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Abstract. We investigate numerical approximations based on polynomials that are or-
thogonal with respect to a weighted discrete inner product and develop an algorithm
for solving time dependent differential equations. We focus on the family of super
Gaussian weight functions and derive a criterion for the choice of parameters that pro-
vides good accuracy and stability for the time evolution of partial differential equa-
tions. Our results show that this approach circumvents the problems related to the
Runge phenomenon on equally spaced nodes and provides high accuracy in space.
For time stability, small corrections near the ends of the interval are computed using
local polynomial interpolation. Several numerical experiments illustrate the perfor-
mance of the method.
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1 Introduction

This paper investigates a high order numerical method for approximating smooth func-
tions on a uniform grid and solving partial differential equations on a hybrid grid in
[−1,1]. The method uses the discrete orthogonal polynomial least squares (DOP-LS) ap-
proximation based on the super Gaussian weight function, which is both smoothly con-
nected to zero at ±1 and equals one in nearly the entire domain. As a result, the method
has fast decaying expansion coefficients and also successfully suppresses Runge oscil-
lations that pollute the boundary regions. Such desirable weight function features were

∗Corresponding author. Email addresses: ag@math.la.asu.edu (A. Gelb), platte@math.la.asu.edu

(R. B. Platte), William.Rosenthal@asu.edu (W. S. Rosenthal)

http://www.global-sci.com/ 734 c©2008 Global-Science Press



A. Gelb, R. B. Platte and W. S. Rosenthal / Commun. Comput. Phys., 3 (2008), pp. 734-758 735

first exploited in [17] in the context of spectral reprojection from (pseudo-)spectral Fourier
data, and later in [15] as a least squares approximation technique for piecewise smooth
functions given equally or arbitrarily spaced points. In [17], the Fourier coefficients were
reprojected onto the Freud polynomial basis (what we will refer to as a super Gaussian
polynomial basis) to eliminate the Gibbs phenomenon. The concept of reprojection from
the Fourier basis onto another basis to remove the Gibbs phenomenon has been discussed
at length in the context of Gegenbauer reconstruction, see [20, 21] and references therein.
The Gibbs phenomenon is removed due to the reprojection polynomial weight function
being smoothly connected to zero near the boundaries, which prevents the Gibbs oscilla-
tions in the Fourier approximation from entering the reprojection and allows rapid decay
of the reprojection expansion coefficients. However, the Gegenbauer polynomials are not
entirely satisfactory as a reprojection basis due to their high propensity to round-off er-
ror. Furthermore, for large orders, the Gegenbauer partial sum expansion behaves like
a power series, yielding what was coined the generalized Runge phenomenon in [2]. In
contrast, as mentioned above, the super Gaussian weight functions are designed to be
one in nearly the entire domain of approximation, so that the growth of the correspond-
ing polynomials is better controlled. The approximation also utilizes more information
from the underlying function. In [15] it was noted that the values given on equidistant
grid points need not first be converted to pseudo-spectral Fourier coefficients in order to
recover a highly accurate approximation. The resulting super Gaussian discrete orthogo-
nal polynomial least squares (DOP-LS) method was shown to be robust and efficient for the
approximation of smooth functions.

This investigation further analyzes the super Gaussian DOP-LS approximation of
smooth functions in [−1,1] when the function is known at uniform grid points. We extend
the analysis from [15] to characterize the optimal parameters needed for convergence in
[−1,1], as well as in smaller intervals [−δ,δ], 0 < δ < 1. This information is then used to
develop a new hybrid multi-domain method for the approximation of smooth functions.
The technique consists of “patching” the super Gaussian approximation in [−δ,δ] with
Chebyshev (interpolatory) approximations in the two smaller boundary regions [−1,−δ]
and [δ,1] on Gauss Lobatto grids. The combined method enables high order approxima-
tion of smooth functions with less point clustering than the typical orthogonal polyno-
mial approximation methods.

In the second part of this paper we incorporate the hybrid multi-domain approxima-
tion into a numerical method that computes partial differential equations with smooth
solutions. Fourier pseudo-spectral methods are well suited for solving periodic smooth
problems on discrete data. Orthogonal polynomials, such as Chebyshev or Legendre
polynomials, are used as basis polynomials for spectral methods solving smooth non-
periodic problems. In this case, the grid points must be distributed so that the quadra-
ture used (typically Gauss or Gauss-Lobatto) to calculate the expansion coefficients yields
high enough accuracy. Such distributions are always clustered at the ends of the intervals.
This is a traditional bottleneck when solving partial differential equations with spectral
methods, since explicit time stepping methods require very small time steps on the order
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of the smallest spatial scaling in the domain to maintain stability. In their seminal pa-
per, [25], Kosloff and Tal-Ezer introduced the mapped Chebyshev method, which essen-
tially stretches the grid points to resemble a more uniform distribution. Consequently,
the severe time stepping restriction can be somewhat relaxed. Other non-classical or-
thogonal polynomials have been introduced for solving advection diffusion problems,
Schröedinger equations, and Poisson equations, e.g. [5, 6, 12, 31], as well as for the recon-
struction of piecewise smooth functions, [32]. In all of these studies the quadrature points
were either obtained numerically or known explicitly for the integration and subsequent
approximation. Here we use a multi-domain approach which does not require a particu-
lar grid point distribution for the majority of the domain. The domain is split into three
overlapping parts, with the dominant part consisting of equally spaced grid points on
the entire interval [−1,1].† The super Gaussian DOP-LS approximation yields high accu-
racy in [−δ,δ], but the Runge phenomenon impacts the solution in the small boundary
regions [−1,−δ] and [δ,1]. Hence we correct the approximation in those regions using
Chebyshev interpolation on Gauss Lobatto points. The time step restriction is based on
the number of points in each Chebyshev domain, which decreases as δ→1. By carefully
patching the solution across the interior boundaries, we achieve high order accuracy and
numerical stability.

