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Abstract. In this paper, we analyze the stability of the Immersed Boundary Method
applied to a membrane-fluid system with a plasma membrane immersed in an incom-
pressible viscous fluid. We show that for small deformations, the planar rest state is
stable for a membrane with bending rigidity. The smoothed version, using a standard
regularization technique for the singular force, is also shown to be stable. Further-
more, we show that the coupled fluid-membrane system is stiff and smoothing helps
to reduce the stiffness. Compared to the system of elastic fibers immersed in an in-
compressible fluid, membrane with bending rigidity consist of a wider range of decay
rates. Therefore numerical instability could occur more easily for an explicit method
when the time step size is not sufficiently small, even though the continuous problem
is stable.
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1 Introduction

In nature as well as in engineering applications, there exist abundant examples where a
flexible structure is immersed in a viscous incompressible fluid. Such a structure-fluid
interaction is especially relevant in biological systems. The immersed boundary method,
which was developed by Peskin [1] and Peskin and McQueen [2] to study the nature of
the blood flow in the heart, is an effective technique for modeling and simulating this type
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of fluid-structure interactions. The immersed boundary method considers the structure
as an immersed boundary, which can be represented by a singular force in the Navier-
Stokes equations rather than a real body. It avoids difficulties associated with moving
boundaries faced by conventional methods. The immersed boundary method is both a
mathematical formulation and a numerical scheme. The mathematical formulation em-
ploys a mixture of Eulerian and Lagrangian variables. These are related by interaction
equations in which the Dirac delta function plays a prominent role. The numerical im-
plementation consists of several steps. First of all, the Eulerian (field) variables are de-
fined on a fixed Cartesian mesh while the Lagrangian variables (related to the immersed
boundary) are defined on a curvilinear grid that lies on top of the fixed Cartesian mesh.
Secondly, a smoothing (discretization) is needed for the Dirac delta function, constructed
according to certain principles, e.g., by matching the moments. The immersed bound-
ary method has been applied to a variety of problems, such as the swimming of eels,
sperm and bacteria [3–5], ameboid deformation [6], platelet aggregation during blood
clotting [7, 8], and the deformation of red blood cells in a shear flow [9].

Despite the popularity of the immersed boundary method as a computational tool,
only few analysis have been given of the method itself. Beyer and LeVeque [10] pro-
vided one of the first convergence analysis using a one-dimensional model. Tu and Pe-
skin [11] performed stability analysis for three different methods including the immersed
boundary method for solving fluid flow problems with moving interfaces. Stockie [12]
and Stockie and Wetton [13, 14] presented a linear stability analysis on both continuous
and discrete versions of the immersed boundary method applied to fluid flows with im-
mersed fibers. All analysis above assumed that the immersed structure was elastic with-
out bending resistance. On the other hand, biological cell membranes are nearly incom-
pressible with bending rigidity. Thus bending resistance cannot be ignored in flow prob-
lems involving biological cells, especially when the curvature of the immersed boundary
is large. Our aim in this paper is to analyze the stability of an immersed boundary with
bending resistance moving in an incompressible viscous fluid.

We consider a two-dimensional membrane immersed in a quiescent flow field at the
equilibrium state. We formulate the problem using the immersed boundary approach
and carry out linear stability analysis by computing the eigenvalues of the membrane-
fluid system in a periodic box. The smoothed version is considered next by regularizing
the Dirac delta function, following Peskin [1]. Without regularization (smoothing), the
singular delta function leads to jumps in the pressure and the velocity gradient. One can
use these jump conditions to construct numerical method, such as the immersed interface
method proposed by LeVeque and Li [15] and analyzed by Huang and Li [16]. There-
fore, the analysis of the unsmoothed version is more relevant to the immersed interface
method while that of the smoothed version is directly related to the immersed bound-
ary method used in [1–9]. Our analysis shows that both versions are linearly stable but
the membrane with bending rigidity is more stiff than the (linear) elastic membrane-fluid
system. Thus, the system with bending resistive membrane is more difficult to solve from
computational point of view.
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The paper is organized as follows. In Section 2, the mathematical model based on
a Stokes approximation is presented. The linear stability analysis and stiffness analysis
are carried out in Section 3. Numerical examples are considered to verify the stability
analysis results. Some concluding remarks are given in the final section.

