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Abstract. For simple hydrodynamic solutions, where the pressure and the velocity are
polynomial functions of the coordinates, exact microscopic solutions are constructed
for the two-relaxation-time (TRT) Lattice Boltzmann model with variable forcing and
supported by exact boundary schemes. We show how simple numerical and ana-
lytical solutions can be interrelated for Dirichlet velocity, pressure and mixed (pres-
sure/tangential velocity) multi-reflection (MR) type schemes. Special care is taken to
adapt them for corners, to examine the uniqueness of the obtained steady solutions and
staggered invariants, to validate their exact parametrization by the non-dimensional
hydrodynamic and a “kinetic” (collision) number. We also present an inlet/outlet
“constant mass flux” condition. We show, both analytically and numerically, that the
kinetic boundary schemes may result in the appearance of Knudsen layers which are
beyond the methodology of the Chapman-Enskog analysis. Time dependent Dirichlet
boundary conditions are investigated for pulsatile flow driven by an oscillating pres-
sure drop or forcing. Analytical approximations are constructed in order to extend the
pulsatile solution for compressible regimes.
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1 Introduction

Lattice Boltzmann multi-relaxation-time (MRT) models were derived from their Lattice
Gas predecessor [7] in pioneering works [19, 20, 30]. These models are simple and effi-
cient, explicit in time, numerical schemes for solving the hydrodynamic Navier-Stokes
equations in two [21, 27] and three dimensions [22, 23]. When the collision operator is
chosen properly, only a few relaxation parameters are related to the transport coeffi-
cients of the derived macroscopic conservation laws, e.g., bulk and kinematic viscosities,
and the remaining collision parameters can be viewed as “kinetic” degrees of freedoms.
They principally distinguish the method from the direct discretization methods, such
as, e.g., finite-difference schemes. Although it was rapidly recognized that the “kinetic”
degrees of freedom have a determinant impact on the effective accuracy of microscopic
boundary schemes (see [9–11]) and play a significant role for stability [23, 27, 28], the
BGK scheme [34] without any kinetic degree of freedom still dominates the modeling
of incompressible flow and transport phenomena in porous media. Recently, the MRT
model based on the polynomial equilibrium functions [21, 23, 34] attracted more atten-
tion for solving complex, single and multiphase problems, e.g., in [29, 31–33, 38–40, 42].
The reader can also find in [37] an exhaustive review on the possibility to increase the sta-
bility of the BGK model at low viscosity with the help of an alternative, entropy based,
equilibrium.

The main goal of this study is to validate the microscopic solutions and Dirichlet
boundary schemes on simple problems with analytical solutions. The multi-reflection
type (MR) boundary schemes [16] are constructed in the context of the two-relaxation-
time (TRT) linear collision operator [12–15] where they are especially simple and efficient.
The TRT operator is suitable for both hydrodynamic and advection-diffusion problems
and can be regarded as a bridge between MRT and BGK. TRT shares the simplicity of
BGK, but possesses one free collision parameter which plays a crucial role for the overall
accuracy and stability, at least for incompressible flow.

We apply the methodology developed in [6, 8, 9, 11, 13, 16], both to construct exact
solutions of the MRT/TRT models and to verify the effective accuracy of the bound-
ary schemes. Its key point lies in using the Chapman-Enskog expansion [7, 21] which
expresses each individual population in the bulk via its local equilibrium value and its
gradients. Based on a parity argument and in the framework of the TRT model, infinite
Chapman-Enskog series takes a very simple link-wise form [16], independent of the na-
ture of the equilibrium distribution. When the expected steady solutions for the pressure
and velocity are polynomial functions of the coordinates, the expansion has only a fi-
nite number of terms. Substituting the truncated, but exact, series into the microscopic
boundary rule, we derive the solution for the incoming populations in such problems.

The simplest situation takes place when the derived closure condition, i.e., the dif-
ference between the expected one from the Chapman-Enskog analysis and the one ob-
tained from the incoming population, fits the directional Taylor expansion with respect
to the local equilibrium component (e.g., for velocity or pressure). The coefficients of
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the closure relation depend, in general, on the values of the relaxation times, the equi-
librium/source weights and the coefficients of the involved microscopic boundary rule.
It was first shown for Stokes equilibrium in [6] that the bounce-back locates the parallel
boundaries in Couette flow midway the link, whereas the effective location or, equiva-
lently, the effective slip velocity, depends on the kinematic viscosity and the probability p
for a mixture of bounce-back and specular reflections (this or similar condition is called
also “diffusive” or “kinetic” scheme, e.g., in [35, 36]). However, using the bounce-back
rule, the effective width of the parabolic and, in particular, Poiseuille flow, depends on
a special combination of the two relaxation times (hereafter called Λeo). These relaxation
times govern the evolution of the stress and energy fluxes and they are the two collision
rates of the TRT operator. For diffusion schemes, the effective location of zero velocity
depends not only on the Λeo value, but also on the viscosity, probability p and grid res-
olution of the channel. Besides that, the effective width differs for parallel and rotated
channels, e.g., by 45◦.

The exact Poiseuille solution set by simple reflections can be found in [8, 9, 11, 18] for
the bounce-back rule and in [8] for a diffusive boundary. Once the linear or parabolic
flows are established, the difference between the assumed “wall” velocity and the ef-
fective one, obtained at this location, can be expressed exactly via the first and second
“wall” gradients, for any boundary scheme. When modeling hydrodynamic boundary
conditions, this mismatch can be interpreted as an error in the location of the Dirichlet
boundary values at the wall. In contrast, for the BGK operator, it is fitted, e.g, in [2,35,36],
to boundary layer continuum solutions [5, 26]. The coefficients associated with the first
and second derivatives in the continuous relations are proportionally to Kn and Kn2,
respectively, where the Knudsen number Kn is proportional to the kinematic viscosity
and to the inverse of the channel width. For the BGK, the coefficient Λeo, appearing
in the closure relation with the second derivatives, becomes proportional to the square
of the viscosity, giving rise to a “kinetic” interpretation of the closure relations in the
hope it can be suitable for modeling microflows. However we emphasize that Λeo is a
free parameter of the TRT and MRT operators. Its particular value, Λeo = 3

16 , enables
the bounce-back to locate the prescribed slip velocity exactly midway the link. As one
more example, we extend in this paper this solution to linear, based on two-three pop-
ulations, schemes [4, 16, 41]. The solution Λeo = 3

4 δ2
q locates then the slip-velocity at any

prescribed distance δq > 0 for “magic” linear schemes [16], with no “boundary layers”.
We show in this paper how to modify the coefficients of linear schemes for arbitrary ro-
tated Poiseuille flow. This can be achieved also with “parabolic” schemes [10, 11, 16] due
to their third-order accuracy.

Usually, a more difficult situation takes place when the incoming population and its
Chapman-Enskog solution do not match, developing corrections to the bulk solution,
called hereafter Knudsen layers. The appearance of Knudsen layers in a shear flow for
a perpendicular orientation of the boundaries was first demonstrated, both analytically
and numerically, in [6]. We present here another example, when the correction appears
in parallel Poiseuille flow, due to the inaccuracy of the multi-reflection schemes with re-



522 I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 519-581

spect to second- and higher-order gradients of the non-linear (Navier-Stokes) equilibrium
term. A similar situation takes place for the Couette flow. One remarkable property of
this TRT Knudsen layer is that it has not any impact on the macroscopic solution. In other
words, the parallel Poiseuille profiles obtained with the Stokes and Navier-Stokes equi-
librium coincide for all the multi-reflection boundary schemes considered here, including
bounce-back.

Constructing the populations, we get the exact solution not only for the velocity, but
also for all the other MRT moments. This enable us to get the Knudsen layer corrections
which obey exact link-wise finite-difference type recurrence TRT equations [16] but lie
beyond the Chapman-Enskog solution. At the same time, velocity profiles for Couette
and Poiseuille flows based on the non-linear equilibrium and the link-wise, in [18], or
the diffusion type schemes, in [35], are obtained via the alternative techniques, solving
analytically the finite-difference equivalent of 1D BGK equation with respect to the ve-
locity. Both approaches lead to the same velocity solutions for equivalent collision and
boundary configurations.

Dropping the Chapman-Enskog expansion at a prescribed order, our methodology
naturally applies for the analysis and design of boundary schemes. With its help, the
multi-reflection type (MR) approach [11] is further developed for Dirichlet velocity con-
ditions and extended for pressure and mixed (pressure/tangential velocity) Dirichlet
conditions in [16]. Each multi-reflection condition specifies a linear combination of the
known populations along the outgoing direction for the incoming population. The mixed
scheme computes the incoming population as a linear combination of the pressure and
velocity multi-reflections, involving then the whole set of locally cut links for each indi-
vidual incoming population. Every prescribed solution defines a closure relation. Fitting
a closure relation to the directional Taylor expansion, the space and time errors with re-
spect to the desired Dirichlet condition are first obtained in a general form. Through
an appropriate selection of the coefficients, families of second- and third-order accurate,
pressure and velocity boundary schemes are specified.

We show in [16] that the hydrodynamic non-dimensional numbers (Reynolds, Froude,
Mach) and the selected Λeo value completely define the non-dimensional TRT steady so-
lutions for pressure and velocity on a given grid. In the Stokes regime, the coefficients
of the Darcy law (i.e., the components of the permeability tensor) do not depend on the
specified viscosity value, a well known artifact of the BGK model for computations in
porous media (see [11, 32]), provided that the exact microscopic closure relations share
the parametrization properties of the TRT bulk solutions. Bounce-back, the five popula-
tions based multi-reflection (MR1 in [11]) and new velocity and pressure schemes main-
tain the parametrization of the bulk solutions exactly. A special local correction yields
this property for linear interpolations [4, 41].

The paper is organized as follows. The next section overviews the TRT model and the

multi-reflection algorithms: the Dirichlet velocity (M
(u)
q ), the Dirichlet pressure (M

(p)
q )

and the mixed (M
(m)
q ) schemes. A “constant mass flux” condition is discussed in Sec-
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tion 2.7. Steady solutions in open and closed boxes, using the Dirichlet velocity and
mixed boundary schemes, are evaluated in Section 3, for Poiseuille flow and for linear
velocity/parabolic pressure Navier-Stokes solution, and in Appendix A for the “solid
rotation” problem. The pulsatile flow is studied in Section 4. It can be viewed as an
approximation for blood-flow, e.g., in [3, 43]. Several analytical approximations for the
solution of the compressible Stokes equation driven by an oscillating pressure gradient
are constructed in Appendix B.

2 Overview of the algorithms

2.1 The TRT model

We assume that the nodes~r of the regular d−dimensional computational grid are con-
nected by velocity vectors {~cq}. The TRT evolution equation [12, 13, 16] describes the
relaxation of the populations { fq} to prescribed equilibrium functions {e±q }:

fq(~r+~cq,t+1)= f̃q(~r,t), f̃q(~r,t)= fq(~r,t)+pq+m
(F)
q ,

pq =λen
+
q , mq =λon−

q , m
(F)
q =mq+S−

q ,

fq = f +
q + f−q , f±q =

1

2
( fq± fq̄), n±

q = f±q −e±q ,

~c0 =~0, f0 = f +
0 , f−0 =0, ~cq =−~cq̄, q=0,··· ,Q−1.

(2.1)

The collision operator has two eigenvalues, λe and λo. Conditioned by linear stability,
the eigenvalue functions Λe and Λo are positive:

Λe =−(
1

2
+

1

λe
), Λo =−(

1

2
+

1

λo
), Λeo =ΛeΛo, −2≤λe <0, −2≤λo <0. (2.2)

For any prescribed distribution of the external forcing ~F(~r,t) and any selected source
variable S−

q , we define the equivalent equilibrium functions:

e+
q =Π⋆

q(ρ,~j,ρ0), e+
0 = e0 =ρ−

Q−1

∑
q=1

e+
q , ρ=

Q−1

∑
q=0

fq,

Π⋆
q(ρ,~j,ρ̂)= t⋆q(c2

s ρ+gSE+
q (~j,ρ̂)), E+

q (~j,ρ̂)= ρ̂
3u2

q−||~u||2
2

, uq =(~u·~cq),

~u=
~j

ρ̂
, ~j=~J+

~F

2
, ~J =

Q−1

∑
q=1

fq~cq, S−
q = t⋆q(~F ·~cq),

Q−1

∑
q=1

S−
q ~cq = ~F ,

e−q = j
eq⋆
q , j

eq⋆
q = t⋆q j

eq
q , j

eq
q =(~jeq ·~cq), ~jeq =~j+Λo~F+

~F
λo

.

(2.3)
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This yields the same solutions for f±q , pq and m
(F)
q for any ~F . Hereafter, we will use:

F⋆
q = t⋆q Fq, Fq =(~F ·~cq), j⋆q = t⋆q jq, jq =(~j·~cq).

Assuming that c2
s is a free parameter, the isotropic weights t⋆q follow [34]: {t⋆I = 1

3 ,t⋆I I =
1

12}
for d2Q9, {t⋆I = 1

3 ,t⋆I I I = 1
24} for d3Q15, {t⋆I = 1

6 ,t⋆I I = 1
12} for d3Q19, where the Roman

numbers are equal to ||~cq||. The exact mass and momentum conservation relations of the
TRT model (2.1),(2.3) are:

Q−1

∑
q=0

pq(~r,t)=0,
Q−1

∑
q=1

m
(F)
q (~r,t)~cq =~F. (2.4)

Their hydrodynamic approximation is obtained via the Chapman-Enskog analysis and
presented in [14, 16]. In this paper, using the Dirichlet velocity and mixed boundary
conditions, we will study the TRT modeling of steady solutions for the incompressible
Stokes (gS =0) and Navier-Stokes (gS =1) equations:

∇·~u=0, ~u=
~j

ρ0
,

gS∇·(~u⊗~u)+
1

ρ0
(∇P−~F)=ν∆~u, P= c2

s ρ, ν=
1

3
Λe,

(2.5)

and for the compressible time-dependent Stokes-type equation:

1

ρ0
∂tP+c2

s∇·~u=0, ~u=
~j

ρ0
, (2.6)

∂t~u+
1

ρ0
(∇P−~F)=ν∆~u+νξ∇∇·~u, νξ =Λe(

2

3
−c2

s ). (2.7)

For the TRT, the bulk viscosity νξ is equal to the kinematic viscosity ν when c2
s = 1

3 . The
eigenvalue λe, associated with the symmetric collision component, is fixed by the choice
of the kinematic viscosity. The eigenvalue λo, associated with the anti-symmetric col-
lision component, then the eigenvalue function Λo or the eigenvalue combination Λeo,
represent a free “kinetic” parameter.

The non-dimensional solutions ~j′ =
~j

ρ0U and P′ = P−P0

ρ0U2 are “physical” when they are

determined by the non-dimensional parameters of the modeled equations (e.g., Reynolds
Re = UL/ν and Froude number Fr = U2/Lg for incompressible flow), independently of
the individual choice of the relaxation parameters. We show in [16] that all higher-order
terms in the exact non-dimensional steady macroscopic mass and momentum equations (i.e., the
terms beyond Eq. (2.5)) depend on the collision eigenvalues only via their combination
Λeo. For time dependent equations, this is true only for the coefficients of the spatial
derivatives, in general. The non-dimensional steady solutions of the TRT operator on a
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given grid are identical when, in addition to the hydrodynamic numbers, the collision
function Λeo is fixed, provided that the closure relations obey the parametrization prop-
erties of the TRT evolution operator. For Stokes flow, if one maintains a fixed value for

Λeo, the stationary distribution ν~j(~r) is then independent from the individual values as-
signed to Λe and Λo. This is not possible for the BGK operator. With TRT, this can be
achieved because of the freedom in the selection of λo, then Λeo.

2.2 Multi-reflection boundary schemes, MR

Before performing the MR at a boundary grid node~rb, one must determine the local set
{~cq} of outgoing links (cut by the solid wall) and, for each cut link, prescribe the distance
δq to the wall and the type of Dirichlet boundary condition (e.g., velocity or pressure).
We will distinguish standard links and special links. The cut links with two available
neighbors are called “standard”. The first type of special links does not have a second
grid neighbor and the second type of special links does not have a first grid neighbor. This
means that the nodes (~rb−2~cq) and (~rb−~cq), respectively, are outside the computational
grid. Depending on the type of the cut link {~cq,~cq̄} and the desired accuracy, one selects

a particular scheme, M
(u)
q (velocity) or M

(m)
q (mixed: pressure/tangential velocity), for

each incoming solution.

We will say that the MR scheme is characterized by the triplet j(n)/Π(k)/F(l) when

each incoming population matches exactly the steady solution expansion for O(∂
(n−1)
q j⋆q ),

O(∂
(k−1)
q Π⋆

q) and O(∂
(l−1)
q F⋆

q ) terms. It is noted that in case of linear Stokes equilib-

rium (gS = 0), second-order accuracy (j(2)/Π(1)/F(0)) allows to match exactly linear veloc-
ity and constant pressure solutions when the forcing is absent. The third-order accuracy
(j(3)/Π(2)/F(1)) is needed for parabolic velocity and linear pressure distribution when
the forcing is uniform.

2.3 Dirichlet velocity condition, M
(u)
q schemes

These schemes prescribe the boundary velocity value ~ub(~rw, t̂) via M
(u)
q solution for in-

coming population fq̄(~rb,t+1):

fq̄(~rb,t+1)= M
(u)
q (~rb,t), q∈Π(u), ~rw =~rb+δq~cq,

M
(u)
q (~rb,t)= Rq(~rb,t)+ f

p.c.(u)
q (~rb,t)+w

(u)
q (~rw, t̂),

Rq(~rb,t)=κ1 f̃q(~rb,t)+κ0 f̃q(~rb−~cq,t)+κ−1 f̃q(~rb−2~cq,t)

+κ̄−1 f̃q̄(~rb,t)+κ̄−2 f̃q̄(~rb−~cq,t),

w
(u)
q =−α(u)t⋆q ρ0ub

q, ub
q =(~ub(~rw, t̂)·~cq),

α(u) =κ1+κ0−κ̄−1+κ−1−κ̄−2+1.