Our discussion begins by defining the super Gaussian DOP-LS approximation method
for smooth functions on equidistant grid point values in Section 2. Parallels are drawn
to the spectral reprojection method. We describe the parameters of the method and how
they can be optimized, keeping in mind accuracy and robustness while trying to mini-
mize resolution requirements. In Section 3 we describe our hybrid multi-domain method
for solving partial differential equations and discuss its convergence properties. Numer-
ical examples are provided in Section 4. Section 5 summarizes the characteristic features
of the super Gaussian DOP-LS approximation method and discusses possible future ap-
plications.

2 Discrete orthogonal polynomials and least squares

approximations

Let f (x) be a smooth function in [−1,1]. Suppose we are given the values of f (x) at
some distribution of points, xj, j =0,··· ,N, and we wish to approximate f (x). The naive
approach is to use the Lagrange interpolating polynomial, given by

pN(x)=
N

∑
j=0

f (xj)Lj(x),

where

Lj(x)=
N

∏
j=0,j 6=k

x−xj

xk−xj

†We consider uniform points to relax the time step restriction. Any point distribution can be used, however.
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are the Nth order Lagrange interpolating polynomials. The approximation error is

f (x)= pN(x)+
f (N+1)(x)

(N+1)!
(x−x0)(x−x1)···(x−xN).

It is well known that when xj, j = 0,··· ,N, are equally spaced, the Lagrange polynomial
interpolation does not converge pointwise, and furthermore produces wild oscillations
near the boundaries. A better interpolation can be obtained using the Chebyshev point
distribution, [7]. Furthermore, for f (x) smooth in [−1,1], the resulting Lagrangian in-
terpolation yields spectral accuracy. A more extended study on interpolation errors for
general point distributions is in [10].

There have been many investigations of high order reconstruction methods for (piece-
wise) smooth functions from uniform grid point data, [8, 9, 14, 15, 17, 20, 21, 23, 32]. Often
the data is first converted into pseudo-spectral Fourier coefficients, as is the case for the
(pseudo-)spectral reprojection method, [17, 20, 21]. The general idea is to reproject the
Fourier coefficients onto a new orthogonal polynomial basis that does not require peri-
odicity in the underlying function for its convergence. In [15], the approximating polyno-
mial basis is constructed to be orthogonal in the discrete sense, and uses the discrete values
f (xj), j = 0,··· ,N, directly. Thus the Fourier pseudo-spectral coefficients are never com-
puted, and there is no reprojection involved. In fact, the method is nothing more than a
least squares approximation using discrete orthogonal polynomials, see, e.g., [13,29]. We
will use that approach here.

To establish notation and put the discrete orthogonal polynomial least squares (DOP-
LS) method into context, we first review both the traditional continuous orthogonal poly-
nomial expansion method in Section 2.1, as well as the Fourier pseudo-spectral reprojec-
tion method in Section 2.2.

2.1 Orthogonal polynomial expansion

Recall the orthogonal polynomial series expansion for a smooth function f (x) on [−1,1],

P̂N f (x)=
N

∑
k=0

âkψω
k (x), (2.1)

where ψω
k (x), k = 0,··· ,N, are orthogonal polynomials with respect to a weight function

ω(x)≥0 satisfying
(ψω

k ,ψω
l )= ĥkδkl. (2.2)

Here
ĥk =(ψω

k ,ψω
k ), (2.3)

and the weighted inner product is defined as

(u,v) :=
∫ 1

−1
u(x)v(x)ω(x)dx. (2.4)
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Due to the orthogonality of ψω
k (x), the coefficients âk can be obtained by

âk =
1

ĥk

( f ,ψω
k ). (2.5)

The exponential decay of âk, k = 0,··· ,N, ensures that (2.1) converges exponentially for
smooth f (x), [11].

Numerical quadrature is typically needed to evaluate (2.5). Assume that f (x) is
known on some distribution of points xj, j=0,··· ,N, and that the corresponding quadra-
ture weights ω̃j are determined accordingly. Then the continuous coefficients can be
approximated by

ãk =
1

h̃k

N

∑
j=0

f (xj)ψω
k (xj)ω̃j, (2.6)

where the normalization constants h̃k approximate (2.3) as

h̃k =
N

∑
j=0

(ψω
k (xj))

2ω̃j. (2.7)

If the points xj, j = 0,··· ,N, have a Gaussian type distribution corresponding to ψω
k (x),

and if the discrete weights ω̃j are accurately evaluated from the points xj, then ãk → âk

exponentially as N→∞. Consequently, the pseudo-spectral approximation,

IN f (x)=
N

∑
k=0

ãkψω
k (x), (2.8)

converges exponentially to smooth f (x) in [−1,1], [3, 4, 10, 11, 18, 19]. Note that IN f can
be written as an interpolating polynomial approximation

IN f (x)=
N

∑
j=0

f (xj)gj(x), (2.9)

where

gj(x)= ω̃j

N

∑
k=0

ψω
k (x)ψω

k (xj)

h̃k

,

are the cardinal basis functions.

Unfortunately, in applications involving imaging, the point distribution can not be
arbitrarily chosen, and is typically not Gaussian, so conventional orthogonal polyno-
mial bases are incompatible. Runge effects ruin the convergence of (2.8), or equivalently
(2.9). Moreover, on uniform points, Fourier pseudo-spectral methods yield the Gibbs
phenomenon for non-periodic functions.
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In the case where the nodal distribution is not arbitrary, it is possible to construct
the weight function ω(x) and corresponding N+1 discrete weights ω̃j to regain expo-
nential decay of the expansion coefficients (2.5) for k = 0,··· ,M, for some M < N. The
approximation (2.1) can then be reformulated as a least squares orthogonal polynomial
method with expansion order M. A suitable weight function in (2.1) and appropriate ex-
pansion order, M, underly the construction of the general (pseudo-)spectral reprojection
method, [20–22], although this is not how the method is traditionally motivated. Below
we review the Fourier pseudo-spectral method to gain insight into how to choose an
appropriate weight function and expansion order M for the (discrete) orthogonal poly-
nomial least squares method.