2 Mathematical model

For flow problems with immersed flexible structure, there are two distinct approaches.
The first approach, or moving grid methods, treats the immersed boundary as a bound-
ary and applies the jump conditions directly. The solution domain is divided by the
immersed boundary and coupled together by the jump conditions. The flow equations
are solved using moving finite volume or finite element methods [17,18]. The second ap-
proach, or fixed grid methods, follows the immersed boundary implicitly, either by cap-
turing or tracking. The capturing methods include the well-known level-set and phase-
field methods where the immersed boundary (interface) coincides with a level curve
(surface) of an auxiliary variable or an order parameter, which is convected by the flow
field [19, 20]. The immersed boundary method is a tracking scheme where the immersed
boundary is represented by a singular forcing term and tracked in a Lagrangian fashion
while the fields variables are defined and solved on a fixed grid in an Eulerian setting.
To solve flow problems using the immersed boundary method, the singular forcing term
needs to be regularized. Here we distinguish the original and regularized versions of the
immersed boundary method as the “sharp interface problem” and “smoothed problem”,
respectively.

We assume that the fluid is incompressible with constant viscous and constant den-
sity. For biological applications at the cellular level, the Reynolds number is typically
small. Therefore, we can use Stokes approximation instead of the Navier-Stokes equa-
tions as the governing equations. We start by first setting up the sharp interface problem.

2.1 Sharp interface problem

The size of the red blood cells and other relevant biological cells are typically small (in
the nomometer range). Therefore, the fluid inertia is small compared with the viscous
force, i.e., the Reynolds number of the flow is small. On the other hand, the presence of
the immersed boundary introduces an intrinsic time scale related to deformation of the
membrane and the unsteadiness parameter is of order one, cf. Pozrikidis [21]. Therefore,
the motion of the fluid field is governed by unsteady Stokes equations

ρ
∂u

∂t
=−∇p+µ∆u, (2.1)

∇·u=0, (2.2)
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where ρ is the fluid density, µ is the fluid viscosity, u(x,t) and p(x,t) are the fluid velocity
and pressure. The jump conditions for immersed material are

[u]=0, (2.3)

µ

[

∂u

∂y

]

=− f ·τ
|∂X/∂s| τ, (2.4)

[p]=
f ·n

|∂X/∂s| , (2.5)

where

[·]=(·)|Ω+ −(·)|Ω−

denotes the jump across the interface, f(s,t) is the force density along the immersed
boundary, X(s,t) denotes the immersed boundary position prescribed by the kinematic
condition (carrying by the fluid velocity), s is the arclength along the membrane, n is the
unit normal vector, τ is the unit tangent to the immersed boundary.

2.2 Smoothed problem

The governing equations are the Stokes equations

ρ
∂u

∂t
=−∇p+µ∆u+F, (2.6)

∇·u=0, (2.7)

where F(x,t) is the fluid body force. Since the immersed boundary is constrained to move
at the same velocity as neighboring fluid particles, the interaction equation for velocity
can be written as:

∂X

∂t
(s,t)=u(X(s,t),t)=

∫

u(X,t)δ(x−X(s,t))dx, (2.8)

and F(x,t) can be expressed as:

F(x,t)=
∫

f(s,t)δ(x−X(s,t))ds, (2.9)

where δ denotes the three-dimensional Dirac delta function. It can be shown that the
system of Eqs. (2.6)-(2.9) is equivalent to Eqs. (2.1)-(2.5) [22]. To solve it numerically,
Eqs. (2.6) and (2.7) are discretized on a fixed Eulerian grid while Eq. (2.8) is approximated
by markers on the membrane and tracked explicitly. Finally, the Dirac delta function in
Eqs. (2.8) and (2.9) can be regularized in different ways, as long as certain moment and
other conditions are satisfied, cf. [22]. In this paper, we use the original function proposed
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in [1] and it can be written as follows:

δh(x)=
1

h2
φ(

x1

h
)(

x2

h
), (2.10)

φ(r)=







1

4
(1+cos(

πr

2
)), |r|≤2,

0, |r|>2,
(2.11)

where x1 and x2 are the Cartesian components of x and h is the grid size.

3 Linear stability analysis

In [14], Stockie analyzed the immersed boundary method by examining a fluid-fiber sys-
tem where elastic fibers are immersed in an incompressible viscous fluid. It was showed
that such system was linearly stable but stiff. Our objective is to extend Stockie’s work
and analyze the stability of a fluid-membrane system where bending resistance is the
dominant force. To simplify the analysis, a 2-D fluid field with an immersed membrane
inside a periodic box is considered in this paper.