(2.8)
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Table 1: The coefficients κ0, κ−1, κ̄−1, κ̄−2, and the valid range for δq for the Dirichlet velocity M
(u)
q schemes.

The missing coefficient is κ1 =1−κ0−κ−1− κ̄−1− κ̄−2.

M
(u)
q κ0 κ−1 κ̄−1 κ̄−2 δq

BB 0 0 0 0 δq=1/2

ULI,MGULI,MULI 1−2δq 0 0 0 0≤δq≤1/2

DLI,MGDLI,MDLI 0 0
2δq−1

2δq
0 1/2≤δq

YLI,MGYLI, MYLI
1−δq

1+δq
0

δq

1+δq
0 0≤δq ≤1

CLI,MCLI
1−2δq

1+2δq
0 −κ0 0 0≤δq ≤1

MGMR(C)
1−2δq−2δ2

q−4CΛo

(1+δq)2−2CΛo

2CΛo+δ2
q

(1+δq)2−2CΛo

−1+2δq+2δ2
q−4CΛo

(1+δq)2−2CΛo

2CΛo−δ2
q

(1+δq)2−2CΛo
0≤δq ≤1

MR1
1−2δq−2δ2

q

(1+δq)2

δ2
q

(1+δq)2 −κ0 −κ−1 0≤δq ≤1

A two-point equivalent form for Rq(~rb,t) is presented in [11, 16]. The M
(u)
q solution is

computed independently for each cut link as follows:

1. Compute the coefficients κ1−κ̄−2 from Table 1.

2. Compute w
(u)
q (~rw, t̂)=−α(u)t⋆q ρ0ub

q (̂t is discussed for time dependent boundary con-
ditions in Section 4.1.2).

3. If necessary, compute f
p.c.
q as given in Table 2 using m

(F)
q and F⋆

q , pre-computed
during the collision step.

4. Compute M
(u)
q (~rb,t) with relations (2.8).

Table 1 summarizes the coefficients of the principal M
(u)
q schemes: bounce-back (BB),

several linear interpolations from three populations based LI(α(u))−family: ULI/DLI
from [4], YLI from [41], then CLI, MGULI/MGDLI and MGYLI schemes from “magic”
linear sub-family MGLI(α(u)) built in [16]. It is noted that the following schemes coin-
cide: ULI and YLI for δq =0, DLI and YLI for δq =1, ULI/DLI, CLI and BB for δq = 1

2 . The

(modified) MLI(α(u)) schemes (e.g., MULI/MDLI, MYLI, MCLI) are built in [16] with the
coefficients of their LI−counterparts. They remove the second-order error of the LI(α(u))
family, with the help of the finite-difference approximations. In principle, there is an in-
finite number of three populations based schemes of equivalent (second-order) accuracy,
and therefore, an infinite number of LI(α(u)) and MLI(α(u)) schemes, governed by the
choice of α(u).

Then follow five populations based schemes: sub-family MGMR(C) and its special
member MR1, they represent the MR(k) family [11, 16]. The MGMR(C) sub-family is
governed by a free parameter C, related to k and then to α(u), where

k=
1

2
(1+δq)

2−1−CΛo, α(u) =
2

1+k
.
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The coefficients of Rq in relation (2.8) lie inside the heuristic stability interval when Cmin≤
CΛo≤0 and

Cmin =

{
−2δq− 3

2 δ2
q for 0≤δq ≤δ0,

δ2
q

2 −1 for δ0≤δq ≤1,

where δ0=(
√

3−1)/2. The limit C=0 corresponds to MR1 scheme [11]. When δq =0 then
C=0 and MGMR(C) reduces to MR1. The MR1 coincides with MCLI when δq =0. When
C = δq then a particular MGMR2 scheme becomes exact for the parabolic velocity and
pressure distributions but it remains stable only for very small Λo values: when Λo → 0
then

κ1 =
(1+δq)2+2CΛo

(1+δq)2−2CΛo
→1.

In what follows we will refer to the LI(α(u)) family as second-order or linear schemes
and MR(k) and MLI(α(u)) families as third-order or parabolic schemes. Parametrization

properties of M
(u)
q schemes are related to value of the coefficient β(p⋆) (see in Table 2):

β(p⋆) =
β(p)

α(u)
, β(p) =−(κ0+2κ−1+κ̄−2+1)+α(u)(

1

2
−Λo). (2.9)

We show in [16] that BB and CLI yield the exact parametrization of the bulk solutions
with β(p⋆) = −Λo. Other schemes from MGLI(α(u)) family modify the effective β(p⋆)

values with the help of the special corrections f
p.c.(u)
q , given in Table 2. They improve

then the deficiency of ULI/DLI and YLI, respectively. The sub-families MGMR(C) and
MLI(α(u)) family yield the exact parametrization as well.

One should keep in mind that the solutions are identical using the distinct boundary
schemes if their exact microscopic closure relations are equivalent. We recall from [16]
that steady solutions are equal, respectively, for

1. CLI and MGLI(α(u)), e.g., {MGULI/MGDLI,MGYLI}.

2. MCLI and MLI(α(u)), e.g., {MULI/MDLI,MYLI}.

Below, we work with the following configurations:

1. For the link which goes through corner we prescribe the M
(u)
q scheme (selected for

one of the adjacent walls). A combination of two (or more) M
(u)
q schemes is possible,

but omitted for the sake of simplicity.

2. The MR(k) family replaces κ−1 f̃q(~rb−2~cq,t) with κ−1 fq(~rb−~cq,t) for the first-type
links. MR(k) is switched to the MLI family for the second-type links (typically, to
MCLI or MULI/MDLI).

3. The MLI(α(u)) and LI(α(u)) families replace κ0 f̃q(~rb−~cq,t) with κ0 fq(~rb,t) for the
second-type links:

Rq(~rb,t)=κ1 f̃q(~rb,t)+κ0 fq(~rb,t)+κ̄−1 f̃q̄(~rb,t). (2.10)
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Table 2: Summary of the values of f
p.c.(u)
q , α(u) and β(p⋆) and the accuracy of the different M

(u)
q schemes.

The f
p.c.(u)
q correction is computed with m

(F)
q =mq+S−

q , S−
q = t⋆q(~F ·~cq), ∀ ~F . It is noted that m

(F)
q −F⋆

q =mq if

~F =~F, i.e., ~jeq =~J. The coefficients α(u) and β(p⋆) are equal for the schemes with equal coefficients κ1− κ̄−2,
e.g., YLI and {MGYLI, MYLI}, ULI/DLI and {MGULI/MGDLI}, {MULI/MDLI}, respectively.

M
(u)
q f

p.c.(u)
q α(u) β(p⋆) accuracy

BB, δq = 1
2 0 2 −Λo j(2)/Π(1)/F(0)

ULI 0 2 −Λo−| 1
2 −δq| j(2)/Π(1)/F(0)

DLI 0 1
δq

−Λo−| 1
2 −δq|

YLI 0 2
1+δq

−Λo− 1
2

CLI 0 4
1+2δq

−Λo

MGLI(α(u)) : −α(u)(β(p⋆)+Λo)m
(F)
q j(2)/Π(1)/F(0)

MGULI/MGDLI α(u)| 1
2 −δq|m(F)

q

MGYLI 1
2 α(u)m

(F)
q

MLI(α(u)) : −α(u)(β(p⋆)m
(F)
q +ΛoF⋆

q −
δ2

q

2 ∂2
q

f .d
j⋆q ) j(3)/Π(2)/F(1)

MR(k) : −α(u)Λo(m
(F)
q −F⋆

q ) −Λo j(3)/Π(2)/F(1)

MR1 4
(1+δq)2

MGMR(C) 4
(1+δq)2−2CΛo

MGMR2 4
(1+δq)2−2δqΛo

j(3)/Π(3)/F(1)

4. The MLI(α(u)) family computes ∂2
q j⋆q for f

p.c.(u)
q using the following approximation

(excepted for the second-type links):

∂2
q

f .d
j⋆q (t̂)≈ 2

δq+δq̄
(

j⋆q (~rw, t̂)− j⋆q (~rb, t̂)

δq
−

j⋆q (~rb, t̂)− j⋆q (~rw̄, t̂)

δq̄
)+O(ε3),

~rw =~rb+δq~cq, ~rw̄ =~rb+δq̄~cq̄, δq 6=0, δq̄ 6=0.

(2.11)

5. For the second-type links we switch relations (2.11) to the non-directional finite-
difference approximations:

∂2
q j⋆q (~rb, t̂)≈−

m
(F)
q −∂q

f .d
Π⋆

q

Λe
, ∂q

f .d
Π⋆

q =−
d

∑
α=1

∂
f .d
α Π⋆

qcq̄α,

∂
f .d.
α Π⋆

q cq̄α =Π⋆
q(~rb+cq̄α, t̂)−Π⋆

q(~rb, t̂).

(2.12)

We set t̂ equal to t (already known solution) in relations (2.11)-(2.12) for the sake of

simplicity. The finite difference (f.d) approximation ∂
f .d
α Π⋆

q is available excepted for
very special local geometries (e.g., sharp corners), where MLI can be switched to
LI.
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6. It is shown in [16] that when applying directly the MR(k) and MLI(α(u)) schemes
at solid grid nodes (δq = 0), where their closure relation is exact (uq(~rb)≡ ub

q), the
uniqueness of the steady solutions can be lost. Indeed, the non-equilibrium com-
ponent n−

q (~rw,t) is then conserved in standard boundary nodes for the links per-
pendicular to the wall.

2.4 “Magic” solutions for linear velocity schemes

Particular Λeo values enable the linear schemes to get the exact parabolic velocity distri-
bution for a given width when the channel is parallel to one of lattice velocities. These
solutions are derived from the exact steady closure relation, given for the LI(α(u)) family
by the relation (5.11) in [16]:

LI : [α(u)(j⋆q +δq pq +β(p⋆)m
(F)
q +β( f ⋆)F⋆

q )+ f
p.c.(u)
q ](~rb)=α(u) j⋆q (~rw),

β(p⋆) =−Λo+(
1

2
+δq−

2

α(u)
), β( f ⋆) =Λo.

(2.13)

The coefficients α(u), β(p⋆) and the correction f
p.c.(u)
q are given in Table 2. Dropping the

third- and higher-order terms, the Chapman-Enskog expansion of the post-collision com-

ponents pq and m
(F)
q in Eq. (2.1) is given by Eq. (2.22) in [16]:

pq =∂tΠ
⋆
q +∂q j⋆q +O(ε3),

m
(F)
q =∂t j

⋆
q +∂qΠ⋆

q−Λe∂
2
q j⋆q +O(ε3).

(2.14)

Substituting these relations into relation (2.13), and dropping the time derivatives, one
gets:

[α(u)(j⋆q +δq∂q j⋆q +Λeo∂2
q j⋆q −Λo(∂qΠ⋆

q−F⋆
q ))](~rb)

+[(α(u)β(p⋆)+Λo)m
(F)
q + f

p.c.(u)
q ](~rb)=α(u) j⋆q (~rw)+O(ε3). (2.15)

For a steady linear flow, with constant pressure and no forcing, e.g., a Couette flow, rela-
tion (2.15) becomes (with δq = 1

2 for BB):

j⋆q +δq∂q j⋆q = j⋆q (~rw), m
(F)
q =0, ∂qΠ⋆

q =0, F⋆
q =0, f

p.c.(u)
q =0. (2.16)

The linear schemes maintain therefore the Couette flow in arbitrary inclined channels
exactly. For those schemes where

[α(u)β(p⋆)m
(F)
q + f

p.c.(u)
q ](~rb)=−α(u)Λom

(F)
q (~rb), (2.17)

the relation (2.15) becomes:

[j⋆q +δq∂q j⋆q +Λeo∂2
q j⋆q −Λo(∂qΠ⋆

q−F⋆
q )](~rb)= j⋆q (~rw)+O(ε3). (2.18)
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The BB (with δq = 1
2 ), CLI, and MGLI(α(u)) sub-family yield relations (2.17) and (2.18).

Let Θq denote the projection of~cq on the unit normal to the wall for the cut link q. When
the flow is invariant along the wall, then ∂2

q j⋆q = Θ2
q∆j⋆q and jq obeys the projection of the

Stokes equation on~cq:

∂qΠ⋆
q−F⋆

q =
Λe

3Θ2
q

∂2
q j⋆q . (2.19)

With the help of relation (2.19), the closure relation (2.18) becomes:

[j⋆q +δq∂q j⋆q +
3Θ2

q−1

3Θ2
q

Λeo∂2
q j⋆q ](~rb)= j⋆q (~rw)+O(ε3) . (2.20)

Relation (2.20) represents the third-order accurate Taylor expansion when:

Λeo =
3Θ2

qδ2
q

2(3Θ2
q−1)

, 0≤δq ≤1, (2.21)

namely,

Λeo =
3δ2

q

4
, α=0◦, Θq ≡1, ∀q∈Π(u), (2.22)

Λeo =
3δ2

q

2
, α=45◦, Θq =

√
2

2
. (2.23)

In the last relation, q addresses the links which are not perpendicular to the wall. It
is noted that the location of the wall at grid nodes (δ⊥ = 0) lies on the stability limit,
Λo =0. When the wall is arbitrary inclined, the solution (2.21) can be unavailable for all
non-perpendicular cut links. We show below that the exact solution may exist even for
inclined channels but it requires to redefine δq for each cut link, depending on Λeo and
the grid resolution.

The solutions (2.22)-(2.23) can be extended for “non-magic” linear schemes (ULI/DLI,
YLI, etc.) but they do not satisfy relation (2.17) and the effective values differ then for
forcing and pressure driven flow. Exact examples are constructed below for Poiseuille
flow.

For transient channel flow, we replace the exact steady closure relation (2.13) with the
third-order accurate time-dependent one (see relation (5.3) in [16]):

[α(u)(j⋆q +δq∂q j⋆q +β(p⋆)m
(F)
q +β( f ⋆)F⋆

q +α(t)∂t j
⋆
q )+ f

p.c.(u)
q ](~rb)=α(u) j⋆q (~rw, t̂), (2.24)

where α(t) depends on the multi-reflection coefficients (see Table 10). Generalizing

Eq. (2.19) to time-dependent flow, the m
(F)
q value (2.14) is equal again to

F⋆
q −

3Θ2
q−1

3Θ2
q

Λe∂
2
q j⋆q .
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The solution (2.21) applies then for transient regime, with a proper choice of time depen-
dent boundary value j⋆q (~rw, t̂). The efficiency of the specific choice (2.22) is checked for
time-harmonic, pulsatile flow in Section 4.1.

2.4.1 Poiseuille flow

Let us consider the Poiseuille flow in a channel parallel to the x′-axis, arbitrary rotated
with respect to the lattice, and perpendicular to the y′-axis:

3(∂x′ P−Fx′)=Λe∂
2
y′ jx′ , jx′(±

H

2
)=0. (2.25)

When the Poiseuille flow is modeled with the Stokes equilibrium (gS = 0), the closure
relations (2.15) and (2.18) are exact. Let us assume that the Poiseuille profile jx′(y′) is
established and its effective width is Heff:

4jx′(y′)=−1

2
∂2

y′ jx′(H2
eff−4y′2). (2.26)

The projections jq satisfy Eq. (2.19). Let yq be a “link” coordinate, along any axis parallel
to {~cq,~cq̄}, using~cq as unit vector, and the center of the directional segment as the origin:

4j⋆q (yq)=−1

2
∂2

q j⋆q (H2
qeff−4y2

q), H2
qeff =

H2
eff

Θ2
q

. (2.27)

Let the “link” distance from the boundary point~rb to the assumed wall point, yq=±Hq/2,
be rq, then

pq(~rb)=∂q j⋆q (~rb)=
1

2
∂2

q j⋆q (Hq−2rq), H2
q =

H2

Θ2
q

. (2.28)

Substituting relations (2.27), (2.28) into relation (2.15), one gets the exact closure relation
for each cut link, in term of a difference H2

qeff−H2
q :

−α(u)

2
∂2

q j⋆q [H
2
qeff−(Hq−2rq)

2−4δq(Hq−2rq)−
16

3
Λq eo]

+4(α(u)(β(p⋆)+Λo)m
(F)
q + f

p.c.(u)
q )=0, Λq eo =

(3Θ2
q−1)

2Θ2
q

Λeo. (2.29)

2.4.2 Exact solutions with “magic” linear schemes, CLI and MGLI(α(u)) sub-family

Owing to relation (2.17), the effective width becomes independent of ∇P and ~F for CLI
and the MGLI(α(u)) sub-family:

CLI,MGLI(α(u)) : H2
qeff−H2

q =4rq(rq−2δq)+4Hq(δq−rq)+
16

3
Λq eo. (2.30)



532 I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 519-581

Solution via Λeo

When the coefficients of these schemes are computed with δq=rq (i.e., exactly as for linear
flow), the difference between the effective and the assumed solution is:

CLI,MGLI(α(u)) : H2
qeff−H2

δ =−4δq
2+

16

3
Λq eo, if δq = rq, 0≤δq ≤1. (2.31)

As expected, Hqeff becomes equal to Hq when Λeo is selected with relation (2.21). This
implies however that the value of δq satisfies the closure relations for all the cut links.
The normal links do not depend on velocity in parallel flow and satisfy the closure re-
lations for any distance δq for the parallel channel and for channels inclined by 45◦ with
respect to one of the coordinate axes. For these two orientations, it becomes possible to
localize exactly the walls with the help of Λeo. The “magic” values are then given by rela-
tions (2.22) and (2.23), respectively. For the bounce-back, these solutions apply with δq=

1
2

and reduce to the early obtained results (e.g., Eq. (47) and Eqs. (54) in [9], Eq. (42) in [11]).
This solution, originally derived for the FCHC model, is valid for all the cubic velocity
sets. The effective width of any parallel channel (e.g., in porous media) is therefore larger
than the assumed one:

Heff > H, when Λeo >
3

4
.