2.2 Fourier pseudo-spectral reprojection

Let us assume that f (x) is a smooth but non-periodic function on [−1,1], known on uni-
form grid points xj, j = 0,··· ,N, with xj = −1+ j∆x and ∆x = 2

N . The Fourier pseudo-
spectral coefficients are computed as

f̃k =
N−1

∑
j=0

f (xj)e−ikπxj ,

for k=−N
2 ,··· , N

2 −1, providing the pseudo-spectral Fourier approximation,

I
f our
N f (x)=

N
2 −1

∑
k=− N

2

f̃keikπx. (2.10)

To alleviate the Gibbs phenomenon, (2.10) is reprojected onto a new basis, ψω
k (x), defined

in (2.2), for k=0,··· ,M, and M < N. The Cq[−1,1] weight function ω(x) of the new basis
smoothly transitions to zero at the endpoints by satisfying

dpω

dxp

∣

∣

∣

∣

x=±1

=0, (2.11)

for p=0,1,2,··· ,q(N), where q(N) correlates to the degree of smoothness of the underly-
ing function f (x). The Fourier pseudo-spectral reprojection method computes the partial
sum

GM,N f (x)=
M

∑
k=0

ĝk,Nψω
k (x), (2.12)

where the coefficients ĝk,N are defined as

ĝk,N =
1

ĥk

∫ 1

−1
I

f our
N f (x)ψω

k (x)ω(x)dx. (2.13)
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Numerical quadrature can be used to evaluate (2.13). Since I
f our
N f (xj) = f (xj) and ω(x)

satisfies (2.11), it is convenient to define the quadrature weights as

ω̃j =

{

ω(xj)
∆x
2 , if j=0 or j= N,

ω(xj)∆x, otherwise.
(2.14)

Hence, since ω(x0)=ω(xN)=0, the trapezoidal rule yields

g̃k,N =
∆x

h̃k

N−1

∑
j=1

f (xj)ψω
k (xj)ω(xj), (2.15)

where h̃k is defined in (2.7). Note that for q(N) large enough, (2.15) is an exponentially
accurate approximation of (2.13), [3]. Furthermore, (2.12) can be rewritten as

GM,N f (x)=
N−1

∑
j=1

f (xj)gj,M(x), (2.16)

where

gj,M(x)=ω(xj)∆x
M

∑
k=0

ψω
k (xj)ψω

k (x)

h̃k

.

Remark 2.1.

1. M = βN for certain prescribed values of β < 1 yields exponential convergence of
(2.12) or (2.16), assuming that the reprojection polynomials, ψω

k (x), are chosen to
be Gibbs complementary, [21]. Specifically, (2.11) must hold for p = 0,··· ,q(N), and
(2.1) must produce (theoretical) exponential convergence to smooth f (x). When
M→N, the Gibbs oscillations from the Fourier approximation are re-introduced in
the approximation.

2. The Gegenbauer polynomials have weight function ωgeg(x)=(1−x2)q(N)− 1
2 , which

satisfies (2.11). They are therefore Gibbs complementary since their orthogonal
polynomial expansion (2.1) converges to f (x) exponentially. In addition, as clas-
sical orthogonal polynomials, the three term recurrence relationship for the Gegen-
bauer polynomials is known explicitly and does not require the calculation of any
inner products. It is also possible to determine (2.13) explicitly in terms of the
pseudo-spectral Fourier coefficients, making the overall computational cost less ex-
pensive than if quadrature is used, [22]. However, as q(N) increases, the region that
the weight function is significantly different from zero shrinks to a small interval
around x=0 in [−1,1]. The polynomials grow rapidly in the boundary regions, af-
fecting the approximation both in terms of the Runge phenomenon and round-off
error, [2, 16, 17].

3. Gaussian quadrature can be used to compute (2.13). In this case (2.16) is not valid.
Moreover, (2.12) is more expensive to compute.
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4. As observed in [15], (2.16) allows us to interpret the Fourier pseudo-spectral re-
projection method as a least squares approximation based on given (uniform) dis-
crete data f (xj). Hence the convergence analysis of the pseudo-spectral reprojection
method provides insight on how to best determine a suitable polynomial basis for
the least squares approximation.

5. For non-classical weight functions that satisfy (2.11), it might be difficult to accu-
rately compute the corresponding continuous orthogonal polynomials, [13]. Hence
it was proposed in [15] that it would be more accurate and efficient to use polyno-
mials that are orthogonal in the discrete sense. This is examined in the next section.

2.3 Weighted discrete orthogonal polynomials

The discrete orthogonal polynomials are defined using the discrete inner product on [−1,1]
such that

<φω
k ,φω

l >=hkδkl , (2.17)

where

hk = ||φω
k ||=<φω

k ,φω
k > . (2.18)

Here the weighted discrete inner product is defined by

<u,v>:=
N

∑
j=0

u(xj)v(xj)ω̃j (2.19)

for some distribution of points xj, j = 0,··· ,N, in [−1,1], and corresponding discrete
weights, ω̃j.

The discrete orthogonal polynomial least squares (DOP-LS) approximation of a smooth
function f (x) in [−1,1] is [13]:

PM,N f (x)=
M

∑
k=0

ak,Nφω
k (x), (2.20)

where

ak,N =
1

hk
< f ,φω

k >, (2.21)

and M<N. The decay rate of the coefficients (2.21) depends on the smoothness properties
of the underlying function f (x) and on the choice of the discrete orthogonal polynomials
φω

k (x), [13, 29]. For symmetric ω(x), the discrete orthogonal polynomials φω
k (x), k =

0,···M, can be determined from Stieltjes recurrence relation, [13], as

φω
k+1(x)= xφω

k (x)− hk

hk−1
φω

k−1(x), (2.22)
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where φω
0 (x)=1 and φω

1 (x)= x.‡

We point out that the three-term recurrence formula above is sensitive to round-off
errors and reorthogonalization may be needed. Instead, in our code we subtract the
orthogonal projections of xφω

k against all polynomials of lower degree in the basis using
a modified Gram-Schmidt iteration to avoid numerical instability, [27].

