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Abstract. Kinetic Monte Carlo (KMC) is a stochastic model used to simulate crystal
growth. However, most KMC models rely on a pre-defined lattice that neglects dislo-
cations, lattice mismatch and strain effects. In this paper, we investigate the use of a
3D off-lattice KMC algorithm. We test this method by investigating impurity diffusion
in a strained FCC nanowire. While faster than a molecular dynamics simulation, the
most general implementation of off-lattice KMC is much slower than a lattice-based
algorithm. An improved procedure is achieved for weakly strained systems by pre-
computing approximate saddle point locations based on unstrained lattice structures.
In this way, one gives up some of the flexibility of the general method to restore some
of the computational speed of lattice-based KMC. In addition to providing an alterna-
tive approach to nano-materials simulation, this type of simulation will be useful for
testing and calibrating methods that seek to parameterize the variation in the transition
rates for lattice-based KMC using continuum modeling.

PACS: 02.70.Rr, 02.70.Uu, 66.30Jt, 66.30Pa
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1 Introduction

Kinetic Monte Carlo (KMC) is a stochastic model that simulates the atomic details of crys-
tal growth and evolution using probabilistic rules to govern deposition, diffusion and
other transition processes [1]. This technique was first adopted in the early 1970s [2, 3]
and had found many uses in surface diffusion on adsorbed mono layers [4], growth of
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polymer crystals [5] and self-organized nanowires [6]. In contrast to the thermodynamic
Monte Carlo methods, which aimed at predicting the equilibrium state of molecular sys-
tems, KMC seeks to provide information about a system’s evolution. In KMC, transition
rates between states depend on both the energy of the configuration before hopping, as
it would be in other Monte Carlo techniques, and on the energy barrier between the
states [7]. The aim of this method is to identify a significant set of possible events to de-
scribe the general behavior of evolution processes and to find the energy barrier between
the saddle point and local minima for each of these. The principal KMC algorithm is
based on the method of Bortz, Kalos and Lebowitz [8] (BKL), which will be introduced
in Section 2.

In KMC, all lattice points, energy barriers and diffusion rates are normally defined
before computation begins. As a consequence, dislocations, lattice mismatch and strain
effects are neglected. A molecular dynamics (MD) simulation can be used for off-lattice
simulation, however, it is limited to a time scale on the order of 10−6 seconds or less.
An off-lattice KMC (OLKMC) simulation can be used for longer simulations while tak-
ing into account some elastic effects. Off-lattice KMC will also be useful for testing and
calibrating other macroscopic tools, such as schemes that aim to combine continuum
modeling with KMC.

Off-lattice simulations themselves can be implemented in a number of ways, with
the usual tradeoff between faithful representation of the physical processes and compu-
tational speed. At one extreme, Jonsson et al. [9] have implemented a method that uses
harmonic transition state theory (TST), described below, to estimate transition rates be-
tween local minima for the energy landscape in the full n-particle configuration space.
Further, they make no assumptions about the approximate location of the saddle points
separating two energy minima. This represents the most computationally intensive ver-
sion of OLKMC, where random initial guesses must be used to locate transition points. In
this method, locating the set of transition points is the most costly part of the algorithm.
Even with parallel implementation this type of calculation is presently limited to a few
hundred atoms or less.

An approach which is less computationally intensive, but less accurate, is found in the
work of Much et al. [10, 11] in which an OLKMC algorithm has been developed to simu-
late the early stage of heteroepitaxial growth for adsorbate layers. A simple Lennard-Jones
potential is employed in their simulation. The transition points are sought in a “frozen
crystal” approximation where only a single atom is moved within the configuration space
in order to locate approximate saddle points. This method has been used to simulate
surface diffusion during “1+1”-dimensional epitaxial growth and submonolayer “2+1”-
dimensional growth growth. The resulting simulation is considerably fast, but still does
not approach the computational speed of latticed based simulation and the saddle point
problem is again the most intensive part of the algorithm.

Still another approach to incorporating elastic effects into KMC can be found in the
works [12–14]. These authors use a model where the transition rate is approximated by
using only the binding site energy. The atoms interact through a nearest neighbor net-
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work of linear springs and the energy is calculated by using a displacement field relative
to a fixed lattice.