Let Γ denote the immersed membrane in fluid domain Ω, which divides the whole
domain into two sub-domains Ω

+ and Ω
−. We consider a portion of the fluid domain in

which the immersed membrane is approximately flat, labeled as Ω0. In order to isolate
the influence of the membrane on the flow, the boundaries of Ω0 are extended to infinity
in the y-direction and periodically in the other direction Fig. 1.

 

 

 

equilibrium state 

initial state 

( sθ=x , 0y = ) 

y = +∞  

y = −∞  

Ω
0

 

+
Ω  

−
Ω  

Ω
0  

Γ  

Ω  

Figure 1: 2-D fluid domain containing immersed membrane.

Suppose the equilibrium state of the membrane in Ω0 defined by y = 0 and x = θs,
where s is the corresponding un-deformed arc-length and θ = |∂X/∂s| ≥ 1. In such po-
sition, the force acting on the fiber could be zero. Assume that the membrane is hyper-
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elastic and with bending rigidity its force density can be expressed as

f(l,t)=
∂

∂l
(Tτ+qn)=

(

κT+
∂q

∂l

)

n+

(

∂T

∂l
−κq

)

τ, (3.1)

where T is the in-plane tension, q=∂M/∂s is the transverse shear tension, M is the bend-
ing moment, l is the arc-length, κ is the curvature satisfying ∂τ/∂l =κn, ∂n/∂l =−κτ . In
this paper we use the Evans & Skalak (ES) law [23, 24] for the in-plane tension

T =CES

(

1

(ds/dl)2
−(ds/dl)2

)

, (3.2)

and a linear relation for the bending moment

M=EB(κ−κ0), (3.3)

where CES is the ratio of the surface shear modulus to the Young modulus, EB is the
bending modulus and κ0 is the curvature at equilibrium. Since s is the corresponding
un-deformed arc-length, ds/dl =1/|∂X/∂s|. The local force density per unit length f(s,t)
is given by

f(s,t)= f(l,t)|∂X/∂s|. (3.4)

Denote (ξ,η) as a perturbation to the membrane position and assume ξ, η, u and their
derivatives are small. The membrane position X(s,t) takes the form

X(s,t)=(θs+ξ(s,t),η(s,t)). (3.5)

Differentiating Eq. (3.5) with respect to s and dropping the (higher order) nonlinear terms
yields

∂X

∂s
≈

(

θ+
∂ξ

∂s
,
∂η

∂s

)

, (3.6)

∣

∣

∣

∣

∂X

∂s

∣

∣

∣

∣

≈
√

(

θ+
∂ξ

∂s

)2

+

(

∂η

∂s

)2

≈ θ+
∂ξ

∂s
. (3.7)

Expanding Eq. (3.2) in a Taylor series about the equilibrium state |∂X/∂s|= θ, we obtain

T≈CES

(

θ2− 1

θ2

)

+2CES

(

θ+
1

θ3

)

∂ξ

∂s
. (3.8)

Combining Eq. (3.8) and the linearized expression for curvature κ,

κ =
∂2|X|
∂s2

≈ 1

θ2

∂2η

∂s2
, (3.9)
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the force density in the normal and tangential directions can be expressed as follows:

fn(l,t)=κT+
∂q

∂l
≈σn

∂2η

∂s2
+φn

∂4η

∂s4
, (3.10)

fτ(l,t)=
∂T

∂l
−κq≈στ

∂2ξ

∂s2
, (3.11)

where

φn =EB/θ4≥0, σn =CES(1−1/θ4)≥0

and

στ =2CES(1+1/θ4)≥0.

For small perturbations from the equilibrium state, above formulae show that bending
moment acts mainly in the normal direction and its role in tangential direction can be
ignored. We now discuss the stability of the membrane-fluid system using the sharp
interface formulation and its smoothed version.

3.1 Linear stability of the sharp interface problem

In our problem, the jump conditions Eqs. (2.3)-(2.5) can be written as [13]

[u]=0, (3.12)

µ

[

∂u

∂y

]

=− f ·τ
|∂X/∂s| τ, (3.13)

[p]=
f ·n

|∂X/∂s| . (3.14)

Rewrite the unknowns in the sub-domain Ω
+
0 and Ω

−
0 in the form of Fourier modes,





u
v
p





±

= eλt+iαx





ŭ(y)
v̆(y)
p̆(y)



,

[

ξ
η

]±
= eλt+iαs

[

ξ̆
η̆

]±
, (3.15)

where α>0 is the wave number, i=
√
−1 is the imaginary unit and λ embodies the decay