Since we are performing a least squares approximation, rather than interpolation,
we are not limited to using a clustered distribution of points to guarantee convergence
near the boundaries. Instead we choose to use equally spaced grid points, xj = −1+

j∆x, j = 0,··· ,N, with ∆x = 2
N , as this will help to relax the time step restriction when

solving partial differential equations. The approximation can be optimized for any point
distribution, however.

We pause here to note that φω
k (x)→ψω

k (x), the continuous orthogonal polynomials
defined in (2.2), for all k provided that the discrete inner product (2.19) converges to the
continuous inner product (2.4) as N →∞, [13]. However, since N is finite and the point
distribution is not Gaussian, this convergence is not exponential. As the convergence of
the least squares approximation to a smooth function does not inherently depend on the
type of the orthogonality of the expansion basis, we do not attempt to approximate ψω

k (x)
from the non-classical weight function ω(x). An accurate approximation of the least
squares coefficients (2.21) would require far more grid points, and in fact the DOP-LS
approximation would be less accurate. Thus the construction of (2.20) is both simplified
and more efficient.

The problem can now be stated as follows: Given f (x) at uniform grid points, xj,
j = 0,··· ,N, we seek weight functions ω(x), and corresponding discrete weights ω̃j, so
that the coefficients (2.21) decay exponentially. Subsequently, the DOP-LS approximation
(2.20) will converge exponentially to smooth f (x) in [−1,1], assuming a slower growth
rate of the expansion polynomials.

To obtain exponential decay of the least squares coefficients (2.21), we recall that if
g(x) is smooth and periodic with smooth and periodic derivatives, then the trapezoidal
rule

∆x
N−1

∑
j=1

g(xj)+
∆x

2
(g(x0)+g(xN)) (2.23)

converges exponentially to
∫ 1
−1 g(x)dx, [3]. Hence for

g(x)=
f (x)φω

k (x)ω(x)

hk
, (2.24)

with ω(x) satisfying (2.11) for large q(N), it follows that the DOP-LS coefficients ak,N in
(2.21) decay exponentially. Here ω̃j is defined by (2.14) for the weighted inner product
calculation (2.19) of ak,N .

‡For ease of presentation we only consider ω(x) to be symmetric. There is also a recursion formula corre-
sponding to non-symmetric weight functions, [13].
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Figure 1: (left) Supper Gaussian weights ωgau(x) for λ =2 (dotted), 5 (dash-dotted), 10 (dashed), and 20

(solid). (right) Gegenbauer weights ωgeg(x) for q(N)=2 (dotted), 4 (dash-dotted), 8 (dashed), and 12 (solid).

2.4 Super Gaussian weight functions

We now turn our attention to constructing weight functions that satisfy (2.11). As first
described in [17] in the context of Fourier (pseudo-)spectral reprojection, and explored
further in [15] for the DOP-LS approximation, the super Gaussian weight function de-
fined as

ωgau(x) := e−αx2λ

, x∈ [−1,1], (2.25)

numerically satisfies (2.11) when α = −lnǫM with ǫM representing machine accuracy.§

Fig. 1 (left) displays the super Gaussian weight functions for several choice of λ. Note
that as λ increases, ωgau(x)=1 over more of the interval [−1,1]. Since ωgau(x) is smoothly
connected to zero at ±1 up to machine precision, (2.23) implies that the discrete orthogo-
nal polynomial coefficients, (2.21), decay exponentially.

Until now we have only made use of the weight function property (2.11), which holds
for both the super Gaussian weight functions and the Gegenbauer weight functions for
large q(N). The other desirable property of the super Gaussian weight functions is that
ωgau(x) = 1 in most of the interval [−1,1]. As stated previously, this is not true for the
Gegenbauer polynomial weight functions. As is evident in Fig. 1 (right), the interval
for which ωgeg(x) = 1 shrinks as its number of continuous derivatives, q(N), increase.
Such behavior was recognized as a hindrance for the spectral reprojection method when
Gegenbauer polynomials were used as the reprojection basis. In particular, it is respon-
sible for the round-off error caused by the large growth of the Gegenbauer polynomials
and also the effects of the generalized Runge phenomenon, [2, 16, 17].

In [17], the notion of a robust Gibbs complement was introduced for the spectral repro-
jection method to reduce these errors. Specifically, the weight function of a reprojection
polynomial basis must satisfy

1. ω(x) smoothly decays to zero at ±1.

§In [15, 17], (2.25) were referred to as Freud weights.
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2. As the number of grid points N increases, ω(x)→1 except at the points x=±1.

The first requirement is met by any weight function satisfying (2.11). The second is met
by the super Gaussian weight functions (2.25) for large λ. In fact, as λ increases, the
growth of the corresponding polynomials decreases, and the effects of the generalized
Runge phenomenon and round-off error of the spectral reprojection approximation are
diminished.