This value represents a reasonable limit for Λeo. It restricts the highest kinematic viscosity
to 1

2
√

3
for the BGK model.

Solution via δq

In contrast, one can redefine δq for the coefficients of the linear scheme such that H2
qeff

becomes equal to H2
q in relation (2.31):

r2
q−Hqrq+δq(Hq−2rq)+

4

3
Λq eo =0, then

δq = rq +
r2

q−
4Λq eo

3

Hq−2rq
. (2.32)

Again, if solution (2.21) is chosen for Λeo, then δq =rq. Otherwise, in contrast with the lin-
ear flow, δq differs from the “physical” distance rq. It is noted that unlike solution (2.21),
solution (2.32) is defined for any inclination. With its help, the linear magic schemes
model the Poiseuille flow in arbitrary rotated channel exactly and even in the frame of the
BGK model. However, the coefficients of the interpolations depend then on the size of
the channel, via Hq, and on the Λeo value. When Λeo →0, then

δq = rq +
r2

q

Hq−2rq
.
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The parameter δq lies then in interval [0,1] if

0< rq <1+
Hq

2
−

√

1+
H2

q

4
, Hq >2rq.

One can expect that the stability of solution (2.32) depends on Λeo and the discretization
of the channel.

2.4.3 Exact solutions with “non-magic” schemes, e.g. ULI/DLI and YLI

When f
p.c.(u)
q =0 and β(p⋆) 6=−Λo, e.g., ULI/DLI and YLI, one cannot combine the pres-

sure gradient and forcing terms in closure relation (2.20), and the solution of closure rela-
tion (2.29) differs for pressure driven and forcing driven flows, e.g, in a parallel channel
(Θq =1, δ=δq = rq):

H2
eff−H2

δ =−4δ2− 8Λe

3
(3β(p⋆)+β( f ⋆)), if F⋆

q =−Λe

3
∂2

q j⋆q , ∇P=0,

H2
eff−H2

δ =−4δ2− 16Λe

3
β(p⋆), if ∂qP⋆

q =
Λe

3
∂2

q j⋆q , ~F=0.

(2.33)

Tables 4 and 5 summarize the solutions (2.30) and (2.33) for the non-inclined channel.
They tell us that the effective solutions for “non-magic” schemes approach the “magic”
solution (2.22) when Λe → 0. An extension of the “inclined channel” solution (2.32) is
straightforward but δq will depend on the viscosity for “non-magic” schemes.

2.5 Dirichlet pressure condition, M
(p)
q schemes

They prescribe the pressure distribution Pb(~rw,t) via the M
(p)
q -solution for the incoming

population:

fq̄(~rb,t+1)= M
(p)
q (~rb,t), q∈Π(p), ~rw =~rb+δq~cq,

M
(p)
q = Rq(~rb,t)+ f

p.c.(p)
q (~rb,t)+w

(p)
q (~rw, t̂),

w
(p)
q =−α(p)e+

q (~rw, t̂)=−α(p)Π⋆
q(c−2

s Pb(t̂),ρ0~u(~rw, t̂),ρ0),

f
p.c.(p)
q =−β(u)pq(~rb,t),

α(p) =κ1+κ0+κ̄−1+κ−1+κ̄−2−1,

β(u) =1−(κ0+2κ−1−κ̄−2)−α(p)(Λe−
1

2
).

(2.34)

We recall that pq is a local component of the TRT collision operator (2.1) and Rq is defined
by relation (2.8). In principle, it is sufficient to use linear approximations for the non-
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Table 3: The coefficients κ1, κ0, κ−1, κ̄−1, κ̄−2 for the M
(p)
q -schemes. The accuracy of PLI and PAB increases

to j(3)/Π(2)/F(2) with the help of the correction (2.36).

M
(p)
q PAB PLI PMR(k)

κ1 -1 1
2 −δq 1+λe

κ0 0 δq−1 −1+
3λe(k−2)+δqk(2+3λe)

4

κ−1 0 0 − kδq

2 +λe
1−3δqk

4

κ̄−1 0 1
2 1+

δqk(λe−2)+λe(3k−2)
4

κ̄−2 0 0
−kδq(λe−2)−λe(k−2)

4

δq
1
2 0≤δq ≤1 0≤δq ≤1

accuracy j(2)/Π(2)/F(2) j(2)/Π(2)/F(2) j(3)/Π(2)/F(2)

linear term in Π⋆
q , e.g.,

~u(~rw)≈~u(~rb)+δq(~u(~rb)−~u(~rb−~cq)), if ~cq̄ /∈Π(u)(~rb), t̂= t,

~u(~rw)≈~u(~rb)+
δq

δq̄
(~u(~rb)−~u(~rw̄)), if ~cq̄ ∈Π(u)(~rb), δq̄ 6=0.

(2.35)

When the tangential velocity uτ is prescribed, one must only approximate the normal

velocity component, un(~rw, t̂). Table 3 summarizes the principal M
(p)
q schemes from [16]:

(pressure anti-bounce-back) PAB, (pressure linear interpolation) PLI and five-populations fam-

ily PMR(k) with k as free parameter. The M
(p)
q − algorithm for each cut link is:

1. Compute the coefficients κ1−κ̄−2 from Table 3.

2. Approximate the boundary velocity if gS = 1, e.g., with the help of rela-
tions (2.35).

3. Compute w
(p)
q (~rw, t̂)=−α(p)e+

q (~rw, t̂), t+ 1
2 ≤ t̂≤ t+1.

4. Compute f
p.c.(p)
q with relations (2.34) using the pre-computed value pq.

5. Compute M
(p)
q (~rb,t) with relations (2.34).

Below, we work with the following configuration:

1. The five populations based schemes replace κ−1 f̃q(~rb−2~cq,t) with κ−1 fq(~rb−~cq,t)

for the first-type links. They are switched to PLI (or PAB if δq = 1
2) for the second-type

links.

2. PLI/PAB is only applied for the second-type links, with the following correction:

f
p.c.(p)
q → f

p.c.(p)
q +F

p.c.−
q , F

p.c.−
q =−γ(u)∂2

q
f .d

j⋆q ,

PAB: γ(u) =Λe, PLI : γ(u) =δqΛe.
(2.36)
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Relation (2.12) can be used to compute ∂2
q

f .d
j⋆q .

3. We apply PMR1 = PMR (k = 1) and PMR2 = PMR (k = 2(1+δq)−2), the PMR2 in-

creases the formal precision to a triplet j(3)/Π(3)/F(2) but it may results in a loss of
the uniqueness of the steady solutions when δq =0.

2.6 Mixed M
(m)
q scheme

A Dirichlet pressure condition is not sufficient to set the solution of the Navier-Stokes
equations uniquely. The mixed scheme [16] prescribes the pressure Pb (as a normal con-
dition) and the tangential velocity ~ub

τ (as a tangential condition) at a smooth part Γ(p) of

the solid boundary. The scheme is based on the projections of M
(u)
q and M

(p)
q solutions

on the local coordinate vectors associated with the wall, {~n,~τ1,~τ2}(~rw), with~n(~rw) for the
normal and {~τ1 ,~τ2} for the tangential vectors, then ~cq = {cqn,cqτ1

,cqτ2}. Assuming that

both M
(p)
q (~rb) and M

(u)
q (~rb) values are computed for cut links, the mixed scheme adds a

correction δ fq̄ to M
(p)
q :

fq̄(~rb,t+1)= M
(m)
q (~rb,t), M

(m)
q (~rb,t)= M

(p)
q (~rb,t)+δ fq̄(~rb,t), q∈Π(p). (2.37)

The local system of normal/tangential constraints is presented in [16] with respect to
{δ fq̄(~rb,t)}. The solution represents a linear combination of δMq values:

δMq = M
(u)
q −M

(p)
q , q∈Π(p). (2.38)

When the solid wall is perpendicular to one of the coordinate axis, they can be computed with

relations (2.39)-(2.41). The M
(m)
q -algorithm for the set of cut links, {q}∈Π(p), consists from

the following steps:

1. Prescribe the set of the boundary values for the tangential velocity, {ub
τ(~rw, t̂)}, and

pressure {Pb(~rw, t̂)}, {~rw}={~rb +δq~cq} , q∈Π(p).

2. Approximate the normal velocity {un(~rw, t̂)}, e.g., with relations (2.35).

3. Compute {M
(p)
q (~rb)} for all q∈Π(p).

4. Compute {M
(u)
q (~rb)} for all q∈Π(p).

5. Compute fq̄(~rb,t+1)=M
(m)
q (~rb) in a form (2.37), e.g., with relations (2.39)-(2.41) for

{δ fq̄(~rb,t)}.

Unless specially indicated, we do not apply M
(m)
q in corners. When two anti-parallel

velocities prescribe there two different conditions (in this paper, the mixed condition on
the vertical boundary and the velocity on the horizontal boundary), the velocities {~cq}
which cut only the vertical boundary use M

(p)
q (the pressure condition only, δ fq̄(~rb,t)=0)
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and the velocities {~cq} which cut the horizontal boundary use M
(u)
q (including the link

going through the corner). As an alternative technique, we use the M
(m)
q scheme for

all populations which cut the vertical boundary, including the population which goes

through the corner, and M
(u)
q for the other cut links.

2.6.1 d2Q9 velocity set

For the standard node with two incoming diagonal populations and the normal one, the
solution is:

d2Q9: δ fq̄ =− cq̄τ1

2 ∑
q∈Π(p)

δMqcqτ1
. (2.39)

It is noted that the normal link (cq̄τ1
=0) imposes the pressure condition:

δ fq̄ =0, M
(m)
q = M

(p)
q .

2.6.2 d3Q15 velocity set

The solution for the 5 incoming populations in a standard boundary node is:

d3Q15: δ fq̄ =− cq̄τ1

4 ∑
q∈Π(p)

δMqcqτ1
− cq̄τ2

4 ∑
q∈Π(p)

δMqcqτ2 . (2.40)

Again, the normal population (cqτ1
= cq̄τ2 =0) performs a pressure condition, δ fq̄ =0.

2.6.3 d3Q19 velocity set

The solution in a standard node has the form:

d3Q19 : δ fq̄ =− cq̄τ1

2 ∑
q∈Π(p)

δMqcqτ1
, cqncqτ1

6=0,

δ fq̄ =− cq̄τ2

2 ∑
q∈Π(p)

δMqcqτ2 , cqncqτ2 6=0, (2.41)

δ fq̄ =0, cqn 6=0, cqτ1
=0, cqτ2 =0.

2.7 “Constant mass flux” condition

The previous solutions are designed for the velocity, pressure and mixed conditions on
arbitrarily shaped boundaries. In practice, one often needs to guarantee a constant mass
flux at the inlet/outlet. The condition called “constant pressure” is suggested for this
purpose in [24] (unfortunately, with an erratum). Let us consider this scheme in more
detail.
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We assume that the x axis is perpendicular to Γ(p) and propose to derive a solution
for the incoming population fq̄(~rb,t+1) from the following relation:

f̃q(~rb,t)− fq̄(~rb,t+1)= f̃q(~rb−~cqx,t)− fq̄(~rb−~cqx,t+1), q∈Π(p) . (2.42)

Updating fq̄(~rb−~cqx,t+1) prior to fq̄(~rb,t+1), the boundary rule becomes:

fq̄(~rb,t+1)= fq̄(~rb−~cqx,t+1)+[ f̃q(~rb,t)− f̃q(~rb−~cqx,t)], q∈Π(p). (2.43)

The conditions (2.42),(2.43) are exact for flows invariant along the x-axis, driven by forc-
ing or a constant pressure gradient. Let us assume that the populations f̃q, q∈{q⊥} stay
inside the boundary column after propagation, such that the following relation holds:

∑
~rb

∑
q∈{q⊥}

f̃q(~rb,t)=∑
~rb

∑
q∈{q⊥}

fq̄(~rb,t+1). (2.44)

This condition includes the mass conserving boundary solutions for the vertical popu-
lations and, e.g., the bounce-back condition for the populations incoming through the
corners. Assuming than that all other inside populations are obtained either with the
condition (2.43) or via a propagation from the next fluid column, let us compute the mass
inside the boundary column:

∑
~rb

Q−1

∑
q=0

fq(~rb,t+1)

= ∑
~rb

∑
q∈Π(p)

[ fq̄(~rb,t+1)+ f̃q(~rb−~cqx,t)]+∑
~rb

∑
q∈{q⊥}

f̃q(~rb,t)

= ∑
~rb

∑
q∈Π(p)

[ f̃q(~rb,t)+ fq̄(~rb−~cqx,t+1)]+∑
~rb

∑
q∈{q⊥}

f̃q(~rb,t)

= ∑
~rb

∑
q∈Π(p)

[ f̃q(~rb,t)+ f̃q̄(~rb,t)]+∑
~rb

∑
q∈{q⊥}

f̃q(~rb,t)

= ∑
~rb

Q−1

∑
q=0

f̃q(~rb,t)=∑
~rb

Q−1

∑
q=0

fq(~rb,t) . (2.45)

The total initial mass at a given inlet/outlet vertical column is kept at a constant value
when the conditions mentioned above are satisfied. In channels, one can prescribe then
the total mass (pressure) at inlet/outlet sections. When the pressure does not vary across
the channel, e.g., for the Poiseuille flow, one prescribes then the inlet/outlet pressure
values exactly.

3 Steady solutions

The multi-reflection approach is validated for smooth non-rectangular boundaries in [11,
16,32]. The MR1, MGMR(C) and MLI(α(u)) demonstrate a very high accuracy for perme-
ability computations. Our purpose here is to check all the developed schemes and their
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combinations, with a focus on their exactness for particular flows, competitive accuracy
and uniqueness of their steady solutions. We restrict ourselves to rectangular boxes but
use, at least, two kinds of boundary conditions. The first setup prescribes the Dirichlet

velocity using M
(u)
q schemes for all cut links in the system. The second setup combines

M
(u)
q at the horizontal walls with the M

(m)
q at the inlet/outlet. The distances δ

(h)
q /δ

(v)
q

to the horizontal/vertical boundaries are prescribed arbitrarily between 0 and 1. When
suitable, the solutions are also computed with periodic or constant mass flux boundary
conditions (2.42). The time dependent Womersley flow is studied along the same lines in
the next section.

All computations are performed with the d3Q15 velocity set, c2
s = 1

3 and momentum
conserving equilibrium:

~jeq =~J, ~F =~F.

The L2(φ)-error with respect to an exact solution φex is measured for all grid points:

L2(φ)=

√
∑~r(φ(~r)−φex(~r))2

∑~r (φex(~r))2
. (3.1)

3.1 Test I: Poiseuille flow with the Stokes equilibrium, gS =0

Non-equilibrium steady bulk solution n±
q is given as an infinite Chapman-Enskog series

by relations (3.1) in [16]. Dropping the third and higher orders, it becomes for the Stokes
equilibrium (Π= P):

n+
q =n+

q
(S)

=
∂q j⋆q (~r)

λe
,

n−
q =n−

q
(S)

=
∂qP⋆

q −Λe∂
2
q j⋆q −S−

q

λo
, P⋆

q = t⋆q P.

(3.2)

These relations, for any linear combination of the constant pressure gradient and uniform

external forcing (i.e., for any choice of ~F ), describe the exact solution when ~j obeys the
Stokes equation (2.25) describing a Poiseuille flow.

When the parabolic pressure and/or velocity schemes are applied for all the incoming
populations, the numerical solution will have the form (3.2) without any approximation.
This is verified for parallel and rotated periodic channels in [8–11] using different, third-
order accurate, no-slip boundary schemes. Solution (2.32) allows to obtain the Poiseuille
flow for any inclination using linear “magic” schemes. We restrict the numerical simula-
tions below to non-inclined channels but using several inlet/outlet boundary conditions.
Special attention will be paid to closed (rectangular) corners and the location of flat walls
at grid nodes.
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Table 4: Test I. Exact solutions for H2
eff−H2

δ , the difference between the effective and the assumed squared

diameters for non-inclined Poiseuille flow driven by ~F and/or ∇P.

M
(u)
q H2

eff−H2
δ ∇P, ~F δ=δq

BB 16
3 Λeo−1 ∀∇P, ∀~F 1

2

CLI, MGLI(α(u)) 16
3 Λeo−4δ2 ∀∇P, ∀~F 0≤δ≤1

ULI/DLI 16
3 Λeo−4δ2+4Λe|1−2δ| ∇P=0 0≤δ≤1

ULI/DLI 16
3 Λeo−4δ2+ 8

3 Λe|1−2δ| ~F=0 0≤δ≤1

YLI 16
3 Λeo−4δ2+4Λe ∇P=0 0≤δ≤1

YLI 16
3 Λeo−4δ2+ 8

3 Λe ~F=0 0≤δ≤1

MR(k), MLI(α(u)) 0 ∀∇P, ∀~F 0≤δ≤1

3.1.1 Open channel

Periodic conditions at the inlet/outlet are applied when the flow is driven by a force. The

constant mass flux condition (2.42) is suitable for any combination of the constant pressure
gradient and forcing. Inlet/outlet pressure values can be prescribed then via the initial
distribution provided that the no-slip conditions on the horizontal walls keep the mass
inside the inlet/outlet columns, e.g., owing to symmetry.