(or growth) characteristics of each solution mode. Substitute Eq. (3.15) into the Stokes
equations (2.1) and (2.2), and introduce the following parameters:

ŭ∗=
ŭ

U
, p̆∗=

p̆

(φn/L3+σn/L)
, y∗=

y

L
,

α∗=
α

1/L
, λ∗=

λ

µ/(ρL2)
,
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then the governing equations can be written as:

1

Re

(

λ∗− d2

dy∗2
+α∗2

)

ŭ∗=−Er(iα∗ p̆∗), (3.16)

1

Re

(

λ∗− d2

dy∗2
+α∗2

)

v̆∗ =−Er

(

dp̆∗

dy∗

)

, (3.17)

iα∗ŭ∗+
dv̆∗

dy∗
=0, (3.18)

where Re=ρUL/µ is the Reynolds number and Er=(φn+σnL2)/(ρU2L3) is the ratio be-
tween the bending moment and the inertia force. Using MAPLE to solve the eigenvalue
problem Eqs. (3.16)-(3.18) and imposing the requirement that ŭ∗,v̆∗,p̆∗ are bounded as
y∗→±∞, we obtain the expressions

p̆∗(±)(y∗)=±A± λ∗

Re·Rr·α∗ e∓α∗y∗ , (3.19)

ŭ∗(±)(y∗)=∓i

(

A±e∓α∗y∗ +
β∗

α∗ B±e∓β∗y∗
)

, (3.20)

v̆∗(±)(y∗)= A±e∓α∗y∗ +B±e∓β∗y∗ , (3.21)

where the new parameter β∗ satisfies

β∗2 =α∗2+λ∗. (3.22)

Without loss of generality we assume that Re(β∗)≥ 0 and β∗ 6= α∗. Then ξ̆∗ and η̆∗ can
be obtained by substituting Eqs. (3.20) and (3.21) into the expressions for the membrane
position

ξ̆∗ =− i

λ∗

(

A++
β∗

α∗ B+

)

·Re, (3.23)

η̆∗=(A++B+)·Re/λ∗, (3.24)

provided that the coefficients A± and B± can be determined and the viscosity is contin-
uous across the membrane. Substituting Eqs. (3.23) and (3.24) into the jump conditions
Eqs. (3.12)-(3.14) we obtain:

[u∗]=0, [v∗]=0, (3.25)
[

∂u∗

∂y∗

]

=−Re·Er·ωτ ·α∗2ξ̆∗, (3.26)

[p∗]=ωnα∗2η̆∗+(1−ωn)α∗4η̆∗, (3.27)

where ωτ =στ L2/(φn+σnL2) is the tangential elastic tension weight coefficient and ωn =
σnL2/(φn+σnL2) is the normal elastic tension weight coefficient. Combining Eqs. (3.19)-
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(3.21) with Eqs. (3.25)-(3.27) leads to a homogeneous system with four unknowns coeffi-
cients:

















−i −i −iβ∗/α∗ −iβ∗/α∗

−1 1 −1 1

−iα∗λ∗ iα∗(λ∗+Ξ1) −iβ∗2λ∗/α∗ iβ∗
(

β∗λ∗2

α∗ +Ξ1

)

λ∗2

α∗
λ∗2

α∗ +Ξ2 0 −Ξ2

















·









A−

A+

B−

B+









=









0
0
0
0









, (3.28)

where
Ξ1 = Re2 ·Er·ωτα∗, Ξ2 = Re2 ·Er((1−ωn)α∗4+ωnα∗2).

In order to obtain a non-trivial solution of Eq. (3.28), the determinant of the coefficient
matrix must be zero. After some algebraic manipulations, the following expression can
be obtained:

(

β∗4+α∗β∗3−α∗2β∗2−α∗3β∗+
1

2
Re2 ·Er·(ωn ·α∗3+(1−ωn)·α∗5)

)

×
(

β∗3+α∗β∗2−α∗2β∗−α∗3+Re2 ·Er·ωτ ·α∗2
)

=0. (3.29)

This is a dispersion relation for the coupled membrane-fluid system. In [14], a similar
equation was obtained and analyzed for a two-dimensional elastic fiber immersed in
an incompressible viscous fluid. In fact, the second factor in Eq. (3.29), which gives the
solution related only to the shear membrane tension, is exactly the same. The eigenvalues
associated to the in-plane tension and the bending rigidity are given by the first factor in
Eq. (3.29). It can be seen clearly that the bending rigidity become more dominant for high
frequency modes while the in-plane tension is more important for low frequency modes.
In this paper, we focus our discussion related to the bending resistance. Let ωn =ωτ =0,
namely, neglect the tension effect. Then the dispersion relation becomes