The relationship between the weights in the DOP-LS method and those for a robust
spectral reprojection is intentional. Due to the interpolatory properties of Fourier collo-
cation, one can view the pseudo-spectral Fourier reprojection, (2.12), as a least squares
orthogonal polynomial approximation method, [15]. This observation suggests that the
same weights that reduce the Runge phenomenon, or equivalently increase the radius
of convergence in the approximation, could be used to construct the DOP-LS approxi-
mation, (2.20). Hence we insist that ω(x)=1 in most of [−1,1]. In addition to being less
susceptible to round-off error and the Runge phenomenon, we see that much of infor-
mation from the underlying function is used in the approximation. Specifically, if we
define

β= β(M,N)=
M

N
=

# of expansion terms

# of grid points
(2.26)

as the aspect ratio of (2.20), then a nearly constant β implies that the number of grid points
N does not need to be very large to retain the characteristic features of the underlying
function. Clearly β < 1 since M ≈ N returns an approximation resembling the poorly
performing Lagrange interpolation. The second requirement is also essential when using
the DOP-LS method for solving partial differential equations. Otherwise the numerical
solution would only come from the interior of the domain, in regions far away from
the boundary. Some additional considerations are necessary at the boundaries, since the
weight function is zero there. This will be discussed further in Section 3.

Before demonstrating the effectiveness of the DOP-LS method, we make the following
remarks:

1. The DOP-LS approximation can be calculated directly from the discrete data as

PM,N f (x)=
N

∑
j=0

f (xj)gω
j (x), (2.27)

where

gω
j (x)= ω̃j

M

∑
k=0

φω
k (xj)φω

k (x)

hk
, (2.28)

can be described as pseudo-cardinal functions with ω̃j defined in (2.14) and φω
k (x)

is determined from (2.22).

2. The first derivatives of the discrete orthogonal polynomials,
dφ̂ω

l
dx (x), are easily con-

structed from (2.22). The DOP-LS approximation for f ′(x) can then be computed
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as

d

dx
PM,N f (x)=

M

∑
k=0

ak,N

dφω
k

dx
(x),

or equivalently

d

dx
PM,N f (x)=

N

∑
j=0

f (xj)
dgω

j

dx
(x), (2.29)

using the pseudo-cardinal functions in (2.28). Applying (2.29) may be more useful
in implementing numerical methods for partial differential equations.
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Figure 2: Pointwise errors in logarithmic scale for Example 2.1. (left) The DOP-LS approximation (2.20) used
as an interpolation. (right) The DOP-LS approximation when β=0.7. Here N = 32 (solid), 64 (dashed), 128
(dash-dotted), and 256 (dotted).

2.5 The DOP-LS approximation

The following examples illustrates the DOP-LS approximation (2.20) with respect to the
super Gaussian weight function (2.25) for a smooth function in [−1,1]. In each case the
grid points are uniformly distributed with ∆x= 2

N .

Example 2.1.

f (x)=cos(10.4πx)+sin(10.4πx), x∈ [−1,1]. (2.30)

Fig. 2 displays the maximum error over the domain [−1,1] for Example 2.1 using
the DOP-LS method (2.20) for the aspect ratio β = 1, (interpolation, M = N) and β = .7,
with λ = .2N in (2.25). As expected, choosing M = N produces the Runge phenomenon.
Choosing M =round(.7N), however, allows high order convergence throughout [−1,1]
and alleviates the Runge phenomenon. These results concur with those in [15].
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The right plot of Fig. 2 illustrates that the error is actually machine precision in the
majority of the domain, [−δ,δ] ∈ [−1,1], when N ≥ 128. This information is critical in
defining our (overlapping) domains when solving partial differential equations with the
DOP-LS method. On the one hand, δ should be as close to one as possible. In this case,
the accurate approximation coming from the uniform point distribution in [−1,1] will
cover the majority of the domain, and will in turn relax the time stepping restrictions.
On the other hand, the aspect ratio β should be nearly constant so that the method does
not require many more original grid points N to resolve the function. These ideas are
discussed further in Section 3.
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Figure 3: Contour plots of the L∞ error in [−δ,δ] as a function of N and M (with M≤ N) for Example 2.1.

Contour levels are (white) 10−13,10−10,10−7,10−4,10−1,102 (black). (left) δ = 1. (center) δ = .75 (right) δ =
max(.75,1−20∆x). The dashed lines are the graphs of M = .7N, and M =2N3/4.
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Figure 4: Contour plots of the L∞ error in [−δ,δ] as a function of N and M (with M≤ N) in Example 2.2.

Contour levels are (white) 10−13,10−10,10−7,10−4,10−1,102 (black). (left) δ = 1. (center) δ = .75 (right) δ =
max(.75,1−20∆x). The dashed lines are the graphs of M = .7N, and M =2N3/4.

Fig. 3 demonstrates how a suitable aspect ratio (2.26) is chosen for δ=1, δ=0.75, and
δ = max(.75,1−20∆x) when the DOP-LS method applied to Example 2.1. If we insist
on having an accurate approximation in the entire interval, then a linear relationship
between M and N is impossible. The largest aspect ratio requires M≤C

√
N. This result is

in agreement with the theoretical bounds in [26] and the numerical experiments in [1] for
constant weights. The center plot demonstrates that for M<0.7N, it is possible to obtain
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M =round(0.42N) (dashed), δ = 0.99 and M =round(0.15N) (dash-dotted), and δ = 1 and M =round(4
√

N)
(dotted).

machine precision in [−.75,.75]. The right plot illustrates that exponential convergence
is possible as δ→1 with M =O(N3/4)) instead of O(

√
N) for practical choices of N. Of

course the minimum M is determined by the resolution requirements of the particular
example. In this case, M > 50. Note that information from the original data, f (xj), j =
0,··· ,N, in entire interval [−1,1] is still used to obtain the approximation in any sub-
interval [−δ,δ].

In the following example, we test the convergence of the DOP-LS approximation for
a function that is analytic in [−1,1] but has poles in the complex plane at z = ±0.25i.
Polynomial interpolation on equidistant points for this class of functions is known to
diverge exponentially fast (Runge phenomenon). We used this example to illustrate how
discrete least squares can be used to avoid Runge oscillations.