The parabolic schemes, the MLI(α(u)) and MR(k) families, maintain the population so-
lution (3.2) exactly and localize the horizontal walls at the prescribed distance, 0≤ δq ≤1,
for any values of the relaxation parameters.

When δ
(h)
q = 0, then MULI= MYLI, MCLI= MR1 and, in Section 5.5 of [16], it is pre-

dicted that n−
q⊥(~rb,t) is conserved for the normal link q⊥, i.e.,

n−
q⊥(~rb,t)≡n−

q⊥(~rb,0) ∀t.

Initializing arbitrary distribution n−
q⊥(~rb,0), we confirm that it is conserved on the ob-

tained solution. A discrepancy between the exact solution,

n−
q⊥(~rb,t)=0,

and the conserved initial value causes the development of accommodation solutions.
When n−

q⊥(~rb,0) is distributed uniformly along the top and bottom walls (even when the
two values differ for the two boundaries), the accommodation has no impact on the ob-
tained velocity (which remains exact). This type solutions are constructed in Section 3.2.2.
However, the accommodation resulting from the non-uniform distributions modifies the
velocity solution, which therefore loses its uniqueness.

The linear schemes, BB and LI(α(u)), obey the exact steady closure relation (2.13). Their
effective solutions are derived in Section 2.4.1 and summarized in Table 4 for a parallel
channel. With the help of the solutions from Table 5, the “magic” linear schemes (CLI and
MGLI(α(u))) localize the walls exactly, without any “boundary layers”. Alternatively, this
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Table 5: Test I. Special solutions for Λeo. They yield Heff = Hδ, making non-inclined Poiseuille flows modeled
exactly.

M
(u)
q Λeo >0 ∇P, ~F δ=δq

BB Λeo = 3
16 ∀∇P, ∀~F 1

2

CLI,MGLI(α(u)) Λeo = 3δ2

4 ∀∇P, ∀~F 0<δ≤1

ULI/DLI Λeo = 3
4 (δ2−Λe|1−2δ|) ∇P=0 Λe <

δ2

|1−2δ|
ULI/DLI Λeo = 3

4 δ2− Λe
2 |1−2δ| ~F=0 Λe <

3
2

δ2

|1−2δ|
YLI Λeo = 3

4 (δ2−Λe) ∇P=0 Λe <δ2

YLI Λeo = 3
4 δ2− Λe

2
~F=0 Λe <

3
2 δ2

MR(k), MLI(α(u)) ∀Λeo ∀∇P, ∀~F 0≤δ≤1

is achieved when δq is redefined following solution (2.32), with Θq ≡ 1 for non-inclined
channel.

The staggered invariants. In open channel, the oscillating vertical velocity, us
y(y,t) =

−us
y(y,t+1) is maintained with the BB, CLI, MR1 and, when δ

(h)
q =0, with MCLI. It can be

provoked, in addition to a developed Poiseuille solution, when the staggered invariants
(see [16], Eq. (5.32)) of these schemes are initialized. We only recall here that initializing
the uniform vertical velocity uy =u0 in a box consisting from Ly horizontal lines, one gets
the oscillating amplitude:

|us|= (1+κ0+κ−1)|u0|
Ly−(Ly−2)κ0+(Ly−4)κ−1

,

when Ly is odd (Eq. (5.34) in [16]). It is noted that the uniform initial vertical velocity is
damped when Ly is even.

3.1.2 Dirichlet velocity conditions

Two exact parabolic profiles at the inlet and outlet are prescribed with M
(u)
q . The profiles

may correspond to any selected combination of the modeled forcing and the assumed
constant pressure gradient ∇P. We emphasize that the pressure solution is defined up to
a constant. When the boundary schemes allow a mass flux across the wall, the obtained
density (pressure) distribution can happen to be non-stationary although the velocity
field results in a steady distribution.

Parabolic schemes, MLI(α(u)) and MR(k). Applied to all boundaries, they maintain the

exact Poiseuille profile for any distances δ
(h)
q and δ

(v)
q . When δq 6= 0, the steady solution is

unique for any initial distribution.

When δ
(h)
q =0 and/or δ

(v)
q =0, then n−

q⊥(t) is conserved for all cut links perpendicular
to solid walls in standard boundary nodes. The velocity solution generally depends on
the initialization of these links. One can check for this taking, e.g., n−

q⊥(~rb,t=0)=0 for the
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Figure 1: Test I, δ
(h)
q = δ

(v)
q = 1

2 , Λeo = 3
16 . The Dirichlet velocity conditions are modeled with the bounce-back

for all links. The closure relation is exact excepted for inlet/outlet horizontal links. The computations are

performed in a L2 = 112 box (top) and a L2 = 212 box (bottom). The velocity error is normalized with its

highest value:
ux(x,y)−uex

x (y)
umax

x
, umax

x =
(Fx−∇xP)

8ν L2. The normalized pressure error is computed as
P(x,y)−Pex(x)
|∇xP−Fx)| .

The solution becomes exact using the correction (3.3) for the incoming horizontal links.

horizontal populations when δ
(v)
q = 0. The obtained solution differs from the exact one

which is get, e.g., starting from the exact solution (3.2) for the horizontal boundary links.

Similar, taking a non-zero distribution n−
q⊥(~rb,t = 0) for the vertical links when δ

(h)
q = 0,

the velocity solution will differ from the one obtained starting from the exact solution,
n−

q⊥ ≡ 0. Switching then to LI(α(u))-family for the vertical links restores the uniqueness
and maintains the exact solution. We recommend to replace the parabolic schemes with
MGULI when δq =0, or to avoid this discretization, e.g., replacing δq =0 with δq =1.

Linear schemes: BB and LI(α(u)). When Λo is chosen as indicated in Table 5, the closure
relations are exact for the horizontal walls and, due to the vanishing vertical velocity, for
the diagonal links at the inlet/outlet. The error estimations for Stokes flow are indepen-

dent of the selected viscosity value provided that the solution ν~j(~r) is fixed by Λeo, i.e.,
for BB, CLI and MGLI(α(u)) sub-family. Fig. 1 shows the normalized errors caused by
the inexactness of the closure relation for incoming horizontal populations. The computa-
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tions are performed with a mixture, half forcing and half pressure gradient, using equal
forcing for coarse and fine grids (here, ∇xP =−Fx =−10−3). The pressure distribution
is centered around its solution at the center of the box. The picture shows that although
the highest pressure error is localized in the inlet/outlet corners, the normalized velocity
error reaches the highest value in the middle of the channel. The velocity error decreases
as h2 (L2(ux)≈0.4% on the coarse grid and L2(ux)≈0.1% on the fine one) but the highest
amplitude of the normalized pressure error remains constant.

With the help of the exact closure relation (2.13), one can built the local correction for
the horizontal links (where ∂2

q j⋆q =0, pq =0):

f
p.c.(u)
q =−α(u)(β(p⋆)m

(F)
q +ΛoF⋆

q ), if cqy =0, cqz =0. (3.3)

For BB and CLI,

β(p⋆) =−β( f ⋆) =−Λo,

then

f
p.c.(u)
q =α(u)Λomq if S−

q = F⋆
q .

The correction (3.3) replaces, for the horizontal links only, the correction from Table 2. With
its help, the velocity solution becomes exact using effective Λeo solutions obtained for an open
channel. We suggest that the correction (3.3) may also become useful in more general
channel-type inlet/outlet flows.

When δq =δq̄ =0, then fq̄(~rb,t+1)= fq(~rb,t) and vice versa for the second type link using
the ULI scheme in the local form (2.10). Since this solution is independent of the evolu-
tion of the system, the steady solution depends on the initial distribution. We find that the

MGULI scheme leads to a unique steady solution in this case, owing to its f
p.c.(u)
q correc-

tion. The steady solutions coincide for all magic schemes of the MGLI(α(u)) sub-family
but the CLI scheme supports the staggered invariants (see in [16]) and it is less stable
than MGULI for δq → 0. If the staggered invariant is present initially in the system, the
CLI solutions may oscillate in time even when all distances δq are different from zero and
MGULI/MGDLI is applied in corners. In this test one can trigger the two-dimensional
oscillating solution for all variables, initializing a uniform vertical velocity. The combina-
tion of MGULI/MGDLI (for the vertical or horizontal boundaries and corners) with CLI
(for two other opposite walls) usually works most robust and suppresses the staggered
oscillations.

3.1.3 Mixed boundary condition

The M
(m)
q scheme prescribes the pressure values (here, P(x=0)=c2

s ρ0 and P(x=L)=c2
s ρ0+

∇xPL) and uy = 0 at the inlet/outlet. The pressure family PMR(k) is exact for Poiseuille
flow based on the Stokes equilibrium and with/without forcing: PMR1 and PMR2 are
applied in this test. Applied to one population in the corner (the second-type link which
cuts the vertical boundary), the PLI scheme becomes exact for the parabolic flow with the
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Figure 2: Test I is modeled with the exact BB at the horizontal boundaries and the mixed condition on the

vertical boundaries, δ
(h)
q =δ

(v)
q = 1

2 , Λeo = 3
16 . Top row: L2 =112, L2(ux)=2.1×10−1%. Bottom row: L2 =212,

L2(ux) = 3×10−2%. The second-order correction (2.36) is specially omitted for one (pressure) population in
corners, resulting in the loss of the exact solution.

help of correction (2.36). The parabolic schemes but also LI−schemes, applied as the M
(u)
q

component of M
(m)
q , maintain the exact Poiseuille solution for any distance to inlet/outlet.

In fact, the terms related to second gradients vanish here from the normal (pressure)

closure relation and the linear velocity schemes are sufficient for M
(m)
q . Moreover, owing

to the invariance of the vertical velocity, uy=ub
τ≡0, the (modified bounce-back) MBB scheme

yields exact mixed condition for Poiseuille flow at any distance to inlet/outlet:

MBB: M
(u)
q = f̃q−pq−2t⋆q ∑

τ

ub
τcqτ , q∈Π(p). (3.4)

When the correction (2.36) is omitted, PLI does not work exactly, except for δ
(v)
q =0. Fig. 2

shows that the resulting pressure and velocity field errors are mostly concentrated in the
corners. The velocity error decreases very rapidly with refining, owing to the exactness of
the velocity closure relations for all other links. However, the normalized pressure peak
in corners (using the same forcing for fine/coarse grids) again does not reduce. This test
confirms the necessity of highly accurate pressure schemes in corners.

When δ
(h)
q =0, the same conclusion follows for the parabolic schemes as above: the so-



544 I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 519-581

lution losses the uniqueness, depending on the initial distribution n−
q⊥(~rb,t=0) prescribed

for the vertical links. In contrast, when δ
(v)
q =0, the PMR1 constrains the boundary solu-

tion for the horizontal links and the solution remains unique, even applying the parabolic

schemes as M
(u)
q component of the mixed condition. Also, the mixed condition does not

maintain the oscillating (two-dimensional) vertical velocity except for δ
(h)
q =0, when CLI

or MR1 are applied on the horizontal boundaries. However, the PMR2 component of the

PMR(k) family results in non-unique solutions when δ
(v)
q = 0 because of the exactness

of its closure relation for this location, similar like the parabolic velocity schemes (see

in [16]). We recommend therefore to use PMR1 when δ
(v)
q =0.

3.2 Test II: Poiseuille flow with the Navier-Stokes equilibrium, gS =1

3.2.1 Following Chapman-Enskog method

The Chapman-Enskog steady expansion, here {pch
q ,mch

q }, can be decomposed into two

parts: the Stokes component {λen
+
q

(S)
,λon−

q
(S)}, given with the relation (3.2), plus the

expansion {δp
(ch)
q ,δm

(ch)
q } due to the non-linear equilibrium term t⋆q E+

q (~j,ρ0). In a non-
inclined channel,

E+
q (y)=ρ0u2

x(y)
(3c2

qx−1)

2
, ux(y)=

jx(y)

ρ0
.

The exact solution becomes (it is given by the p
(2)
q +p

(4)
q and m

(1)
q +m

(3)
q terms of the steady

Chapman-Enskog solution, Eq. (3.1) in [16]):

pch
q =λen

+
q

(S)
+δp

(ch)
q , mch

q =λon−
q

(S)
+δm

(ch)
q ,

δp
(ch)
q =ρ0TqH+(y)c2

qy, δm
(ch)
q =ρ0TqH−(y)cqy, Tq = t⋆q(3c2

qx−1),
(3.5)

where

H−(y)= H−(1)
(y)+H−(3)

(y), H+(y)= H+(2)
(y)+H+(4)

(y),

H−(1)
=ux∂yux,

H+(2)
=−Λo(ux∂2

yux+(∂yux)
2),

H−(3)
=3(Λeo−

1

12
)(∂yux∂2

yux),

H+(4)
=−3Λo(Λeo−

1

6
)(∂2

yux)
2, y=0,1,··· ,Ly−1.

(3.6)

The exact no-slip scheme for the solution (3.5)-(3.6) must fit O(∂4
yu2

x). However, although

no M
(u)
q scheme possesses such an accuracy, the macroscopic solution remains the same

as with the Stokes equilibrium in an open channel for all M
(u)
q schemes. A reason is
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that a Knudsen layer population correction “compensates” {δp
(ch)
q ,δm

(ch)
q } in the closure

relations.

3.2.2 Knudsen layer solution

The Chapman-Enskog expansion assumes that the solution for all populations is ob-
tained via the evolution equation. At the boundary points, the microscopic boundary
schemes close the system for the incoming populations. The exact population solution
can differ then from the solution obtained via the Chapman-Enskog expansion. Let us
decompose then the effective solution {pq,mq} into two parts: Chapman-Enskog solution

{pch
q ,mch

q } and an additional solution g±q (~r), hereafter referred to as Knudsen layer:

pq = pch
q +g+

q , mq =mch
q +g−q . (3.7)

The exact recurrence equations of the TRT operator are given in [16] by relations (3.2).
They remain valid if g±q (~r) obeys the following equations for non-incoming populations:

g+
q =(Λeo−

1

4
)∆2

qg+
q , g−q =(Λeo−

1

4
)∆2

qg−q ,

Q−1

∑
q=0

g+
q =0,

Q−1

∑
q=1

g−q ~cq =0,
(3.8)

and

Λe∆
2
qg+

q =−∆̄qg−q , Λo∆2
qg−q =−∆̄qg+

q , (3.9)

where

∆̄qφ(~r)=
1

2
(φ(~r+~cq)−φ(~r−~cq)),

∆2
qφ(~r)=φ(~r+~cq)−2φ(~r)+φ(~r−~cq), ∀φ.

(3.10)

Remarkable is that when Λeo = 1/4, the Knudsen layers {g±q } should vanish, except for
the boundary points. We present now a particular Knudsen layer solution to Eqs. (3.8)-
(3.10):

g+
q =ρ0TqK+(y)c2

qy, g−q =ρ0TqK−(y)cqy, y=0,1,··· ,Ly−1. (3.11)

It has no impact neither on the mass nor on the momentum. The general form of the
solution K±(y) is:

K±(y)= k±1 r
y
0 +k±2 r

−y
0 , r0 =

2
√

Λeo+1

2
√

Λeo−1
, Λeo 6=

1

4
, Λeo 6=0, (3.12)

K±(0)= k±1 , K±(Ly−1)= k±2 , K±(y)=0, 0<y< Ly−1, Λeo =
1

4
,

K±(y)= k±1 (−1)y+k±2 y(−1)y, Λeo =0. (3.13)
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Here, r0 and 1/r0 are the roots of the algebraic equation resulting from Eq. (3.8):

(r+1)2 =4Λeo(r−1)2. (3.14)

Substituting relation (3.12) into Eq. (3.9) one can relate the coefficients:

k−1 =2Λek+
1

1−r0

1+r0
, k−2 =2Λek

+
2

r0−1

1+r0
, (3.15)

or, equivalently,

k+
1 =2Λok−1

1−r0

1+r0
, k+

2 =2Λok−2
r0−1

1+r0
. (3.16)

Their equivalence follows from relation (3.14). The boundary schemes fix the remaining
coefficients. In case Λeo =1/4, then

k−1 =2Λek
+
1 , k−2 =−2Λek

+
2 .

In case Λo =0, k−2 =−4Λek
+
1 , k+

2 =0 and k−1 is related to k+
1 via the microscopic boundary

condition at y=0.

The Stokes part of the solution {n+
q

(S)
,n−

q
(S)}, given by relation (3.2), defines the ef-

fective width of the channel. The remaining solution, {δp
(S)
q /λe,δm

(S)
q /λo} represents a

sum of non-linear term expansion, relations (3.6), and the Knudsen layer (3.11):

δp
(S)
q =δp

(ch)
q +g+

q =ρ0TqG+(y)c2
qy, G+ =(H++K+),

δm
(S)
q =δm

(ch)
q +g−q =ρ0TqG−(y)cqy, G−=(H−+K−).

(3.17)

Provided that the same (or equivalent) M
(u)
q scheme is applied for all incoming links at

one wall, their closure relations are equivalent for all cut links on the solution (3.17). Let us
represent them at the top (i= t) and bottom (i=b) as:

a
(i)
p δp

(S)
q (~rb)+a

(i)
m δm

(S)
q (~rb)= a

(i)
c (~rb), q∈Π(u)(~rb), i={t,b}, (3.18)

where

BB,CLI,ULI/DLI,YLI : a
(i)
p = β(u), a

(i)
m = β(p), a

(i)
c =0,

β(u) =α(u)δq, β(p) =α(u)β(p⋆);

MLI(α(u)) : a
(i)
p = β(u), a

(i)
m =0, a

(i)
c =0, β(u) =α(u)δq,

MR1 : a
(i)
p =(4Λeo−(1+δq))δq, a

(i)
m =−2δ2

q Λo, (3.19)

a
(i)
c =δ2

qΛo(u2
x(1)−u2

x(0)), if Λeo 6=
1

4
,

MR1 : a
(i)
p =−(4+3δq)δq, a

(i)
m =−2δ2

q Λo,

a
(i)
c =δ2

qΛo(u2
x(2)−u2

x(1)), if Λeo =
1

4
.
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Figure 3: Test II. Normalized, symmetric and anti-symmetric components K±(y)/H±(0) of the Knudsen
layer solution are plotted. They are obtained in an open channel using MULI at the horizontal boundaries.
The numerical solution (symbols) lies exactly on the analytical curve (3.12); the parameters are fixed by rela-
tions (3.15)–(3.16) and the MLI boundary conditions (3.19). Left: Ly =9, Right: Ly =18. Data: ∇xP=0, ν=1,

Fx =10−3 (coarse grid) and Fx = 1
8 ×10−3 (fine grid).