(

β∗4+α∗β∗3−α∗2β∗2−α∗3β∗+
1

2
Re2 ·Er·α∗5

)

×
(

β∗3+α∗β∗2−α∗2β∗−α∗3
)

=0. (3.30)

Before discussing the detailed numerical results, some interesting observations can be
made. The second factor in Eq. (3.30), in the absence of in-plane tension, does not have
any admissible roots. Thus we only need to find the zeros using the first factor of Eq. (3.30).
Once β∗ is obtained, the value of the growth/decay parameter λ∗ can be computed from

λ∗= β∗2−α∗2.

The growth or decay rate of solution is given by the real part of λ∗ while the imaginary
part of λ∗ governs the oscillatory behavior of the modes. If Re(λ∗)≤0 for all membrane
modes, the modes decay in time and are stable; otherwise, solutions are unstable.
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In order to simplify the dispersion relation more, we introduce three parameters

α̃=α∗ ·(Re2 ·Er)
β̃= β∗ ·(Re2 ·Er)
λ̃=λ∗ ·(Re2 ·Er)2







. (3.31)

For a tensionless membrane, the non-dimensional form of the dispersion relation can be
expressed as

β̃4+ α̃β̃3− α̃2 β̃2− α̃3 β̃− α̃5/2=0, (3.32)

with λ̃ = β̃2− α̃2. Two admissible roots of β̃ (Re(β̃) ≥ 0) can be obtained by solving
Eq. (3.32), and the values for Re(λ̃) can be obtained correspondingly.

α

R
e(

)

0 0.5 1 1.5 2 2.5 3

0

0.5

1
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β~
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n2

α

R
e(

)

0 0.5 1 1.5 2 2.5 3
-6
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-1

0

~

λ~

n1

n2

Figure 2: Plots of Re(β̃) and Re(λ̃) versus α̃ for sharp interface problem.

As seen in Fig. 2, the real part of λ̃ is non-positive, i.e. Re(λ̃)≤ 0, which means all
membrane modes are stable. In fact, the stability of all membrane modes under bending
resistance can be shown rigorously as follows. Let

β̃= α̃z∗, z∗ = x∗+iy∗∈C

and denote the relevant factor in Eq. (3.32) as

f (z∗)= z∗4+z∗3−z∗2−z∗+ α̃/2, (3.33)

where
x∗= Re(z∗)>0, Re(λ̃)= x∗2−y∗2−1.

If x∗2≥y∗2+1 and y∗>0, then

Im( f ) = y∗(4x∗3+3x∗2−2x∗−1−y∗2(4x∗+1))

≥ y∗(4x∗3+3x∗2−2x∗−1+(1−x∗2)(4x∗+1))

= 2x∗y∗(x∗+1)>0, (3.34)
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which contradicts the fact that any root of f (z) must satisfy Re( f )= Im( f )=0. Therefore,
x∗2

< y∗2+1 for all roots when y∗ > 0. Similarly, the same results can be obtained when
y∗=0 and y∗<0. It shows that Re(λ̃)<0 for β̃∈C, i.e., all membrane modes are stable.

We now turn our attention to the smoothed problem and discuss the effect of the
regularization on the linear stability of the membrane-fluid system using the immersed
boundary method.

3.2 Linear stability of the smoothed problem

For the purpose of investigating the smoothed problem, the domain Ω0 is divided by
interfaces y=±ε, where ε is the regularization parameter representing the radius of sup-
port of the approximate delta function. Therefore, in the domain Ω0, there are three
sub-domains: the upper domain Ω

+
0 , the smoothing domain Ω

ε
0 and the lower domain

Ω
−
0 , as shown in Fig. 3. Non-dimensionalize all variables using the same parameters as in

sharp interface problem. In the sub-domains Ω
+
0 and Ω

−
0 , the influence of the membrane

is neglected, so the solutions on these two domains are identical with the solutions of the
sharp interface problem Eqs. (3.19)-(3.21).

 

0y =  

y ε= −  

y ε= +  

0

+
Ω  

0

−
Ω  

Γ       
0

ε
Ω  

y = −∞  

Figure 3: Repartition of domain Ω0 into Ω
+
0 , Ω

ε
0 and Ω

−
0 .