Example 2.2.

f (x)=
1

x2+ 1
16

, x∈ [−1,1]. (2.31)

Fig. 4 displays the contours of the maximum errors for the DOP-LS method for M vs.
N for Example 2.2 using the super Gaussian weights in both [−1,1] and [−.75,.75]. We
also show the maximum error in the interval [−δ,δ], for increasing δ for various choices
of M and N =128 in Fig. 5.

Both examples demonstrate that high order accuracy is obtainable in any interval if
M is chosen to be proportional to

√
N. For constant aspect ratio β in (2.26), however, the

approximation error is still very small in [−δ,δ] when δ≤ .75, and we can still obtain ma-

chine precision as δ→1 without decreasing the aspect ratio to C
√

N
N . We use this result to

develop a highly accurate hybrid (overlapping) multi-domain method for solving partial
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differential equations. The majority of the computation is performed on equally spaced
points, and as a consequence, the usually very restrictive time step (e.g., for traditional
orthogonal polynomial spectral methods) can be somewhat relaxed. This is the topic of
discussion in Section 3.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

ω
g
e
v
(x

)

−1 −0.5 0 0.5 1

−15

−10

−5

0

5

10

15

x

lo
g
1
0
|P

M
,N

[f
](
x
)
−

f
(x

)|

Figure 6: (left) Gevrey weights ωgev(x) for λ=2 (dotted), 5 (dash-dotted), 10 (dashed), and 20 (solid). (right)

Pointwise error for Example 2.1 with Gevrey weights, β=0.7, and λ=round(0.05N). Here N = 32 (solid), 64
(dashed), 128 (dash-dotted), 256 (dotted).

2.6 Other qualifying weight functions

It is possible to construct other weight functions that satisfy (2.11) so that ω(x)→ 1 in
(−1,1). For example, in [32] the authors suggested a modified Gegenbauer weight for
spectral reprojection,

ω(x)=(1−x2)q(N)− 1
2 e−αx2

.

Here α is chosen so that ω(±1)≈O(ǫM), where ǫM is machine precision. This weight
function can be made to satisfy both requirements for the spectral reprojection and DOP-
LS method by modifying it as

ω(x)=(1−x2)q(N)− 1
2 e−αx2λ

.

Below we consider the Gevrey weight function, which is defined as

ωgev(x) :=

{

exp
(

x2

λ(x2−1)

)

, 0< |x|<1,

0, |x|≥1.
(2.32)

The Gevrey weight function has been studied in the context of spectral mollifiers, [33,34],
and has also been proposed as an alternative for constructing the spectral reprojection
basis, [17].¶ The Gevrey weight function is more easily characterized than the super
Gaussian weight function due to its compact support on [−1,1].

¶Technically the corresponding Gevrey polynomials produce only root exponential accuracy.
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Fig. 6 demonstrates that the DOP-LS approximation method using (2.32) also yields
fast convergence for Example 2.1. In fact, our experiments indicate that by choosing
appropriate parameters, Gevrey and super Gaussian weights produce comparable ap-
proximations.

3 Solving partial differential equations using the DOP-LS

method

Although it is possible to approximate a smooth function in the entire interval [−1,1]
using the DOP-LS method (2.20), Examples 2.1 and 2.2 both indicate that limiting the ap-
proximation to the interval [−δ,δ], δ<1, significantly improves the convergence rate and
maintains a constant aspect ratio, (2.26). Hence the resolution requirements for the DOP-
LS method are similar to those of other global expansion methods and therefore should
not significantly increase the cost of the approximation. It is therefore feasible to use the
DOP-LS method to develop a numerical algorithm for solving partial differential equa-
tions with smooth solutions. The idea is to use a hybrid (overlapping) multi-domain
technique. That is, we use the DOP-LS method to approximate the solution on [−δ,δ]
from N+1 equally spaced points in [−1,1]. Then, we replace the “bad” DOP-LS solution
in both boundary regions [−1,−δ] and [δ,1] with the standard Chebyshev interpolation
on Ncheb+1 Gauss Lobatto points (in each region). Finally, the solution is patched across
the internal boundaries x =±δ. As δ = δ(N)→ 1, the number of Chebyshev points re-
quired in each boundary region decreases. This technique lends itself to solving a (linear
advection) PDE because the maximum allowable time step for an explicit method is pro-
portional to (1−δ)N−2

cheb. Therefore, if Ncheb ≪N, the original number of points in [−1,1],
then it is possible to build a highly accurate method that is stable for a less restrictive
time step.

Fig. 7 graphically illustrates the hybrid (overlapping) multi-domain idea. The DOP-
LS method uses grid point information in [−1,1] to approximate the solution in [−δ,δ].
As displayed in Fig. 7 (upper-right), the Runge phenomenon ruins the approximation
in the boundary regions [−1,−δ] and [δ,1]. Hence we throw away the DOP-LS solution
in those regions and instead use Chebyshev interpolation there with Ncheb =(1−δ)N/2
Gauss Lobatto points. Fig. 7 (lower-right) shows the final “patched” solution.

To solve a PDE, we first differentiate the solution at any given time step on the three
overlapping sub-domains, employing the DOP-LS method on [−1,1] and the Chebyshev
method on [−1,−δ] and [δ,1]. We then use an explicit time marching scheme (e.g., fourth
order Runge-Kutta) to advance the solution on each (overlapped) sub-domain. Next,
the Chebyshev solutions on [−1,−δ] and [δ,1] are projected back onto the original grid
points. Finally, the solution is patched across the interior boundaries to ensure continuity.
We note the similarity to more traditional multi-domain methods. Here, however, the
approximation in the interior is produced from function data in all of [−1,1], and not just
from information in the interior domain [−δ,δ], since we need all the information from
[−1,1] to achieve the spectral accuracy in [−δ,δ] as M→N.
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Figure 7: Hybrid approximation of f (x)=exp
(

sin(1.4πx)2
)

. (upper-left) Graph of f in [−1,1]. (upper-right)

Log of the error in the DOP-LS approximation with N=128 and M=round(min(0.5N, 3
2 N

3
4 )=57. (lower-left)

Error after the Chebyshev correction in [−1,−.75] and [.75,1] with Ncheb = Nδ = N/8=16. (lower-right) Error
after the smooth patching described in Algorithm 3.1.