For MR1, the steady closure relation involves a neighbor solution along a link. Two TRT

evolution relations have been first involved to express δm
(S)
q (~rb−~cq) and δp

(S)
q (~rb−~cq) via

δm
(S)
q (~rb) and δp

(S)
q (~rb). When Λeo =1/4, the neighbor point solution is

δp
(S)
q =δp

(ch)
q , δm

(S)
q =δm

(ch)
q .

It is expressed here with help of the finite-difference equivalent form of the TRT equa-
tions.

Finally, the Knudsen layer is described by relations (3.11)-(3.13). Its four coefficients
are first related via two relations (3.15) (or (3.16)) and then derived from the boundary
relations (3.19), substituting there (3.17) with relations (3.6). These solutions can be com-
puted using the effective (Stokes) solution for ux(y), corresponding to a selected scheme.
Numerical results confirm the analytical predictions for all considered schemes. As an
example, the solution obtained with MULI is shown in Fig. 3. We plot the normalized
values, K+(y)/H+(0) and K−(y)/H−(0). In agreement with the solution (3.19) for MLI
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family, K+(y)+H+(y) = 0 in boundary points y = 0 and y = Ly−1, then K+(y)/H+(0)
equals to −1 there. For Λeo = 1/4, the Knudsen layer vanishes at bulk points in agree-
ment with relations (3.13). When Λeo < 1/4, the accommodation oscillates, otherwise is
decreases exponentially toward the center of the channel.

When δq =0, MULI and MR(k) do not constrain the non-equilibrium at the boundary
point. The coefficients of Knudsen layer solution are then not fixed and the accommo-
dation may vanish. Linear schemes fix the solution (3.12). When Λo = 0 (linear stability

limit), then δp
(ch)
q ≡0 and a

(i)
m vanishes except for “non-magic” linear interpolations (e.g.,

ULI/DLI, YLI). For them, the unique solution is fixed in a form (3.13) and, e.g., if two
walls are placed on the same distance, then

K+(y)= k+
1 (−1)y, K−(y)=−4Λek

+
1 (−1)y(y− Ly−1

2
).

When a
(i)
m =0, e.g., BB, CLI, MLI, and MR1, the solution is not fixed and, in particular, the

zero Knudsen solution (K+≡0, K−≡0) satisfies the system.
This example of the Poiseuille flow modeled with the Navier-Stokes equilibrium and

inexact boundary conditions shows that the Knudsen layer population solution happens
to have no impact on the macroscopic solution, invariant along the channel.

3.2.3 Dirichlet velocity and mixed conditions

Let us analyze now the situation in closed boxes. Both M
(u)
q and M

(m)
q schemes, applied

at the vertical boundaries, constrain the Navier-Stokes component of the population so-
lution. They do not maintain the Knudsen layer solution in a form (3.11) unless the non-
equilibrium component vanishes from the closure relation. This is the case, e.g., for the

MLI closure relations when δ
(v)
q =0. The open channel effective solution is valid then in a

closed box. The simplest test to check for this consists of using BB for all links which cut

the horizontal boundaries and prescribing the effective Stokes solution via MLI at δ
(v)
q =0.

Similarly, M
(p)
q supports the Knudsen layers in a form (3.11) when the non-equilibrium

part vanishes from its closure relation, e.g., for the combination of PLI or PMR2 and MLI

when δ
(v)
q =0.

When δ
(v)
q 6=0, the macroscopic solutions differ in open and closed boxes. On the fixed

grid, the non-dimensional velocity and pressure solutions are fixed by Λeo and the grid
Reynolds number Reg =U/ν. One can check this running two experiments with

ν(1)

ν(2)
= k,

∇xP(1)− f
(1)
x

∇xP(2)− f
(2)
x

= k2

(then U(1)

U(2) = k, Re
(1)
g = Re

(2)
g , ∀k) and

Λ
(1)
eo =Λ

(2)
eo .
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Figure 4: Test II. Convergence rates in an L2−box, L = 10,20,. . .,50, for the Dirichlet velocity conditions.

The legend indicates the velocity scheme on the horizontal/vertical walls and the Λeo value. Left: δ
(h)
q =1/2,

δ
(v)
q =1/4. Right: δ

(h)
q =1, δ

(v)
q =1/10. The dotted lines with no symbols visualize the h,h2,h3−slopes.

Let P0 be some reference value, e.g., the pressure in the center of the box. We confirm that
the parametrization properties of the steady solutions for BB, CLI, MGLI(α(u)) and for the
parabolic velocity schemes (or their combinations) and for the pressure schemes PMR(k)

(with PAB/PLI for second-type link). The two solutions are identical for ~u′ =~j/(ρ0U)
(hence, for L2(ux)) and, at least when

∇xP(1)

∇xP(2)
= k2

or
f
(1)
x

f
(2)
x

= k2, for P′=
P−P0

ρ0U2
.

These solutions are independent from the selected value of c2
s . We emphasize that using

the compressible equilibrium form, t⋆q E+
q (~j,ρ) in relations (2.3), ~u′(~r) and P′(~r) are fixed

only if Ma2 =U2/c2
s is kept constant (e.g., adjusting c2

s ).
Next we examine the following configurations. The CLI scheme is applied for the

horizontal walls shifted at δ
(h)
q = 1/2 and δ

(h)
q = 1. We use the effective solutions (2.22),

Λeo = 3/16 and Λeo = 3/4, respectively. The velocity condition is first applied at the in-

let/outlet for δ
(v)
q =1/4 and δ

(v)
q =1/10, respectively. We recall that using the Stokes equi-

librium (gS =0) and PMR1, PMR2 in combination with the linear/parabolic schemes, the

solution is exact for any δ
(v)
q . The convergence rates for gS = 1 are plotted in Figs. 4 for

ν=1/18,

Fx =−∇xP=
1

9n3
×10−3, n=1,2,··· ,5,

from coarse to fine grid. They confirm that CLI and MLI(α(u)) applied to the horizontal
boundary have equal accuracy when Λeo is chosen properly for CLI (cf., CLI/MULI, Λeo=
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Figure 5: Test II. Convergence rates in an L2−box, L = 10,20,. . .,50. Top row: The bounce-back condition is

applied at the horizontal walls for δ
(h)
q =1/2. The mixed scheme is applied at the inlet/outlet using PMR1 in

combination with BB, MBB, CLI, MR and MLI for δ
(v)
q =1/4. Bottom row: BB and MLI are at the horizontal

walls, PMR1 and PMR2 are combined with MLI at the vertical walls. MLI+PMR1∗ and MLI+PMR2∗ use
exact solutions for inlet/outlet normal velocity component instead of the approximations (2.35). The dotted
lines with no symbols visualize the h,h2−slopes (top row) and the h,h2,h3−slopes (bottom row). Λeo = 3/16
for all tests.

3/16 (left) and Λeo =3/4 (right) to MULI/MR1). Otherwise, e.g., taking Λeo =3/16 when

δ
(h)
q =1 (see CLI/MULI, right picture), or using CLI at the vertical walls when δ

(v)
q 6= δ

(h)
q

(see CLI/CLI, both left and right pictures), the decay rates reduce to O(h2), in agreement
with the predictions. The CLI is applied here in combination with MGULI/MGDLI for
the second type links. We find in the different tests that this combination works robustly.

As expected, the parabolic schemes yield third-order convergence rates for distinct
Λeo values. Next, the mixed condition is applied at the inlet/outlet using PMR1 in com-

bination with BB, MBB, CLI, MR and MLI (here, δ
(h)
q = 1/2, δ

(v)
q = 1/4, Λeo = 3/16). The

results are plotted in the top row in Fig. 5. As we could expect, PMR1+BB is only first

order accurate (asymptotically) for ux and still worse for the pressure when δ
(h)
q 6=δ

(v)
q (the

convergence is one order faster for both pressure and velocity when δ
(v)
q = δ

(h)
q and Λeo

satisfies relation (2.22)). We observe that the velocity error converges less rapidly than we
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would expect for all other combinations, fitting O(h)−O(h2) for MBB and CLI, O(h2) for
MR1 and MLI. The error decays similarly for the pressure. We emphasize that we use
the normalized pressure values for the convergence tests: the pressure value obtained in
the node closest to the center of the channel is subtracted from the obtained solution (and
similarly for the reference one).

We verify first that the slower convergence is not due to the application of BB at the
horizontal walls: here the parabolic schemes at the horizontal walls and corners yield
nearly the same results. The results plotted in the bottom pictures in Fig. 5 investigate

further this problem. Using the exact solution for ux(~rw) in w
(u)
q (~rw, t̂) and w

(p)
q (~rw, t̂)

for the mixed condition decreases the magnitude of the error but does not alter its con-
vergence (cf. BB/MLI+PMR1 and BB/MLI+PMR1∗). However, switching to PMR2

(which is accurate for the term ∂qΛo∂qΠ⋆
q in p

(2)
q ), clearly improves the convergence (see

BB/MLI+PMR2). Finally, combining PMR2 with the exact solution for the inlet/outlet
normal velocity component, instead of the approximations (2.35), we get third-order con-
vergence for both velocity and pressure (see BB/MLI+PMR2∗ and MLI/MLI+PMR2∗,
which give nearly the same results owing to Λeo).

This test shows that the impact of the ∂qΛo∂qΠ⋆
q term may spoil the third-order veloc-

ity convergence when its distribution is parabolic in space, as for non-linear equilibrium
distribution. It was suggested in [16], Section 7.5, that when the velocity profile is not
invariant along the normal direction, so that the mixed derivative ∂2

τnun becomes signif-
icant, the second-order approximation errors of the linear approximations (2.35) are no
longer canceled due to symmetry. The present test confirms that they may induce the

additional second-order errors for the mixed schemes, via the w
(u)
q term in their M

(u)
q

component.

3.3 Test III: Linear velocity/parabolic pressure solution

Let us consider now the inverse situation, when the exact velocity solution is linear and
pressure distribution is parabolic. They represent exact steady solution of the incom-
pressible N-S-E (see also in [25]):

ux(x,y)= ax+by, uy(x,y)=bx−ay,

P(x,y)= Pex(x,y), ~F(x,y)≡0, or,

~F(x,y)=−∇Pex(x,y), P≡P0,

Pex(x,y)= P0−ρ0
(a2+b2)

2
(x2+y2).

(3.20)

Taking gS=1 in relations (2.3), the exact solution is given by the steady form of third-order
Chapman-Enskog expansion [16] where we set ∂2

q j⋆q ≡0, ∂2
qF⋆

q =0, then:

mch
q =∂qΠ⋆

q−S−
q ,

pch
q =∂q j⋆q −∂qΛo(∂qΠ⋆

q−F⋆
q ).

(3.21)
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Prescribing exact Dirichlet values for velocity and pressure one can validate the method
for any shape of the external boundary. Giving linear force distribution, one can check
the boundary schemes in the presence of a force gradient. Unlike for Poiseuille flow, the
closure relations do not need to capture the viscous term −Λe∂

2
q j⋆q but need to match ∂2

qΠ⋆
q

(or ∂qF⋆
q ). Exact boundary conditions require then j(2)/Π(3)/F(2) accuracy.

3.3.1 Exact solutions with the special schemes

Both the MLI(α(u)) and MR(k) families are exact for linear pressure and/or constant forc-
ing distributions, but not for the next order term ∂qΛo(∂qΠ⋆

q−F⋆
q ). This term vanishes

however from the closure relations for MLI(α(u)) and MR1 when δq =0. Applying these

schemes for all boundaries when δ
(h)
q = δ

(v)
q = 0 (with and without forcing) and starting

from the exact solution, the method will maintain it. However, as we discussed above,
steady solution is not unique for the parabolic schemes when the boundary lies on the
grid points. For a particular choice C=δq, the MGMR2 scheme from the MGMR(C) sub-
family becomes exact for a parabolic pressure distribution. This choice however only
approaches the stability limit when Λo→0. As an example, we mention that for ν=1/18
(used below) the solutions are stable when, roughly, Λo < 1/50. When the force is not
constant, its gradient can be removed from the closure relation with a help of the special
correction:

f
p.c.(u)
q → f

p.c.(u)
q −δqΛo∂qF⋆

q .

The special pressure scheme, PMR2 is also exact for this solution. It can be applied
in combination with any parabolic velocity scheme (their error for the ∂q(∂qΠ⋆

q−F⋆
q ) van-

ishes from the mixed constraints due to symmetry). The five populations based schemes
can not be applied however for the second-type links. Just for testing, one can compute
them with the exact solution (3.21).

3.3.2 Dirichlet velocity and mixed conditions

Let us apply now the general schemes. They are all exact for the linear velocity distri-
bution. We apply the “magic” linear and parabolic velocity schemes and fix the non-
dimensional distributions,

~j′=
~j

ρ0U
, P′=

P− P̄

ρ0U2

for each grid with Λeo and Reg =U/ν (again, we measure the pressure error centering it
around P̄, the value obtained in the center nodes). The Dirichlet velocity conditions are
first prescribed for all boundaries using BB, MGDLI/MGULI, MR1 and MDLI/MULI.

The convergence velocity rates are plotted in Fig. 6 for two cases: δ
(v)
q = δ

(h)
q = 1 (left

picture) and δ
(h)
q =3/4, δ

(v)
q =1/4 (the middle and right pictures). The convergence and

the accuracy are similar for two cases. The results fit, as expected, O(h) for BB and
O(h3) for MR1 and MDLI/MULI. The convergence is only between O(h) and O(h2)
for MGDLI/MGULI on the coarse grids and it tends asymptotically to O(h2). Similar
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Figure 6: Test III. Convergence tests in case of the Dirichlet velocity conditions at all boundaries in an L2−box,

L = 10,20,··· ,50. Left: δ
(v)
q = δ

(h)
q = 1, L2(ux) = L2(uy). Middle and Right: δ

(h)
q = 3/4, δ

(v)
q = 1/4. Data:

ν=1/18, Λeo =3/16 and a=0, b =(10n)−2, n =1,2,3,5 from coarse to fine (the coefficients a and b given by

relations (3.20)). The dotted lines with no symbols visualize the h,h2 ,h3 slopes.

convergence rates are obtained for the “non-magic”, DLI/ULI schemes, but their effective
accuracy is not controlled with Λeo. The parabolic schemes therefore retain their formal
third-order accuracy in the presence of the non-linear pressure solution. The convergence
behavior is similar for MR1 and MULI/MDLI but we find usually that MR1 is the most
accurate.

Next, the mixed schemes prescribe then exact distributions for the pressure and the
tangential velocity uy at the east and west boundaries, linear approximations (2.35) are
used for normal velocity ux. The obtained convergence rates are plotted in Fig. 7. Equal

M
(u)
q schemes are used for the horizontal and the vertical boundaries, except for the com-

bination MGDLI/(PMR1+MCLI) (MGDLI on the horizontal boundary, M
(p)
q =PMR1 and

M
(u)
q = MCLI for the mixed scheme). For the linear velocity schemes, CLI and MGDLI,

the convergence is only between O(h) and O(h2) for both velocity components (asymp-
totically tending to O(h2)), similar to the previous test. When MBB (modified bounce-
back (3.4)) is applied for the mixed scheme, the velocity errors increase with one order
of magnitude compared to CLI, in agreement with the predictions for the non-channel
flows, but their pressure solutions are similar. Unlike for non-linear Poiseuille flow in the
previous test, the parabolic schemes, MCLI and MR1 mixed components result here in
O(h3)−O(h4) rates.

The prescribed value of the central pressure is P0 = 1/3 in all the tests below. The
decay rates of the pressure error with both PMR1 and PMR2 fit O(h3) when they are
combined with the parabolic schemes, and O(h2) when they are combined with the lin-
ear schemes, or when the linear scheme is applied to the horizontal boundaries and cor-
ners (see MGDLI/PMR1+MCLI). Being exact for the parabolic pressure distribution,
the PMR2 scheme shows a smaller pressure error but it does not gain in convergence
against PMR1 when the velocity schemes do not yield this property. Altogether both
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Figure 7: Test III. Convergence tests in case of Dirichlet velocity conditions on the horizontal walls and the

mixed conditions at the inlet/outlet. Top row: δ
(v)
q =δ

(h)
q =1/2. Bottom row: δ

(h)
q =3/4, δ

(v)
q =1/4. The same

velocity scheme is used for the horizontal/vertical boundaries unless two velocity schemes are indicated. The
pressure schemes are PMR1 and PMR2. Data: ν=1/18, Λeo =3/64 and a=0, b =(10n)−2, n =1,2,3,5. The

dotted lines with no symbols visualize the h,h2,h3-slopes.

Test II and Test III, which can be regarded as “viscous dominant” and “convection dom-
inant” flow examples, confirm the advanced accuracy and convergence of the parabolic
schemes with respect to the linear ones, for both velocity and mixed conditions. We recall
that replacing CLI with MGULI/MGDLI, which do not support the staggered invariants
unless δq=1/2, will result in the same steady solutions. We find that PMR1 is most stable
when the pressure boundaries lie closer to the grid nodes, δq ∈ [0,1/2] and when Λo →0
if δq →1.