In the smoothing region Ω
ε
0, the membrane has an effect on the fluid field. In order to

obtain the solution in this domain, the smoothed Dirac delta function is introduced,

δε(x)=







1

2ε

(

1+cos
(πx

ε

))

, |x|< ε,

0, |x|≥ ε.
(3.35)

Letting

D̆ε
α =

∫ ε

−ε
e±iarδε(r)dr
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and substituting Eq. (3.35) into it, we then have

D̆ε
α =

π2sin(αε)

αε(π2−α2ε2)
. (3.36)

Expressing the unknowns in the smoothing region in the form of Fourier modes, similar
to the ones in Eq. (3.15), substituting the Fourier modes with Eqs. (3.35) and (3.36) into
the dimensionless form of Eqs. (2.6)-(2.9), the governing equations in Ω

ε
0 become:

1

Re

(

λ∗− d2

dy∗2
+α∗2

)

ŭ∗ε =−Er(iα∗ p̆∗ε+ωτθα∗2D∗ξ̆∗δh(y∗)), (3.37)

1

Re

(

λ∗− d2

dy∗2
+α∗2

)

v̆∗ε =−Er

(

dp̆∗ε

dy∗
+(ωn+(1−ωn)α∗2)θα∗2D∗η̆∗δh(y∗)

)

, (3.38)

iα∗ŭ∗ε+
dv̆∗ε

dy∗
=0, (3.39)

and ξ̆ and η̆ can be obtained using the expressions of the membrane position

λ∗ ξ̆∗ = Re·D̆∗
∫ ε

−ε
ŭ∗ε(y∗)δh(y∗)dy∗, (3.40)

λ∗η̆∗= Re·D̆∗
∫ ε

−ε
v̆∗ε(y∗)δh(y∗)dy∗, (3.41)

where

D̆∗=
π2sin(α∗ε)

α∗ε(π2−α∗2ε2)
. (3.42)

Eqs. (3.37)-(3.42) for the smoothing domain Ω
ε
0 are coupled with Eqs. (3.19)-(3.21) for the

outer regions. The expressions for ŭ∗ε, v̆∗ε, p̆∗ε consist four coefficients D± and C±, plus
four coefficients A± and B± form the expressions for ŭ∗, v̆∗, p̆∗ in the domains Ω

+
0 and

Ω
−
0 , as in Eqs. (3.19)-(3.21). There are eight coefficients in all for the entire domain of

the fluid field. Since pressure and velocity are continuous at the interface y∗ =±ε and
ŭ∗, v̆∗, p̆∗ are bounded as y∗→±∞, a system of eight homogeneous linear equations for
eight unknown coefficients can be obtained. The dispersion relation can be derived in the
same way outlined earlier. However, the expression is lengthy and symbolically it can be
written as

Sτ(β∗)·Sn(β∗)=0, (3.43)

where Sτ(β∗) does not contain the normal force effects and Sn(β∗) does not contain the
tangential force effects, except that both of them consist of a combination of polynomials
and transcendental (trigonometric and exponential) functions of β∗. The dimensionless
parameters Re and Er only appear in the group of (Re2 ·Er). Again, we only consider
the bending resistance and take ωτ =ωn =0. Due to the complex nature of Eq. (3.43), we
are not able to obtain analytical expression for β∗. Therefore, stability for the smoothed
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Figure 4: Plots of Re(β∗) and Re(λ∗) versus α∗ with Re=1, Er=103 and ε=2/64.

problem is investigated numerically. We note that the same problem occurred for elastic
fibers and the eigenvalues are also solved numerically in [12].

Consider a unit square computational region covered by an equally spaced grid with
grid space h = 1/N and radius of support of the approximate delta function ε = 2/N.
For a discrete set of wave-numbers α∗ = 2π ·i, i = {1,2,3,··· ,N}, we compute the zeros
of Eq. (3.43) by taking a representative parameter set Re = 1, Er = 103. Because of the
transcendental functions in Eq. (3.43), it is not clear how many roots exist. We first use
MAPLE to solve Eq. (3.43), which yields one pair of conjugate roots with Re(β∗)≥ 0 for
each value of α∗. We partition the complex domain and no additional roots are found.
We have also used MATLAB and find the same roots with at least 6 significant digits.
Therefore, numerical evidence suggest that this pair is the only admissible roots, corre-
sponding to the smallest value of |Re(λ∗)|. Since the smooth version of the immersed
boundary method is an approximation of the original sharp interface formulation, where
only one pair of admissible roots exists, it is not surprising that the situation is similar.
In Fig. 4, the plots of Re(β∗) and Re(λ∗) are given. It can be observed that the admis-
sible solution satisfies Re(β∗)≥ 0 and Re(λ∗)≤ 0 for all α∗. Furthermore, it can be seen
from Fig. 4 that Re(β∗) reaches its minimum value at critical α∗ values (α∗=2π) and the
corresponding value of λ∗ reach its maximum value of Re(λ∗). In Fig. 5, we plot this min-
imum value of Re(β∗) and the corresponding maximum value of Re(λ∗) against with the
assembled parameter (Re2 ·Er). It can be seen that the values of corresponding Re(λ∗)
are always negative. Thus the bending resistive membrane-fluid system is stable using
the immersed boundary method.