3.1 The hybrid DOP-LS algorithm

Let us consider the one dimensional linear transport equation.

Example 3.1.

ut+ux =0, x∈ (−1,1), (3.1)

with boundary conditions u(−1,t)= B(t) and initial conditions u(x,0)= f (x).

Assume that B(t) is such that the solution u(x,t) is smooth. The algorithm below
describes how the hybrid overlapping multi-domain (hybrid DOP-LS) method works for
Example 3.1.

Algorithm 3.1 (hybrid DOP-LS).

1. The domain [−1,1] is divided into three overlapping sub-intervals, [−1,1], [−1,−δ]
and [δ,1].
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2. We assume u(x,0) can be calculated on any grid points. In [−1,1], the grid points

are xj =−1+ 2j
N , j=0,··· ,N. In [−1,−δ] and [δ,1], we make the linear transformation

onto the Chebyshev domain ξ∈ [−1,1]

x= aξ+b.

Here a = (1−δ)/2, b = −(1+δ)/2 in [−1,−δ], and b = (1+δ)/2 in [δ,1]. We
then determine u(x(ξ),0) on Chebyshev points in each boundary region, with
ξi =−cos(πi/Ncheb), i=0,··· ,Ncheb.

3. The DOP-LS derivative approximation is then constructed for ux from (2.29).

4. Standard Chebyshev differentiation techniques is used to compute

ux =uξ
dξ

dx
=

2

1−δ
uξ

in [−1,−δ] and [δ,1] on the transformed variable ξ∈ [−1,1].

5. Example (3.1) is advanced in time in all of the three (overlapping) sub-domains
using the fourth order Runge Kutta method. There are now three approximations
at the each intermediate time step:

(a) ugauss(x) on equally spaced points in [−1,1],

(b) ucheb(x(ξ)) on Chebyshev points in [−1,−δ], and

(c) ucheb(x(ξ)) on Chebyshev points in [δ,1].

6. Since the characteristics move left to right, we impose the boundary condition
ucheb(−1,t) = B(t) on the left Chebyshev domain [−1,−δ]. An inflow condition is
also needed on the right Chebyshev domain [δ,1] at x=δ. Since ugauss(x) is accurate
in the domain [−δ,δ], we use ucheb(δ)=ugauss(δ).

7. The calculation of ugauss(x) outside [−δ,δ] is not very good, so it is replaced by
projecting the Chebyshev approximation ucheb back onto the equally spaced points

that fall in the interval [−1,−δ], xj, j=0,··· ,Nδ, where Nδ = int( N(1−δ)
2 ):

ucheb(xj)=
Ncheb

∑
i=0

ucheb(x(ξi))hi(xj).

Here hi(xj) is the usual Chebyshev cardinal function given by

hi(xj)=
2

Nchebci

Ncheb

∑
l=0

Tl(ξi)Tl(xj)

cl
=

1

N2
chebci

(1−x2
j )T′

Ncheb
(xj)

(xj−ξi)TNcheb
(ξi)

,

where Tl(·) are the Chebyshev polynomials and

ci =

{

2, if i=0 or i= Ncheb,
1, otherwise.

The same projection is done in [δ,1] for xj, j= N−Nδ ,··· ,N.
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8. To create a smooth interface at x=±δ, the approximations are “patched” across the
left and right intervals. The transition should be as quick and smooth as possible,
so that the Runge effects from the boundary region of ugauss(x) do not interfere with
the accurate solution ucheb(x). Hence we define

p(x)= e−α(−δ−x
1−δ )2q

.

Here α is chosen so that p(−1)≈O(ǫM), where ǫM is machine precision. We use
q=4 to ensure the quick transition of the patching function.‖ The updated solution
in [−1,−δ] is then

u(x)= p(x)ugauss(x)+(1−p(x))ucheb(x).

A similar patching function p(x) is constructed for [δ,1]. The approximation in the
interval [−δ,δ] is unchanged.

9. We can now start the process again at the next time level with the approximations
u(x) on uniform points in [−1,1], and ucheb(x(ξ)) on Chebyshev Gauss Lobatto
points in [−1,−δ] and [δ,1].

Remark 3.1.

1. We chose symmetric boundary regions for ease of implementation. Depending
on the underlying solution, it may be appropriate to choose intervals of different
length.

2. The super Gaussian polynomials, Chebyshev polynomials, derivative matrices and
Chebyshev cardinal functions are only computed once and subsequently stored.

3. The endpoints of the Chebyshev intervals must coincide with the grid point dis-
tribution of the DOP-LS approximation to avoid unnecessary discontinuities when
the Chebyshev solution is projected onto the equally spaced points. Thus δ should
be adjusted accordingly.

4. We can use ∆t = (1−δ)N−2
cheb in accordance to Runge Kutta stability criteria for

Chebyshev methods. The amount of increased efficiency therefore depends upon
the aspect ratio value β in (2.26) and the boundary region length 1−δ(N).∗∗

The main advantages in using the DOP-LS approximation in the hybrid overlapping
domain approach appear to be that 1) any grid point distribution can be used for the least
squares approximation and 2) the corresponding stability requirement on the time step is

‖This patching function also ensures that the solution in [−1,−δ] and [δ,1] is still the solution from the
original underlying equation. Since the Chebyshev solution is the only accurate solution of the PDE in the
boundary region, any kind of averaging from the solution that comes from the neighboring domain might
alter the PDE so that it no longer represents the physics of the solution.
∗∗While Nδ is determined by δ, we do not necessarily need to choose Ncheb = Nδ. In fact, selecting a smaller
Ncheb will accelerate time advancement, although possibly at the cost of overall accuracy.
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Figure 8: Loglog plot of the theoretical maximum ∆t when α=1 for the hybrid DOP-LS (dash-dotted), Chebyshev
(solid), and mapped Chebyshev (dashed).

less restrictive than for typical orthogonal polynomial spectral methods. The first point
is left for future investigations. We examine the stability requirements below.