3.3.3 Special case δ
(h)
q =δ

(v)
q =0 with mixed scheme

The CLI replaces the parabolic schemes on the horizontal walls. The results are presented
in Table 6 and illustrated in Fig. 8 using PMR1 for all tests. They show a substantial dis-
crepancy of BB with other schemes, especially for the pressure. Bounce-back spoils the
total results even when it is applied only for one corner link (see (CLI+BB)/CLI, (hor-
izontal boundary+corner)/vertical boundary). One gets then an impressive improving
replacing BB with CLI. Applying MCLI as the component of the mixed condition clearly
improves the accuracy for the tangential velocity uy. Fig. 8 demonstrates the highest
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Table 6: Test III. The results for the mixed condition when the walls are located at grid nodes (δ
(h)
q =δ

(v)
q =0).

The first and second columns indicate the M
(u)
q schemes used on the horizontal wall for standard and second-

type links, respectively. The third column indicates the M
(u)
q scheme used in combination with PMR1 for the

mixed scheme. Data: Lx = Ly =10, a= b=2.25×10−3, ν=1.

Λeo = 3
64 Λeo = 3

4

M
(u)
q L2(ux) L2(uy) L2(p) L2(ux) L2(uy) L2(p)

BB BB BB 1.9×10−2 9.9×10−2 14.65 1.8×10−1 8.9×10−2 1.69

CLI BB CLI 1.3×10−2 6.2×10−3 2.89 2.2×10−2 4.7×10−3 1.45
CLI CLI CLI 3.7×10−4 1×10−4 9.1×10−2 1.9×10−3 1.3×10−3 5.1×10−2

CLI CLI MCLI 3.9×10−4 6.8×10−5 9.8×10−2 2.2×10−3 9.3×10−5 3.0×10−2
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Figure 8: Test III. The exact solution (first picture) and the normalized error distribution when the walls

are located at grid nodes, δ
(h)
q = δ

(v)
q = 0 and the mixed scheme is applied for vertical boundaries. The date

corresponds to Λeo=3/4 in Table 6. Vector fields are scaled with their highest amplitude,
√

u2
x+u2

y=0.02025 and
√

(ux−uex
y )2+(uy−uex

y )2) (equal to 8.5×10−4 for CLI+BB/CLI, 3.9×10−5 for CLI+CLI/CLI and 3.8×10−5

for CLI+CLI/MCLI).
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errors in corners when (CLI+BB)/CLI are used as the velocity schemes. The error is
distributed uniformly for all walls with (CLI+CLI)/CLI. Finally, the error field is mostly
concentrated near the horizontal walls for (CLI+CLI)/MCLI, i.e. when MCLI improves
the tangential constraint on the vertical boundaries in agreement with the analysis. As
above, replacing of CLI with MGULI and MCLI with MULI will lead to the same steady
solutions but minimizes the risque of developing of the staggered solutions.

4 Test IV. Womersley-type pulsatile flow

The test problem [17] restricts the pipe-flow solution [43] to infinite two-dimensional

channel. Velocity ~u(w) ={u
(w)
x (y,t),0} and pressure P(w)(x,t) obey incompressible Stokes

flow equation governed by an oscillating pressure gradient:

∇·u(w)
x =0, ∂tu

(w)
x +∂xP(w) =ν∂2

yu
(w)
x ,

P(w)(x)= Axcos(ωt), w=
2π

T
,

u
(w)
x (y=±ly)=0, −ly≤y≤ ly, −∞≤ x≤∞.

(4.1)

The real part of the solution is:

u
(w)
x (y,t)=u

(w,1)
x (Y,t)+u

(w,2)
x (t), Y=

y

ly
,

u
(w,1)
x (Y,t)=

A

ω
uw(k′w,k′′w,Y,t), u

(w,2)
x (t)=−u

(w,1)
x (±1,t),

(4.2)

where

uw(k′,k′′,Y,t)= r(k′,k′′,Y)cos(ωt)+p(k′ ,k′′,Y)sin(ωt),

r(k′,k′′,Y)=
2

γ
(sin(k′)sinh(k′′)cos(k′Y)cosh(k′′Y)

−cos(k′)cosh(k′′)sin(k′Y)sinh(k′′Y)),

p(k′ ,k′′,Y)=
2

γ
(cos(k′)cosh(k′′)cos(k′Y)cosh(k′′Y)

+sin(k′)sinh(k′′)sin(k′Y)sinh(k′′Y)),

γ=cos(2k′)+cosh(2k′′)=2(cos2(k′)+cosh2(k′′)).

(4.3)

The Stokes Eq. (4.1) is satisfied if k′w and k′′w are related to the Womersley number Wn as

k′w =−k′′w =−

√
Wn2

2
, k2

w =(k′w +ik′′w)2 =−iWn2, Wn2 =
l2
yω

ν
. (4.4)
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Figure 9: The functions r(Y) and p(Y).

The functions r(Y,Wn2) and p(Y,Wn2) are plotted in Fig. 9. They obey the following
boundary conditions:

r(k′ ,k′′,±1=0, p(k′,k′′,±1)=1, ∀ k′,k′′,

then

u
(w,2)
x (t)=−A

ω
p(k′w ,k′′w,±1)sin(ωt)=−A

ω
sin(ωt). (4.5)

The simplest way to verify the LB method for the incompressible Womersley-type so-
lution is to replace the pressure gradient with a prescribed local forcing. We study first
this case for both periodic and closed boxes. The pressure drop is then prescribed via
the time dependent mixed conditions at the ends x =±lx. The pressure oscillation ∂tP
becomes negligible in continuity equation only when cs ≫ Lx/T, Lx = 2lx (see in [17]).
With the purpose to verify also the rapid oscillations, we construct in Appendix B the
approximate solution to compressible Stokes Eq. (2.7), setting the exact velocity profiles
as a Dirichlet boundary condition for all boundaries.

4.1 Modeling of Womersley flow with forcing

Except for one special test below, we use forcing explicit in time:

Fx(t)=−ρ0∂xP(w)(x,t)=−Aρ0cos(ωt), ω =
2π

T
. (4.6)

We set ρ0 =1, then ~u=~j for all simulations below.
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4.1.1 Open channel

Using periodic conditions, the density ρ(x,y,t) is constant, the velocity is linear with
respect the amplitude A and the solutions are identical for both the Stokes and Navier-
Stokes equilibriums. We recall that the Poiseuille solution has this property owing to
the special form of the Knudsen layer solution in an open channel. In closed boxes, the
macroscopic solutions differ for linear and non-linear equilibrium, and we use the Stokes
equilibrium function for all simulations below.

Experiment 1

Let us first set the distance to the horizontal walls δ
(h)
q equal to 1 and put λe = λo =−1

(Λe =Λo =1/2), then
fq(~r,t+1)= eq(~r−~cq,t)+S−

q , ∀~r.

If the pulsatile solution would be an exact solution of the TRT operator with the forc-
ing (4.6), and prescribing then the exact equilibrium solution for the incoming popula-
tions,

fq̄(~rb,t+1)= eq̄(~rb+~cq,t)+S−
q̄ ,

the model would stay on the exact solution starting from the exact equilibrium distribu-
tion (in this particular set-up). Table 7 shows the mean error we get,

L2T(ux)=
1

nT
∑

t

L2(ux,t)

(hereafter, when the time-harmonic motion is attained, we mostly measure the error ev-
ery 5th time step, nT =T/5).

In fact, the inexactness of the obtained solution is partially due to the discretization
of the forcing. The finite-difference equivalent of the TRT model in case Λe = Λo = 1/2,

ρ≡ρ0,~j(y,t)=~J(y,t)+
~F(t)

2 is:

jx(y,t+1)− jx(y,t)− 1

2
(Fx(t)+Fx(t+1))=

1

6
∆x jx(y,t). (4.7)

Assuming the forcing (4.6) in relation (4.7), the discretized equation

∂tu
(w,2)
x (t)−Fx(t)=0

becomes:

−Aρ0(
sin[ω(t+1)]−sin(ωt)

ω
− cos(ωt)+cos(ω(t+1))

2
)

= Aρ0
cos(ω(t+ 1

2))

ω
(ωcos(

ω

2
)−2sin(

ω

2
))

≈Aρ0cos(ω(t+
1

2
))

ω2

12
+O(ω4). (4.8)
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Table 7: The mean error L2T(ux) of the pulsatile solution in a periodic channel for standard (explicit) forcing
(left column) and the modified one (right column) when Λe =Λo =1/2, ly =10.

Wn2 T Fx with Eq. (4.6) Fx with Eq. (4.8)
3
4 π 1600 2.39×10−6 1.46×10−6

3
2 π 800 7.29×10−6 3.64×10−6

3π 400 2.4×10−5 7.67×10−6

6π 200 8.8×10−5 1.9×10−5

12π 100 3.4×10−4 6.6×10−5

24π 50 1.3×10−3 2.5×10−4

48π 25 5×10−3 9.3×10−4

Table 8: Mean error over the period, L2T(ux) versus Λeo, using the CLI scheme for two positions of the

horizontal wall, δ
(h)
q =1/2 and δ

(h)
q =1 and small/high frequency in each case. We measure the error each 5th

time step for T = 800 and each time step for T = 25. The periodic channel has a width of 2ly = 20. The data

confirms that the best precision is reached with the solution (2.22), Λeo =3/16 for δ
(h)
q =1/2 and Λeo =3/4 for

δ
(h)
q =1.

δ
(h)
q = 1

2 δ
(h)
q =1

T =800 T =25 T =800 T =25

Λeo Wn2 =12π Wn2 =48π Wn2 =12π Wn2 =48π
3

64 1.7×10−2 5.6×10−2 3
16 4.4×10−2 6.8×10−2

3
16 4.4×10−3 1.9×10−2 1

4 4.0×10−2 5.8×10−2

1
4 8.4×10−3 2.6×10−2 3

4 2.7×10−2 5.4×10−2

3
4 5.9×10−2 9.8×10−2 1 3.7×10−2 7.0×10−2

The leading w2−error can be canceled, e.g., replacing relation (4.6) with

Fx(t)= Aρ0

[
−cos(ωt)+

ω2

24

(
cos(ω(t− 1

2
))+cos(ω(t+

1

2
))

)]
. (4.9)

The results in Table 7 confirm that the correction (4.9) improves the solution, especially
for rapid oscillations.

Experiment 2

Let us verify now the efficiency of the solution (2.22) for translation invariant, time-
harmonic flow. We apply the forcing (4.6) and place the horizontal boundaries at

δ
(h)
q =1/2 and δ

(h)
q =1. We expect that Λeo =3/16 (Λeo =3/4, respectively) will remove the

coupled time/space second-order error from the closure relation for CLI and MGLI(α(u))
schemes. The results in Table 8 confirm that the effective Λeo values result in the most ac-
curate solutions, even for very rapid oscillation (T=25). Figs. 10 and 11 show, for distinct
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Figure 10: Test V, Experiment 2. Left: Relative error L2(ux) along the period T =800 for pulsatile flow in an

open channel. The legend indicates δ
(h)
q and Λeo values. Middle and right: the obtained profile jx(y,t) when

δ
(h)
q = 1/2, t = 0 and δ

(h)
q = 1, t = T/4, respectively. Data corresponds to Table 8, Wn2 = 12π. The effective

solution (2.22) is Λeo(δ
(h)
q =1/2)=3/16 and Λeo(δ

(h)
q =1)=3/4.
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Table 9: L2T(ux) for parabolic schemes versus Λeo when Wn2 =48π, T =25, δ
(h)
q =1. The corresponding CLI

results are presented in the last column in the previous table.

Λeo MDLI=MYLI MCLI MR1
3
16 6.6×10−2 3.9×10−2 4.6×10−2

1
4 5.8×10−3 3.3×10−2 4.2×10−2

3
4 5.7×10−2 4.9×10−2 3.8×10−2

3
4 7.0×10−2 6.3×10−2 4.4×10−2

Table 10: Approximation for t̂= t+α(t) when all schemes get third-order spatial accuracy near the boundaries.

M
(u)
q MULI, MGULI MDLI, MGDLI MYLI,MGYLI MR1, MCLI, CLI, BB

α(t) 1−δq δq 1 1
2

Λeo values, the distribution of the error along the period and several velocity profiles.
The results confirm that for linear schemes the effective values of Λeo improve the accu-
racy at the boundary points, despite very high velocity gradients, and gain for the overall
errors. For both slow and rapid oscillations the role of the effective Λeo value is especially
important for δq ≤1/2 (we find this also in next experiment, see δq =1/10). Let us stress
that when the effective Λeo value increases with δq, so does the discretization errors in the
bulk. This becomes noticeable for T = 25 where a gain owing to Λeo becomes much less
important for δq =1 (see left top picture in Fig. 11). The relative error L2(ux) has a sharp
peak at the highest forcing (t=0 and t=T/2) in all computations.

Table 9 shows the results for δ
(h)
q =1, T =25 when the parabolic schemes, MCLI, MR1

and MDLI model no-slip at the horizontal boundaries. The top right picture in Fig. 11
illustrates the error distribution along the period for Λeo = 3/4. The results tell us that
MCLI and especially MR1 still overhead CLI even for very high frequency but that MDLI

(and therefore, MYLI(δ
(h)
q = 1)) and CLI behave rather alike for δ

(h)
q = 1. As usual, the

MR1 depends less than the other schemes on the selected Λeo value.

4.1.2 Time dependent velocity conditions (closed box)

We prescribe the exact profile for the vertical boundaries:

ux(x=±lx)=u
(w)
x (x, t̂), uy =0

and the no-slip condition for the horizontal boundaries. The precision depends then on

the value selected for t̂ via the w
(u)
q (~rw, t̂). The theoretical estimates for t̂ = t+α(t) are

given in Table 10, based on the analysis in [16]. We suggest that for linear schemes these
estimates are efficient only when their second-order spatial error is removed with Λeo. In
such a case, α(t) has the same value for parabolic and linear schemes. Let us perform a
series of experiments.



562 I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 519-581

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

8800 8900 9000 9100 9200 9300 9400 9500 9600

R
el

at
iv

e 
ve

lo
ci

ty
 e

rr
or

time    

MGYLI, 3/400
CLI,      3/400
MGYLI, 3/16
CLI,     3/16

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

8800 8900 9000 9100 9200 9300 9400 9500 9600

R
el

at
iv

e 
ve

lo
ci

ty
 e

rr
or

time    

MGULI, 0.9
CLI,      0.5
MCLI,    0.5
MULI,    0.9
MR1,    0.5

0

0.005

0.01

0.015

0.02

0.025

8800 8900 9000 9100 9200 9300 9400 9500 9600

R
el

at
iv

e 
ve

lo
ci

ty
 e

rr
or

time    

MGULI, 0.5
CLI,    1.0

MCLI,    1.0
MULI,   0.5
MR1,    1.0

0

0.02

0.04

0.06

0.08

0.1

0.12

8800 8900 9000 9100 9200 9300 9400 9500 9600

R
el

at
iv

e 
ve

lo
ci

ty
 e

rr
or

time    

MGYLI, 3/4
CLI,      3/4

MGYLI, 3/16
CLI,     3/16

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

8800 8900 9000 9100 9200 9300 9400 9500 9600

R
el

at
iv

e 
ve

lo
ci

ty
 e

rr
or

time    

MGYLI, 1.0
CLI,      0.5
MCLI,    0.5
MYLI,    1.0
MR1,    0.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

8800 8900 9000 9100 9200 9300 9400 9500 9600
R

el
at

iv
e 

ve
lo

ci
ty

 e
rr

or
time    

MGYLI, 0.5
CLI,      1.0
MYLI,    0.5
MCLI,    1.0
MR1,    1.0

Figure 12: Test V, Experiment 3. Relative error L2(ux) for Womersley-type solution along the period T =800.

The computations are done with the Dirichlet velocity schemes for all boundaries on a 202 box. For both vertical
and horizontal walls, δq =1/10 (top row) and δq =1 (bottom row). The effective solutions are Λeo =3/400 for

δq =1/10 and Λeo =3/4 for δq =1. The legends give the values of Λeo (left column) and α(t) (middle and right
columns).

Experiment 3

All horizontal and vertical boundaries are shifted at the same distance,

δq =δ
(h)
q =δ

(v)
q ,

which is set equal to 1/10 and 1. We verify that the solution (2.22) still efficiently removes
the second-order spatial error for both boundaries. The distribution of the error L2(ux)
is plotted in Fig. 12 for the case of T = 800, Wn2 = 12π, ν = 1/48. The results shown in
the left pictures confirm that the “magic” linear schemes CLI and MGYLI obtain a better
precision with Λeo = 3/400 (top picture) and Λeo = 3/4 (bottom picture) , comparing to
the “middle” value Λeo =3/16. This difference is most significant for the small distance,
δq = 1/10: here, Λeo = 3/400 gains by a factor 5 over Λeo = 3/16. The experiment with

δq=1/10 is run with α(t)=1/2 for CLI and α(t)=1 for MGYLI, in agreement with Table 10.
We emphasize that the solutions obtained with CLI and MGYLI are very similar for slow
flow (we recall that they are identical at steady state).