Combining our results and those in [14], it can be concluded here that the immersed
membrane is linearly stable under elastic tension as well as bending rigidity. This con-
clusion is not a surprise because both elastic force and bending moment can be regarded
as restoring forces, which make the membrane go back to its equilibrium state when it is
perturbed.
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Figure 5: Plots of Re(β∗)min and Re(λ∗)max versus log(Re2 ·Er) with ε=2/64.

3.3 Numerical experiments

We assume that the membrane is only under the restoring bending force, which satisfies
the linear relation given in Eq. (3.4) and take an L×L square as the computational domain,
where L is the wavelength of the initial disturbance. We further assume that the initial
membrane position is given by

X(s,0)=(s,0.05L·sin(2πs/L)).

We carry out the computation using the immersed boundary method by taking L =1cm
and a time step size ∆t=10−5s. In Fig. 6, we have plotted the velocity and pressure fields
at various times. It can be seen that the membrane moves from its initial position towards
its equilibrium state, as predicted by the linear stability analysis. The membrane first
reaches its equilibrium and continues its movement in the same direction until t=0.017,
and then it starts to move in the opposite direction and its velocity becomes zero again
at time t = 0.034. Because of viscous dissipation (non-zero real part of the eigenvalues),
the membrane continues to oscillate while its amplitude decays until it finally reaches it
equilibrium position asymptotically. Fig. 7 shows the comparison between the numerical
and analytical results. It gives the maximum displacement of the membrane under two
different bending moduli. The solid line is the analytical results, the dashed line is the
numerical results and the straight line is the equilibrium position. We can see that the two
decaying periods agree well, but the numerical results decay faster than the analytical
ones, which becomes more obvious as the bending modulus increases.

3.4 Stiffness analysis

In [14], it is shown that the elastic membrane-fluid system (and consequently the im-
mersed boundary method) is stiff due to the wide spread of decaying rates for low and



718 Z. X. Gong, H. X. Huang and C. J. Lu / Commun. Comput. Phys., 3 (2008), pp. 704-723

X

Y

-0.004 -0.002 0 0.002 0.004

-0.004

-0.002

0

0.002

0.004

X

-0.004

-0.002

0

0.002

0.004

Y

-0.004

-0.002

0

0.002

0.004

P
re

ss
u

re

-10

-5

0

5

10

15

X

Y

-0.004 -0.002 0 0.002 0.004

-0.004

-0.002

0

0.002

0.004

X

-0.004

-0.002

0

0.002

0.004

Y

-0.004

-0.002

0

0.002

0.004

P
re

ss
u

re

-5

0

5

X

Y

-0.004 -0.002 0 0.002 0.004

-0.004

-0.002

0

0.002

0.004

X

-0.004

-0.002

0

0.002

0.004

Y

-0.004

-0.002

0

0.002

0.004

P
re

ss
ur

e

-0.3

0

0.3

Figure 6: Plots for velocity and pressure field at three different times (φn =10g·cm2/s).
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high frequency modes. As the bending resistance is proportional to the 5th power of the
wave number, instead of the 3rd power for the in-plane tension, the difference between
the decaying rates is much bigger, indicating that the problem for the coupled bending
resistant membrane-fluid system is much more stiff. In this section we compare the stiff-
ness of the sharp interface problem and the smoothed problem, which is more relevant
to the immersed boundary method from the computational point of view.

The variation in the magnitude of Re(λ∗) indicates the range of decay rates, and the
larger the variation is, the wider the time scales are, and vice versa. As seen in Fig. 8,
the difference in Re(λ∗) for smoothed problem is smaller than that for the sharp interface
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problem for the same range of wave numbers. This is because the high frequency modes
are not captured by the smoothed problem, due to the regularization of the Dirac Delta
function.