The time step for Algorithm 3.1 for the one dimensional transport problem is

∆thybrid =
α(1−δ)

N2
cheb

, (3.2)

where α depends upon the numerical time integration scheme and the wave speed of the
equation. If δ(N)=max(.75,1−20∆x), then

Ncheb = Nδ =min(
1−δ

2
N,20)=min(

N

8
,20). (3.3)

Hence

∆thybrid =max(
16α

N2
,

α

10N
).

Thus the hybrid overlapping multi-domain scheme may be significantly more efficient
than the standard Chebyshev and mapped Chebyshev methods [24, 25, 28], particularly
if large N is needed to resolve the solution and if the aspect ratio (2.26) is close to being
constant.

Fig. 8 shows how the theoretical lower bound on ∆t changes for the Chebyshev,
mapped Chebyshev, and DOP-LS methods for several values of N. For the mapped
Chebyshev method, we used

∆tmapped =
ζ

arcsin(ζ)
√

1−ζ2
∆tCheb, ζ =

(

cosh

(

36

N

))−1

,

as described in [25]. Notice that the hybrid method allows significantly larger time-steps
than the other two methods, even for small values of N. Of course there are more opera-
tions per time step for the DOP-LS method, due to its hybrid nature. Further investiga-
tion is needed to determine the suitability of the technique for various applications.
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Figure 9: (upper-left) Spatial and (upper-right) tem-

poral error at t=100 with ∆t=(1−δ)N−2
δ /2. (bot-

tom) Spatial error at t = 3 with ∆t = .00002. In
all cases, N = 64, 128, and 256, Ncheb = Nδ =

min(N/8,20), M = min(N/2,3N
3
4 /2), and λ =

min[max(0.2N,40),100].

4 Numerical results

We now validate our numerical method for the transport problem in Example 3.1 using
the following initial and boundary conditions:

Example 4.1. Consider Eq. (3.1) with

u(x,0)=exp(sin(1.4πx)2),

u(−1,t)=exp(sin(1.4π(1+t))2).

We apply Algorithm 3.1 with δ=max(.75,1−20∆x), λ=min(max(.2N,40),100), and M=

min( N
2 , 3

2 N
3
4 ), which is a conservative choice based on the results in Fig. 3. Note that

information generated through the boundary condition at x=−1 leaves the domain after
time t=2. Hence it is reasonable to assume that with a Dirichlet boundary condition, the
numerical solution would show instability before that time. The numerical results are
shown in Fig. 9. These approximations were obtained using 32, 64, 128, and 256 points.
The top graphs show the errors for t=15 using ∆t=(1−δ)N−2

δ /2. The error shown from
t=0 to t=15 indicates that the solution is stable in time. The graph on the bottom shows
how the spatial error decays at t=1 when ∆t=0.00002 is used for all values of N.
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Figure 10: Spatial error in the numerical solution of Example 4.2 at (left) t=0.5 with ∆t= .00001 and (right)

t=100 with ∆t=(1−δ)N−2
δ . Here we used N =64,128, and 256.
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Figure 11: Temporal error in the numerical solution of Example 4.2 at (left) t=0.5 with ∆t= .00001 and (right)

t=100 with ∆t=(1−δ)N−2
δ . Here we used N =64,128, and 256.

Example 4.2. As a second example, consider the one dimensional acoustic problem

ut =vx, vt =ux, x∈ (−1,1), (4.1)

with initial conditions u(x,0) = exp(−24x2) and v(x,0) = 0, and boundary conditions
u(−1,t)=u(1,t)=0.

We apply Algorithm 3.1, modified for Example 4.2, with the same parameters as be-
fore. Following general multi-domain spectral methods stability requirements, character-
istic decomposition is used to impose internal boundary conditions, [4]. Figs. 10 and 11
demonstrate the fast convergence of the hybrid method over long time periods. We note
that no additional attempts were made to optimize the parameters to produce faster con-
vergence or to ensure stability. It is evident from Fig. 11 (right) that long term instability
occurs when N =64 for these parameters.
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5 Conclusion

The DOP-LS approximation removes the Runge phenomenon and provides a highly ac-
curate least squares approximation of smooth functions on [−1,1]. Furthermore, for a
constant aspect ratio (2.26), the method yields machine precision accuracy in a large
sub-interval, although the approximation in the boundary regions is poor. By employ-
ing Chebyshev interpolation to eliminate the Runge effects in the boundary region, we
have developed the hybrid DOP-LS method for solving partial differential equations with
smooth solutions. This is accomplished by using three overlapping domains. The DOP-
LS solution in the majority of the domain at each time step comes from equidistant grid
points in [−1,1]. The solution in the two smaller boundary regions are acquired by stan-
dard Chebyshev collocation.

For aspect ratio β= M
N >

√
N

N , the hybrid DOP-LS method might be more efficient than
the (mapped) Chebyshev method. That is, if the number of Chebyshev points used in
each boundary region can be made sufficiently small, then the hybrid DOP-LS method
time step will be more like O( 1

N ), rather than the usual O( 1
N2 ). Further comparisons with

the Chebyshev method will reveal under what conditions and for which types of PDEs
the hybrid DOP-LS method may provide faster computation.

Finally, we note that the DOP-LS method can use any grid point distribution, not just
equally spaced. This should prove useful in applications where the nodal distribution is
dictated by other factors, such as when resolution requirements might vary throughout
the numerical domain. This will be explored in future work.
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