Let us now verify the efficiency of α(t) values. The results in the middle and right
pictures of Fig. 12 are computed with Λeo = 3

4 δ2
q for the linear schemes and Λeo = 3/16

for the parabolic ones, less dependent on Λeo. The results in the middle column are
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computed with the α(t) value given in Table 10. We select then an alternative value for
the computations in the right column: α(t) = 1 for {CLI,MCLI,MR1} and α(t) = 1/2 for
{MGYLI,MGULI,MYLI,MULI}. In all computations, the effective α(t) value gains in ac-
curacy and the parabolic schemes are more accurate then the linear ones, especially for
δq =1/10. In the right pictures, the second-order spatial and time errors are coupled and
all schemes behave rather alike. It is noted that when using Λeo = 3/16 the error also
decreases for all schemes when δq =1, most probably because of the larger spatial/mixed
discretization errors. The second-type links are treated here with MGULI. We find again
that CLI works more robustly in combination with MGULI/MGDLI for second-type links

when δ
(h)
q → 0. Applied at all four boundaries, MR1 losses here stability for δq = 1. The

results for δq =1 are computed with MR1 at the vertical boundaries and MCLI at the hor-
izontal walls. The MGMR(C) with C 6=0 behaves more robustly but less accurately than
MR1.

Altogether this experiment validates the efficiency of the estimates in Table 10 and
indicates that a proper selection of t̂ is especially important when the walls are located
close to the grid nodes and the spatial errors have been efficiently reduced.

Experiment 4

We fix now the horizontal walls at δ
(h)
q = 1/2 (using BB and Λeo = 3/16) but place the

vertical boundaries at δ
(v)
q = { 1

10 , 1
2 ,1}. The results are presented in Fig. 13. We study

two principal cases: α(t) = 1/2 and α(t) = 1. In the left pictures, the parameter α(t) takes
approximately the values from Table 10, e.g. α(t) = 1/2 for MR1 and MCLI and α(t) = 1

for MYLI and MULI when δ
(v)
q = 1/10. The pictures in the right column are computed

with another α(t) value. The second-type links are treated with CLI=BB for the horizontal
boundaries and MGULI/MGDLI for the vertical boundaries. The linear schemes, MGYLI

and CLI lose accuracy for δ
(v)
q =1/10 and δ

(v)
q =1 because of the inefficiency of Λeo =3/16

for these distances, but they regain it for δ
(v)
q =1/2. The accuracy of all parabolic schemes

is very similar when δ
(v)
q =1/10 (top row pictures). When α(t) values are exchanged, the

error increases with a factor 2 for all schemes. It is noted that MR1, MCLI (and even CLI

and MGYLI in the right column) clearly overhead MYLI for δ
(v)
q ≥ 1/2, similarly as in

Experiment 2. We suggest that truncation spatial errors are smaller for MCLI, compared
to MULI or MYLI, when δq >1/2.

Altogether we find that MR1 and MCLI have the best accuracy depending less on

the distance δ
(v)
q . We suggest to use α(t) =1/2 for MR1 and α(t) =1 for MULI and MYLI

and their second-order analogs for all distances. For MCLI and CLI, α(t) = 1/2 works
noticeably better than α(t) = 1 only for small distances, then the difference between the
two is less significant. The temporal Couette flow and Taylor vortex flow modeled with
Dirichlet velocity conditions lead us to very similar conclusions. We find that the pulsatile
flow represents a more efficient test for time dependent boundary conditions since the
solution is independent of the initial distributions.
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Figure 13: Test V, Experiment 4. The computations are similar to the ones on the previous picture but the

horizontal walls are placed halfway the link. The distance δ
(v)
q to the vertical boundaries varies. Top row:

δ
(v)
q = 1/10. Middle row: δ

(v)
q = 1/2. Bottom row: δ

(v)
q = 1. The prescribed values of α(t) (α(t) = 1/20 or

α(t) =1) are given in the legends.

4.1.3 Periodic, velocity and mixed conditions

Experiment 5

We compare the solutions obtained with the Dirichlet velocity and mixed conditions on
the vertical boundaries (P(x =±lx)= const, uy = 0) to the open channel solutions, using
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Table 11: Mean error L2T(ux) for the Womersley-type flow at Wn2 =12π, using the periodic, Dirichlet velocity
and mixed conditions at the vertical boundaries. First three columns correspond to forcing driven flow, two last
columns address the modeling without forcing.

with forcing without forcing

ν T periodic velocity mixed velocity mixed
1

96 1600 4.49×10−3 6.34×10−3 5.16×10−3 5.8×10−3 6.3×10−3

1
48 800 4.49×10−3 6.3×10−3 5.08×10−3 8.2×10−3 1.3×10−2

1
24 400 4.06×10−3 6.2×10−3 4.7×10−3 2.9×10−2 5.1×10−2

1
12 200 2.4×10−3 5.2×10−3 5.1×10−3 1.4×10−1 2.3×10−1

1
6 100 4.4×10−3 8.4×10−3 3.4×10−3 1.09 1.8
1
3 50 3.5×10−2 3.9×10−2 3.5×10−2

2
3 25 1.6×10−1 1.5×10−1 1.64×10−1

forcing in all cases. The three first columns in Table 11 show the results obtained for
Wn2 =12π. They are computed on a fixed grid, lx = ly =10, and for an equal distance

δ
(h)
q =δ

(v)
q =

1

2
, Λeo =

3

16
,

applying CLI=BB as the M
(u)
q and PMR1 as M

(p)
q for the mixed scheme.

The dimensional analysis [16] predicts that, in contrast to steady solutions, time-
dependent non-dimensional solutions at a given grid are not necessarily identical when the
hydrodynamic governing numbers (Womersley number here) and Λeo are fixed. In agree-
ment with these predictions, L2T(ux) in Table 11 differs even if Wn and Λeo are fixed.
When the oscillation becomes slow (T→∞) then

L2T(ux)→ const,

in agreement with the dimensional analysis for steady flow. The order of the magnitude
of the mean error is the same for the three type boundary conditions.

The solutions are illustrated in Fig. 14 for T=240, Wn2≈34.6, A=5×10−4. The solution
is plotted at the moment when the forcing reaches its highest and smallest values, t = 0
and t = T/4, respectively, when the time-harmonic motion is attained. Except for the
periodic channel, the pressure distribution is not constant and the vertical velocity is
not zero. The obtained pressure distribution is centered with respect to the center of
the box. The results tell us that the pressure fluctuation around zero is similar for both
Dirichlet conditions. It is noted that using the Stokes equilibrium function the horizontal
velocity varies linearly with the amplitude A for all boundary conditions (velocity error
is then independent of A), but the pressure error increases linearly with A, i.e., with the
forcing. The obtained vertical velocity is smaller for the mixed condition, except in the
corners. The mixed condition is applied here for the ensemble of the links which bisect
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Figure 14: Test V, Experiment 5. Comparison of the LB pulsatile solutions obtained with forcing for T = 240,

Wn2 ≈34.6 with the Womersley-type solution j
(w)
x . Left to Right: jx(y), jx(y)− j

(w)
x (y), p(x) and jz(y). Top

and third row: t=0 and t= T/4, velocity conditions at the vertical boundaries. Second and bottom row: t=0
and t= T/4, mixed conditions at the vertical boundaries. The computations are done in a 212 box.

the vertical boundary. We have observed that when applying the no-slip condition for all
links bisecting the horizontal boundary and only pressure conditions for the other corner
links (as in all experiments above), the amplitude of the vertical velocity becomes higher
in corners.

Altogether this numerical experiment confirms the applicability of the mixed scheme
for time dependent flow with a prescribed constant pressure. Time dependent boundary
conditions impose oscillating pressure drop in the next experiment.
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Figure 15: Test V, Experiment 6. The computations of the pulsatile flow without forcing, t=0. Top and third
row: T=960 and T=240, velocity conditions at the vertical boundaries. Second and bottom row: T=960 and
T =240, mixed conditions. The computations are done in a 212 box.

4.2 Modeling of pulsatile flow without forcing

Experiment 6

We consider simulations without forcing in a closed box applying the Dirichlet velocity
and mixed boundary conditions to the vertical boundaries. The oscillating exact pres-

sure solution is prescribed at the ends with the mixed condition via w
(p)
q (~rw, t̂) in rela-
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Figure 16: Same data as that of the previous picture at t= T/4.

tions (2.34). For the pressure schemes, a formal estimation for

t̂= t+α(t)

is presented in Table IX in [16]. It tells us that

α(t) =
1

2
+Λe(2+δq)

for PMR1 (without taking into account second pressure gradient). We find that the ob-
tained pressure solutions are a bit more accurate for α(t) = 1/2 than for α(t) = 1, at least
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when Λe ≪ 1 (i.e. for large T when the compressible effect is not significant). In this
regime, obtained horizontal velocity varies linearly with the amplitude, but the relative
pressure error increases again approximately linearly with A, for both Dirichlet condi-
tions.

When the pressure varies in time, the obtained velocity field ~j becomes divergence
free only in the limit ω→0. The results in Table 11 and the pictures in Figs. 15, 16 show
that the velocity and pressure distributions agree well with the incompressible solution
for T≥800 (with a mean error below ≈1%). The deviation increases however very rapidly
for faster oscillation. The results for T=240 in Figs. 15 and 16 can be compared to the ones
plotted in the previous pictures, obtained with the forcing. In pressure driven flow, the
horizontal velocity gets a dependence on x but, at the same time, the pressure is almost
independent on y and still varies mainly along the x-axis.

Experiment 7

We continue the previous experiment for even more rapid pressure drop oscillations
using the Dirichlet velocity conditions. They correspond to the incompressible exact
solution. We are looking then for an analytical solution for the “acoustic” correction
~j(a)(x,y,t), restricted to the no-slip boundary conditions at all ends:

~j(a)(x=±lx,y,t)=0, ~j(a)(x,y=±ly,t)=0. (4.10)

We could construct only an approximative solution, ~j(c)(x,y,t) and P(c)(x,t) here, to
Eqs. (2.7) with the boundary conditions (4.10):

~j(c)(x,y,t)=ρ0~u
(w)(y,t)+~j(a)(x,y,t),

P(c)(x,t)= P(w)(x,t)+P(a)(x,t).
(4.11)

The idea of this solution is to keep ∇·~j(c) (and therefore, P(c)(t)) independent of y. The

solution for j
(a)
x (x,y,t) has the form (B.8) with the coefficients (B.28)-(B.29). The princi-

pal vertical component j
(a,1)
y (x,y,t) is given by relation (B.20). The pressure solution is

then fixed with relations (B.18), (B.22). The solution (4.11) with the correction j
(a)
x (x,y,t),

j
(a,1)
y (x,y,t) and P(a)(x,t) satisfies the compressible Stokes-type equations (2.7) and the

prescribed Dirichlet conditions for the horizontal velocity. However, the second compo-

nent of the vertical velocity, j
(a,2)
y , which we need to adjust the no-slip condition at the

horizontal boundaries, satisfies the compressible Stokes equation only in the limit ν→0.
Based on a simple inspection (at the end of Appendix B), we suggest that the approxima-
tion approaches the solution for high Womersley numbers and, when Wn2 is fixed, for
smaller ν. In fact, the obtained solutions represent the linear combinations of the func-
tions r(Y,Wn2) and p(Y,Wn2) (see Fig. 9), which vary only near the boundaries for high
Womersley numbers.
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Figure 17: Test V, Experiment 7. Comparison of the LB pulsatile solutions without forcing (symbols) at t=0
to the Womersley-type solution (solid line) and to the approximated compressible solution (4.11) (dotted lines),

using the Dirichlet velocity conditions at all boundaries. Top row: T =120, Wn2 ≈34.6. Second row: T =120,
Wn2 ≈346. Third row: T =64, Wn2≈34.6. Bottom row: T =64, Wn2 ≈346. The computations are done in a
212 box.
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Figure 18: Same data as that of the previous picture at t= T/4.



572 I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 519-581

Table 12: The L2 error is computed with respect to the Womersley-type incompressible solution (L2(j
(w)
x )) and

with respect to the compressible approximation (4.11) (L2(j
(c)
x )) and is shown for several samples in time. The

results correspond to Fig. 17 for t=0 and Fig. 18 for t= T/4.

T =120 ν= 1
6 , Wn2 =34.64 ν= 1

60 , Wn2 =346.4 ν= 1
300 , Wn2 =1732

t L2(j
(w)
x ) L2(j

(c)
x ) L2(j

(w)
x ) L2(j

(c)
x ) L2(j

(w)
x ) L2(j

(c)
x )

0 0.81 0.12 0.38 0.18 0.34 0.55
T
8 0.42 0.019 0.5 0.021 0.51 0.084
T
4 0.59 0.018 0.54 0.012 0.52 0.046

3T
8 0.8 0.031 0.58 0.023 0.54 0.012

T =64 ν=0.3125, Wn2 =34.64 ν=0.03125, Wn2 =346.4 ν=0.00625, Wn2 =1732

t L2(j
(w)
x ) L2(j

(c)
x ) L2(j

(w)
x ) L2(j

(c)
x ) L2(j

(w)
x ) L2(j

(c)
x )

0 8.7 0.13 7.1 0.1 3.7 0.43
T
8 2.9 0.032 4 0.0095 3.8 0.087
T
4 1.6 0.19 3.4 0.023 3.7 0.042

3T
8 0.4 0.47 2.8 0.065 3.5 0.02

We show in Table 12 the relative L2(ux) errors measured with respect to the incom-
pressible solution (4.2) and with respect to the compressible approximation. These solu-
tions are illustrated in Figs. 17 and 18. The approximation fits roughly but mainly cor-
rectly the amplitude of the obtained horizontal velocity and its variation along x axis. It
gains about two orders of the magnitude for the velocity error in case T=64, Wn2 =346.4
and Wn2 = 1732. The figures show that the obtained pressure solution fits the analyti-
cal prediction P(c)(x,t) surprisingly well, even when both velocity components are fitted
very roughly (see pictures in two bottom rows in Fig. 17).

We recall that using the TRT model and c2
s = 1/3, both bulk and kinematic viscosi-

ties coincide. Using different c2
s values or the MRT model with distinct kinematic/bulk

viscosity eigenvalues, one can investigate the role of the bulk viscosity in these solu-
tions. Preliminary computations with the MRT model confirm that the constructed ap-
proximation works when the kinematic and bulk viscosity differ. We do not expect any
significant impact of the compressible corrections in the population solution on the effec-
tive precision of the boundary scheme at first order. The obtained results confirm these
assumptions. Indeed, the exact Womersley-type solution and the constructed approx-
imation differ already at boundary nodes for compressible flow (see x = 10 on the left
pictures in Figs. 17 and 18). We observe that bounce-back localizes the horizontal veloc-
ity quite accurately with respect to the compressible solution (see symbols “+”), at least

when δ
(v)
q = 1/2, Λeo = 3/16, like for incompressible flow. At second-order, the incom-

pressibility assumption was involved into the analysis and construction of the pressure

and velocity boundary schemes. Detailed study of the parabolic M
(u)
q schemes in the

compressible regime is left to future work.
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5 Concluding remarks

We have presented several multi-reflection algorithms for velocity and pressure bound-
ary conditions and for their mixed combination. Numerical computations validate the
Chapman-Enskog and the dimensional analysis [16], based on exact population solu-
tions, in simple problems with an analytical solution. They show that highly accurate
boundary schemes are needed in corners and for small resolutions, typically for flow
through soil pores. A very similar performance can be achieved with the Dirichlet veloc-
ity and mixed schemes when they are based on the multi-reflection components which
are equivalent in accuracy. Whereas an effective accuracy of “linear” schemes depends
drastically on the choice of the “kinetic” collision components, this effect is strongly re-
duced for “parabolic” pressure and velocity schemes. We find that the MGMR(C) (and
especially MR1) and MLI(α(u)) velocity families and the PMR1/PMR2 pressure schemes
are superior in overall accuracy for steady and pulsatile flow. We expect that the devel-
oped boundary schemes work similarly in the frame of the TRT and MRT models in the
incompressible regime, at least.

We emphasize that there is freedom in the selection of the coefficients for “lin-
ear” (three populations based, second-order accurate) and “parabolic” (five populations
based, third-order accurate) schemes. Two representatives, the CLI and MR1 schemes
yield an exact parametrization of the steady solutions with non-dimensional hydrody-
namic numbers and Λeo but their coefficients lie at the limits of the heuristic stability
intervals. The extension of MR1 to the MGMR(C) sub-family improves its stability prop-
erties. We also get an exact parametrization of the steady solutions for linear MGLI(α(u))
sub-family, with the help of a special local correction. This gives the chance to combine
the best stability and parametrization properties as well as to avoid the development of
the staggered invariants. We find that CLI in combination with MGULI/MGDLI and
MGMR(C) in combination with MULI/MDLI/MCLI, e.g., in corners and/or adjacent
boundaries, are the most robust.

We emphasize that the development of the accommodation layers reflects the “kinetic
nature” of Lattice Boltzmann approach for boundary conditions. For one specific value,
Λeo =1/4, the Knudsen layers should vanish in bulk points, at least for steady solutions.
This value also yields distinct properties for the stability of the TRT operator (see [15])
but is not necessarily the most accurate. Linear schemes obtain exact parabolic solutions
in a straight channel when Λeo ∈ [0, 3

4 ]. Its smaller values reduce the discretization errors
in the bulk and we suggest to choose Λeo inside the interval [0,1]. The Knudsen layers
are caused by a mismatch between the incoming populations and their exact solution,
expected from the bulk. One exact example, constructed in this paper, demonstrates that
the accommodation may carry useful properties, both for robustness and accuracy. We
show that the “parabolic” boundary conditions minimize the impact of the accommoda-
tion layers on the second-order terms in the population expansion and, therefore, on the
derived hydrodynamic solutions.
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A “Solid rotation” solution

This solution satisfies incompressible Navier-Stokes Eq. (2.5) with

~u(x,y)=~uτ(r), ~uτ(r)=Ω~iz⊗~r, i.e. uτ
x =−Ωy, uτ

y =Ωx,

P(x,y)= P0+ρ0
Ω2r2

2
, r2 = x2+y2.