The difference in Im(λ∗) for low and high frequency modes gives the frequency range
of all oscillatory modes of the solution, and a large variation in Im(λ∗) points to modes
with disparate frequencies. In Fig. 8, it can be seen that for the sharp interface problem,
the value Im(λ∗) of increases exponentially with wave number while for the smoothed
problem the variation of Im(λ∗) bounded. This is another indication that the smoothed
problem is less stiff. Again, it can be attributed to the regularization alleviating the dis-
continuity in the physical variables between the two sides of the immersed boundary.

Table 1: Comparison of the smallest decay rates and frequencies for the smallest wave number α∗ = 2π for
various bending ratio (Re=1).

Bending ratio Smallest decay rate Re(λ∗) Frequency Im(λ∗)
1−ωn Sharp Smooth Sharp Smooth

0.0 -80 -77 1039 1030

0.2 -139 -110 3159 3106

0.4 -159 -120 4360 4282

0.5 -167 -123 4853 4763

0.6 -174 -126 5301 5200

0.8 -186 -130 6102 5981

1.0 -196 -133 6811 6671

Table 2: Comparison of the smallest decay rates and frequencies for the smallest wave number α∗ = 10π for
various bending ratio (Re=1).

Bending ratio Smallest decay rate Re(λ∗) Frequency Im(λ∗)
1−ωn Sharp Smooth Sharp Smooth

0.0 -1484 -980 11200 10022

0.2 -4896 -1085 170636 137015

0.4 -5773 -1086 242054 193539

0.5 -6089 -1086 270891 216332

0.6 -6361 -1086 296981 236943

0.8 -6816 -1086 343342 273544

1.0 -7193 -1086 384217 305795

In the following we present some numerical results for an immersed boundary with
both elastic force and bending rigidity. Note that the normal elastic tension weight co-
efficient ωn varies from zero to one: ωn equals zero when there is only elastic tension
while ωn equals one when there is only bending tension. In Table 1 the results for the
most dominant frequency α∗ = 2π with the slowest decay rate are given and in Table 2
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the results for α∗ = 10π are listed. It can be seen clearly that as bending ratio increases,
the decay rate Re(λ∗) increases and the gap between the sharp interface and smoothed
problems widens. It is also shown that bending tension affects the value of λ∗ more,
which indicates that the effects of regularization become significant when the bending
effects become prominent. However, the difference between the Im(λ∗) values is rela-
tively small for the two problems, suggesting that regularization has little effect once the
oscillatory frequencies for the lowest frequency mode. Comparing Tables 1 and 2, it is
concluded that bending effects is more important for higher frequency modes.

Table 3: Comparison of maximum time step for bending and elastic force problems under various wavelengths
(explicit scheme).

Maximum time step
Wavelength Bending Force (EB =0.1) Elastic force (CES =0.1)

0.01 1E-5 5E-4

1 0.1 5E-3

100 10 1E-4

In order to test above point more concretely, we give the comparison of the maximum
time step for bending and elastic force problems under various wavelengths in Table 3.
All the results are obtained using the explicit immersed boundary method. It is shown
that for the larger wavelength (low frequency), the in-line elasticity is more restrictive
while for the smaller wavelength (high frequency), the bending is more restrictive. We
can conclude that, for a fiber with both bending and elastic force, the choice of time step
is dominant for the bending force part when the explicit time stepping scheme is used
and the time step should be very restrictive.

4 Conclusion

In this paper we study the linear stability of a coupled system consisting of a two-
dimensional membrane with bending resistance immersed in an incompressible, viscous
fluid. We show that the system is linearly stable when perturbed by a small deforma-
tion from the membrane’s rest state. The stability analysis of the immersed boundary
method, applied to this system is also carried out. Furthermore, we show that the prob-
lem is stiff and the immersed boundary method reduces the stiffness due to the regular-
ization (smoothing) of the singular force term. Compared to the problem involving fibers
with elastic tension [14], the system considered here is much more stiff. For membranes
with both in-plane elastic tension and bending rigidity, the bending effect is dominant for
high frequency modes while the in-plane tension is more important for the low frequency
modes. The results suggest that the computations for the coupled membrane-fluid with
bending resistance are more difficult than those for the coupled fiber-fluid with elastic
tension, especially on a relative fine grid. Because of the larger decay rate and highly
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oscillatory nature of the high frequency mode, the explicit time stepping scheme may
become unstable even though the underlying physic system is stable. Therefore, im-
plicit time stepping scheme such as the one proposed in [15] is highly desirable for the
membrane-fluid system with bending resistance.
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