only now
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(a) Diagrammatic representation of main
plane wave component contributions to the
expression of the refracted scattered field
(headwave) for a point source and a point
receiver located at post-critical offset.
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receiver

z

(b) Scattering diagrams of main contribu-
tions to the expression of the refracted scat-
tered field (headwave) for a point source
and a point receiver located at post-critical
offset.

Figure 8: Headwaves diagrams.

the contributions to the scattered field are made by the post-critical scattering diagrams
with the same (post-critical) angle of incidence and reflection as the incoming plane wave
component (see Fig. 7). To find the medium’s response to one post-critical plane wave
component, one has to sum all the terms in the forward scattering series using Padé
approximants. For a point source and a point receiver located at post-critical distance,
the main contribution will be given by the plane wave component whose ray-like path
satisfies Snell’s Law. For this case, after performing a saddle point approximation, we
arrive at the expression for the post-critically reflected wavefield given in the first part of
Eq. (4.13).

For post-critical refractions (headwaves) the contributions to the scattered field are
made by the plane waves arriving at the critical (main contribution) and post-critical
angles. As before, to find the medium’s response to one post-critical plane wave compo-
nent, one has to sum all the terms in the forward scattering series using Padé approxi-
mants. For a point source and a point receiver located at post-critical distance, the main
contributions will be given by the plane wave components whose ray-like paths satisfy
Snell’s Law with the angle of incidence/reflection equal to the critical angle characteristic
to that interface. For this case, after performing a saddle point approximation, we arrive
at the expression for the post-critically refracted wavefield given in the second part of
Eq. (4.13).

6 Discussion and conclusions

In this paper we presented the application of the theory of Padé approximants and con-
tinued fractions to extend the scattering theory solutions for the acoustic wave equation
for a vertically varying 3D medium. We have assumed that only one parameter, velocity,
varies and that the medium is composed of two infinite half spaces. Although simplis-
tic, the model shows the power of the Padé approximants to describe both well behaved
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amplitudes and singularities and extend the construction of the full scattered field to
a point-source experiment, including complicated wave events like headwaves. A key
point in the method presented above, was the relation between the forward scattering
series and a special sequence of Padé approximants with its corresponding continued
fractions expression. This relation was possible because the forward scattering series for
the model used in the previous example proved to be a Taylor series for the scattered field
as a function of the velocity perturbation. The extension of the method to more complex
higher dimensional media also depends on this property. In the following we describe
a possible multi-dimensional approach to calculating the forward scattering series and
interpreting it as a Taylor series.

For an acoustic multi-dimensional medium, following [23] we can define the set M

of model parameters to be the space of complex valued functions defined on a bounded
domain Ω and bounded almost everywhere, i.e. M⊂ L∞(Ω). The norm on this space is
the essential supremum given by

||m||∞ = inf{B : |m(r)|< B a.e. on Ω}. (6.1)

Suppose we fix one of these model parameters (the one describing the reference medium)
and let G0, as before, be the Green’s function describing wave propagation in this medium

(∇2+m0)G0 =δ(r−r0), (6.2)

where r and r0 are points in Ω. Examples of model parameters describing the acoustic
case have been given in Eqs. (2.6), (2.7) and (2.8). Under the condition that

∫

Ω

∫

Ω
|G0(r,r0,k,m0)|2 <C (6.3)

for a certain constant C, we can define a directional derivative of the scattered field as a
function of the model parameter m, and calculated at m0, using the formula (see [23])

ψ′(m0)∆m=−k2
∫

Ω
G0(rg,r′,m0)V(r′)G0(r′,rs,m0)dx′, (6.4)

where we denoted by V the difference between the actual and the reference model param-
eter m−m0. With this definition we can compute the second derivative of the scattered
field as a function of the model parameter m calculated at m0 to be

1

2
ψ′′(m0)∆m

=−k2
∫

Ω
G0(rg,r′,m0)V(r′)

[

∫

Ω
G0(r′,r′′,m0)V(r′′)G0(r′′,rs,m0)dr′′

]

dr′, (6.5)

and so on up to any order of differentiation. The result from this calculation builds up
terms in the forward scattering series given in Eq. (2.10): Eq. (6.4) represents the first term
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in the forward scattering series, Eq. (6.5) is the second term and so on. Moreover, with the
new definition of directional derivative, it is now possible to write the forward scattering
series as a Taylor series for the scattered field as a function of the actual model parameter
m calculated at the reference model parameter m0

ψ(m)=ψ(m0)+
1

2
ψ′(m0)(m−m0)+··· . (6.6)

Similar to the 1D case, this is a Taylor series with limited convergence properties dic-
tated by the degree of separation between the reference and the actual model. Based on
the results presented in the previous section, we expect that this Taylor series can also
be analytically continued using a method based on the special sequence of Padé approx-
imants to extend its convergence to any contrast between the reference and the actual
medium. Depending on the choice of the model parameters m, the series in Eq. (6.6)
covers 1D single and multiple interfaces, and multi-dimensional acoustic media. These
topics along with numerical tests and the possibility of using the Padé approximants and
the continued fractions in solving the inverse problem, and in connection with the inverse
scattering series, will be studied in future research.

Acknowledgments

The author would like to gratefully acknowledge partial support from the NSF-CMG
award number DMS-0327778 and the DOE Basic Sciences award number DE-FG02-
05ER15697.

References

[1] K. Aki and P. G. Richards, Quantitative Seismology, University Science Books, Sausalito,
California, 2002.

[2] R. M. Alford, K. R. Kelly and D. M. Boore, Accuracy of finite-difference modeling of the
acoustic wave equation, Geophysics, 39 (1974), 834-842.

[3] Z. Alterman and F. C. Karal, Propagation of elastic waves in layered media by finite differ-
ence methods, Bull. Seismol. Soc. Am., 58 (1968), 367-398.
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