(A.1)

Using the equilibrium distribution (2.3) with gS =1, yields:

uq(x,y)=−ycqx +xcqy =(−y−cqy)cqx+(x+cqx)cqy

=uq(x+cqx,y+cqy), (A.2)

t⋆q(P+E+
q (~u,ρ0)= t⋆q(

3

2
ρ0u2

q +P0), ∀ q=0,··· ,Q−1.

Substituting the first condition into the second one, one gets

e±q (x+cqx,y+cqy)= e±q (x,y),

then

f±q (x,y)= e±q (x,y), pq ≡0, mq ≡0, ∀ {x,y}, ∀q. (A.3)

The solution is therefore constant along any link and equal to the local equilibrium value.

Any link-wise (j(1)/Π(1)-accurate) boundary scheme, e.g., all M
(u)
q schemes, will support

it exactly for any shape of boundary. When the mixed boundary conditions are applied,

all M
(m)
q pressure schemes support this solution exactly in a static coordinate system.

In the moving coordinate system ~um(r) =~u(r)−~uτ(r), the velocity is equal to zero,
~u(x,y) =~ub ≡ 0, and the solution (A.1) can be obtained with the help of the centrifugal
force:

~F(x,y)=ρ0Ω2
~r, ∇P=~F. (A.4)

Using, e.g., the momentum conserving equilibrium (~jeq =~J =~j− 1
2
~F with~j =0), the exact

population solution is

e−q =−1

2
F⋆

q , e+
q =Π⋆

q ,

mch
q =(∂qΠ⋆

q−F⋆
q )=0, pch

q =−∂qΛo(∂qΠ⋆
q−F⋆

q )=0.
(A.5)

Although the solution remains at equilibrium, the equilibrium itself varies along the
link. Velocity schemes maintain this solution if β(p) =−α(u)Λo or when ∂qΠ⋆

q and −F⋆
q

have equal coefficients in closure relation. The solution is then supported by MGLI(α(u)),
MLI(α(u)), MR1 and MGMR(C) schemes, but not by ULI/DLI/YLI. The Dirichlet pres-
sure closure relation must fit exactly O(∂2

qΠ⋆
q)/O(∂qF⋆

q ). The pressure schemes remove

the forcing and its gradient from their closure relation. Then the Π(3)-accurate schemes

can maintain the exact parabolic pressure solution, e.g., PMR2. The mixed M
(m)
q scheme

maintains the exact solution when both components, M
(u)
q and M

(p)
q , are exact.
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B Approximate solutions for compressible pulsatile flow

We set ρ0=1 and looking for the solution {~j=(jx, jy),P} in a rectangular 2d domain (x,y),
x∈ [−lx,lx], y∈ [−ly,ly], which satisfies the compressible, Stokes-type equation:

∂tP+c2
s∇·~j =0, (B.1)

∂t
~j+∇P=ν∆~j+νξ∇∇·~j. (B.2)

Here c2
s is the sound velocity, ν is the kinematic viscosity, νξ is the bulk viscosity, ∇φ =

(∂xφ,∂yφ), ∇·φ= ∂xφ+∂yφ, and ∆φ is the Laplace operator, ∆φ= ∂2
xφ+∂2

yφ, ∀φ(x,y). Let
mean density of the incompressible flow be ρ0. We are interested to solve Eqs. (B.1)- (B.2)
with the following Dirichlet boundary conditions:

~j(x,y=±ly)=0, ~j(x=±lx,y,t)=~j(w)(y,t), (B.3)

where
~j(w)(y,t)={ρ0u

(w)
x (y,t),0}

is the solution (4.2)-(4.4) for the incompressible Womersley flow [43]. We are looking for

the deviation to the Womersley solution, P(a)(x,y,t) and~j(a)(x,y,t):

~j(x,y,t)=~j(w)(y,t)+~j(a)(x,y,t), P= P(w)(x,t)+P(a)(x,y,t). (B.4)

They should satisfy the following equations and the no-slip boundary conditions:

∂tP
(a)+c2

s∇·~j(a) =−∂tP
(w), (B.5)

∂t
~j(a)+∇P(a) =ν∆~j(a)+νξ∇∇·~j(a), (B.6)

~j(a)(x=±lx,y,t)=0, ~j(a)(x,y=±ly,t)=0. (B.7)

B.1 Approximation 1

We consider 1D solution~j(a) =(j
(a)
x ,0), where j

(a)
x (x,y,t) is presented in the form:

j
(a)
x (x,y,t)= j

(a,1)
x (X,Y,t)+ j

(a,2)
x (X,t), Y =

Y

ly
, X =

x

lx
,

j
(a,1)
x (X,Y,t)= ∑

k≥1

cos(kx lxX)(Dkuw(Y,t)+Ckuc(Y,t)), kx =
kπ

2lx
, (B.8)

j
(a,2)
x (X,t)=−j

(a,1)
x (X,±1,t),

with

uw(Y,t)= r(k′ ,k′′,Y)cos(ωt)+p(k′ ,k′′,Y)sin(ωt),

uc(Y,t)=−p(k′ ,k′′,Y)cos(ωt)+r(k′ ,k′′,Y)sin(ωt).
(B.9)
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The solution (B.8)-(B.9) should obey the no-slip conditions:

j
(a)
x (x=±lx,y,t)=0, j

(a)
x (x,y=±ly,t)=0. (B.10)

We substitute the x-derivative of the continuity equation (B.5),

∂t∂xP(a) =−c2
s (∂2

x j
(a,1)
x +∂2

x j
(a,2)
x )−∂t∂xP(w) (B.11)

into the time derivative of the Stokes equation (B.6):

∂2
t j

(a,1)
x =ν(∂t∂

2
x j

(a,1)
x +∂t∂

2
y j

(a,1)
x )+c2

s ∂2
x j

(a,1)
x +νξ ∂t∂

2
x j

(a,1)
x , (B.12)

∂2
t j

(a,2)
x =ν∂t∂

2
x j

(a,2)
x +c2

s ∂2
x j

(a,2)
x +νξ ∂t∂

2
x j

(a,2)
x +∂t∂xP(w). (B.13)

Using then the Fourier series to represent a constant impulse ∂t∂xP(w) =−Awcos(ωt):

∂t∂xP(w) =−4Aωsin(ωt) ∑
k≥1

cos(kx lxX)
sin( πk

2 )

πk
, (B.14)

and substituting relation (B.8), we obtain the solution for k′, k′′ from Eq. (B.12) and for
{Ck,Dk} from Eq. (B.13). The solution for k′ and k′′ is:

k′ =
−ly√
2νω

√
d0−d1, k′′ =

ly√
2νω

√
d0+d1,

d1 =ωk2
x(ν+νξ), d2 = c2

s k2
x−ω2, d0 =

√
d2

1+d2
2.

(B.15)

The solution (B.15) reduces to incompressible solution (4.4) when kx≡0. The solution for
{Ck,Dk} is:

Ck =−4Aω
d1

d0

sin( πk
2 )

πk
, Dk =−4Aω

d2

d0

sin( πk
2 )

πk
. (B.16)

The obtained solution verifies Stokes equation (B.6) and the boundary conditions (B.7)
but there exist a non-zero gradient ∂yP(a). The Stokes equation is therefore violated for
the vertical velocity component. The one-dimensional approximation gives then only a
very qualitative approximation of the obtained numerical solution.

B.2 Approximation 2

The numerical computations suggest that a reasonable approximation is to keep P(a) as
independent from y, at least away from the boundaries. Let us represent P(a) as:

P(a)(x,y,t)= P(a)(x,t)+P(a)(y,t)+δP(a)(x,y,t), (B.17)
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and drop first P(a)(y,t) and δP(a)(x,y,t). We present the 2d solution as:

∂tP
(a) =−(c2

s Ψ(X,t)+∂t P
(w)),

j
(a)
x (x,y,t)= j

(a,1)
x (X,Y,t)+ j

(a,2)
x (X,t),

j
(a)
y (x,y,t)= j

(a,1)
y (X,Y,t)+ j

(a,2)
y (X,Y,t),

∂x j
(a,1)
x +∂y j

(a,1)
y =0, ∂x j

(a,2)
x +∂y j

(a,2)
y =Ψ(X,t),

j
(a,2)
x (X,t)=−j

(a,1)
x (X,±1,t),

j
(a,2)
y (X,±1,t)=−j

(a,1)
y (X,±1,t).

(B.18)

Assuming the boundary conditions (B.7),~j(a) should vanish also at the x−bounds:

j
(a)
x (±lx,y,t)=0, j

(a)
y (±lx,y,t)=0. (B.19)

Relations (B.18) yield for j
(a,1)
y and j

(a,2)
y :

j
(a,1)
y (X,Y,t)=−I(X,Y,t), I = ly

∫ Y

∂x j
(a,1)
x (X,Y′,t)dY′, (B.20)

j
(a,2)
y (X,Y,t)= ly(Ψ(X,t)−∂x j

(a,2)
x (X,t))Y, (B.21)

then

Ψ(X,t)=∂x j
(a,2)
x (X,t)− 1

ly
j
(a,1)
y (X,1,t), (B.22)

namely,

j
(a,2)
y (X,Y,t)=−j

(a,1)
y (X,1,t)Y. (B.23)

The last relation of (B.18) was used to derive relation (B.22) from relation (B.21). Keeping

the form (B.8) for j
(a,1)
x and j

(a,2)
x , we can satisfy with help of k′, k′′, Ck and Dk the following

equations:

∂tP
(a)+c2

s Ψ=−∂tP
(w), (B.24)

∂2
t j

(a,1)
x =ν(∂t∂

2
x j

(a,1)
x +∂t∂

2
y j

(a,1)
x ), (B.25)

∂2
t j

(a,1)
y =ν(∂t∂

2
x j

(a,1)
y +∂t∂

2
y j

(a,1)
y ), (B.26)

∂2
t j

(a,2)
x =ν∂t∂

2
x j

(a,2)
x +c2

s ∂xΨ+νξ ∂t∂xΨ+∂t∂xP(w), (B.27)

where

j
(a,1)
y =−ly

∫ Y

∂x j
(a,1)
x (X,Y′,t)dY′,
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and hence j
(a,1)
y satisfies Eq. (B.26) provided that j

(a,1)
x satisfies Eq. (B.25). The solution to

Eq. (B.25) is:

k′ =− 1√
2

√
−k2

x ly
2+

√
(k2

xly
2)2+Wn4,

k′′=
1√
2

√
k2

x ly
2+

√
(k2

xly
2)2+Wn4, Wn2 =

l2
yω

ν
.

(B.28)

Using again the Fourier series (B.14), Eq. (B.27) is satisfied when {Ck,Dk} obey the fol-
lowing linear equations:

akCk+bkDk =0,

bkCk−akDk =−4Aw
sin( πk

2 )

πk
, ∀ k≥1,

where

ak =d2−(d4sin(2k′)−d3sinh(2k′′)),

bk =−d1+(d3 sin(2k′)+d4sinh(2k′′)),

d1 =ωk2
x(ν+νξ ), d2 = c2

s k2
x−ω2,

d3 = k2
xγ′(k′ωνξ−c2

s k′′), d4 = k2
xγ′(k′′ωνξ +c2

s k′),

γ′=
1

γ(k′2+k′′2)
, γ=cos(2k′)+cosh(2k′′).

(B.29)

The solution (B.20)-(B.23) becomes

j
(a,1)
y (X,Y,t)=2 ∑

k≥1

sin(kx lxX)j
(a,1)
y,k (Y,t),

j
(a,1)
y,k (Y,t)=cos(ωt)(hk cosh(k′′Y)sin(k′Y)+gk cos(k′Y)sinh(k′′Y))

−sin(ωt)(hk cos(k′Y)sinh(k′′Y)−gk cosh(k′′Y)sin(k′Y)), (B.30)

j
(a,2)
y (X,Y,t)=−j

(a,1)
y (X,1,t)Y =−Y ∑

k≥1

sin(kxlxX)j
(a,2)
y,k (t),

j
(a,2)
y,k (t)=cos(ωt)(e−k sinh(2k′′)−e+

k sin(2k′))

+sin(ωt)(e−k sin(2k′′)+e+
k sinh(2k′′)), (B.31)

where

hk = e−k sin(k′)sinh(k′′)−e+
k cos(k′)cosh(k′′),

gk = e−k cos(k′)cosh(k′′)+e+
k sin(k′)sinh(k′′),

e+
k = lyγ′kx(Ckk′+Dkk′′), e−k = lyγ′kx(Dkk′−Ckk′′). (B.32)
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When ω → 0, the coefficients Ck and Dk vanish and so does the compressible correc-

tion {P(a),~j(a)}. The constructed solution (B.8) with the parameters (B.28)-(B.29) satisfies

Stokes Eqs. (B.25)-(B.27) for j
(a)
x . These equations are independent from ∂yP(a)(Y,t). The

principal vertical component j
(a,1)
y satisfies the Stokes Eq. (B.26) but not the second com-

ponent

j
(a,2)
y =−j

(a,1)
y (Y=1)Y,

which we need to adjust the no-slip conditions on the horizontal boundaries. Besides

that j
(a)
y (±1,Y,t), being proportional to sin[ kπ

2 X] by the construction, can not satisfy the
no-slip conditions at x ends. Let us analyze if the constructed solution could nevertheless
represent a suitable approximation to Eqs. (B.5)- (B.7).

The deviation from Stokes equation (B.6) (keeping ∂yP(a) =0) is:

err(j
(a,2)
y ) = ∂t j

(a,2)
y −ν∂2

x j
(a,2)
y

= −Y([∂t j
(a,1)
y −ν∂2

x j
(a,1)
y ]|Y=1)

= −Yν∂2
y j

(a,1)
y (X,1,t). (B.33)

It is noted that err(j
(a,2)
y ) vanishes when Y=0, ∀X and when X=0, ∀Y, i.e., the constructed

solution (B.8) with (B.28)-(B.29) satisfies the problem on the axis. We find then that the
highest error, which occurs on the boundaries, is bounded and we can expect that the
approximation fits the solution better in the limit ν→ 0 for fixed Wn2. We suggest also

that the leading form of the correction j
(a,3)
y which annihilates the vertical velocity at the

X-bounds when ν→0, should have a form:

j
(a)
y = j

(a,1)
y + j

(a,2)
y + j

(a,3)
y ,

j
(a,3)
y =−(j

(a,1)
y + j

(a,2)
y )|X=1p(k′w ,k′′w,X)X.

(B.34)

The function p(k′w,k′′w,X)= p(Wn2,X) differs from zero only very close to the boundaries

X=±1 when Wn→∞ and therefore, j
(a,3)
y has a small impact on the derived bulk solution

in this limit. Therefore, we conclude that the deficiency of the constructed approximation
should decrease in the limit Wn→∞ and, for fixed Wn, when ν→0.

References

[1] S. Ansumali, I. V. Karlin, Kinetic boundary conditions in the lattice Boltzmann method, Phys.
Rev. E, 66 (2002), 26311.

[2] S. Ansumali, I. V. Karlin, S. Arcidiacono, A. Abbas and N. I. Prasianakis, Hydrodynamics
beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett., 98
(2007), 124502.

[3] A. M. Artoli, A. G. Hoekstra and P. M. A. Slot, Simulation of a syctolic cycle in a realistic
artery with the lattice Boltzmann BGK method, Int. J. Mod. Phys. B, 17(1/2) (2003), 95-98.



580 I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 519-581

[4] M. Bouzidi, M. Firdaouss and P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid
with boundaries, Phys. Fluids, 13 (2001), 3452-3459.

[5] C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic, New
York, 1975.

[6] R. Cornubert, D. d’Humières and D. Levermore, A Knudsen layer theory for lattice gases,
Physica D, 47 (1991), 241-259.

[7] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, Lattice gas
hydrodynamics in two and three dimensions, Complex Syst., 1 (1987), 649-707.

[8] I. Ginzbourg, Boundary conditions problems in lattice gas methods for single and multiple
phases, Ph.D. Thesis, University Paris VI, 1994.

[9] I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for the three-dimensional
lattice Bolzmann model, J. Phys. II France, 4 (1994), 191-214.

[10] I. Ginzbourg and D. d’Humières, Local second-order boundary method for lattice Boltz-
mann models, J. Stat. Phys., 84(5/6) (1996), 927-971.

[11] I. Ginzburg and D. d’Humières, Multi-reflection boundary conditions for lattice Boltzmann
models, Phys. Rev. E, 68 (2003), 066614.

[12] I. Ginzburg, Equilibrium-type and link-type lattice Boltzmann models for generic advection
and anisotropic-dispersion equation, Adv. Water Resour., 28 (2005), 1171-1195.

[13] I. Ginzburg, Generic boundary conditions for lattice Boltzmann models and their applica-
tion to advection and anisotropic-dispersion equations, Adv. Water Resour., 28 (2005), 1196-
1216.

[14] I. Ginzburg, Lattice Boltzmann modeling with discontinuous collision components. Hydro-
dynamic and advection-diffusion equations, J. Stat. Phys., 126 (2007), 157-203.

[15] I. Ginzburg and D. d’Humières, Lattice Boltzmann and analytical modeling of flow pro-
cesses in anisotropic and heterogeneous stratified aquifers, Adv. Water Resour., 30 (2007),
2202-2234.

[16] I. Ginzburg, F. Verhaeghe and D. d’Humières, Two-relaxation-time lattice Boltzmann
scheme: About parametrization, velocity, pressure and mixed boundary conditions, Com-
mun. Comput. Phys., 3 (2008), 427-478.

[17] X. He, L.-S. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equation, J.
Stat. Phys., 88 (1997), 927-945.

[18] X. He, Y. Zou, L.-S. Luo and M. Dembo, Analytic solutions of simple flows and analysis of
nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87 (1997),
115-135.

[19] F. J. Higuera, S. Succi and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys.
Lett., 9 (1989), 345-349.
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