In this paper, we investigate an OLKMC method that relies on having approximate
saddle point locations, allowing the method to function in three dimensions for a few
thousand particles. We consider saddle-point computation using both a relaxation of
the full configuration as well as the frozen-crystal approximation in order to assess the
reliability of the latter. We also explain a simple improvement over the basic OLKMC
algorithm that involves the implementation of a priori over- and under-estimates for the
transition rates and subsequent rejection of some moves upon calculation of the actual
rate. This is reminiscent of other algorithms combining rejection and rejection-free KMC
[15].

Our method is motivated by the need to simulate off-lattice phenomena in various
nanoscale devices. As a benchmark problem, we examine interstitial diffusion in crys-
talline nanomaterials. While this is a topic of interest in technological applications [16,17],
our interest here is principally to evaluate a particular approach to molecular simula-
tion. Specifically, our prototype problem considers impurity diffusion in a strained FCC
nanowire. The rest of this paper is divided into four parts: an explanation of the OLKMC
method, the application of the method to our prototype problem, our results and some
concluding remarks.

2 Description of method

The total potential energy is modeled by using classical, empirical formulae like the
Lennard-Jones potential [18], which is a sum of pair-wise interactions, or the embed-
ded atom potential [19,20]. As it is sufficient to illustrate the method, we primarily focus
on the Lennard-Jones potential:

Φ=∑
ij

Φij =4Ua∑
ij

[

(

σ

dij

)12

−
(

σ

dij

)6
]

, (2.1)

where Ua represents the depth of the energy well that an atom in equilibrium resides
in, σ represents a length scale for the mean particle separation in equilibrium and dij

is the distance between particles i and j. Scaling lengths with the equilibrium particle
separation σ, we then take σa =1 for the primary crystal, along with Ua =0.15 ev for the
depth of the energy well.

The potential energy landscape contains an enormous number of local minima in
the 3N-dimensional configuration space consisting of the particle position vectors xi ∈
R

3. These local minima serve as the temporary resting places of particles in the zero-
temperature approximation and, more generally, as approximate locations of the basins
of attraction for particle positions in low-temperature, solid-phase materials. In a corre-
sponding molecular dynamics simulation, all of the particles will undergo Brownian-like
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motions that are largely localized within these basins, but also feature infrequent tran-
sitions where the system moves from one basin (local minimum) to a neighboring min-
imum in the configuration space. According to transition state theory [21], the rate at
which these transitions are made is related to the energy barrier that must be overcome
by crossing the saddle-points that separate neighboring local minima.

In a general solid-phase material with grain boundaries, dislocations and irregular
surface structure, there will be an undetermined number of near-by saddle points asso-
ciated with a given local minimum. We limit our model to transitions involving a single
impurity atom diffusing in the interstices of a strained lattice. While not all likely transi-
tion pathways will be detected by this procedure—concerted moves of impurity clusters,
for example—intuition suggests that most will and that it is one of the simplest ways to
efficiently address large configurations. To further enhance computational performance,
we employ a cut-off length σc, so that if dij > σc we ignore the contribution of the term
Φij to the total potential Eq. (2.1). In this paper, the cut-off is normally chosen to be three
times the mean particle separation.

With these two approximations in place, the OLKMC method reduces to a combina-
tion of optimization and the standard algorithms for KMC. From an optimization per-
spective, there are two types of problems involved. First, the material must be relaxed
within the configuration space to its local minimum. For each attempted event, a sec-
ond calculation must then be made to determine the saddle-point energy. In this paper,
all optimization is performed by using a nonlinear conjugate gradient algorithm along
with accurate initial guesses derived from a perfect lattice that improve convergence and
avoid numerical instabilities. For the local minima we minimize the energy directly; for
the saddle-points we minimize |∇Φ|2. Both absolute and relative convergence criteria
are employed. We use the maximum norm of the potential (or |∇Φ|2 for saddle points)
for the absolute convergence criteria and the maximum norm of the displacement vec-
tor for relative convergence. Computationally, this is still an enormously expensive task
with limited feasibility unless further approximations are made. To this end, we also
explore focusing the relaxation algorithm on a subset of the particles surrounding the
particle making a transition. In its most extreme form, this reduces to the frozen crystal
approximation mentioned above.

In its simplest form, the KMC can be implemented in an entirely rejection-free man-
ner, following the standard BKL [8] algorithm. Initially the rates for all events rn are
initially calculated using harmonic transition state theory [21]

rn(∆Φ,T)= k0 exp−
(

∆Φ

kBT

)

, (2.2)

where ∆Φ represents the energy barrier between the transition state and the binding
state. Here, T denotes the temperature, kB is the Boltzmann constant and k0 is the attempt
frequency. To select one event among the many possibilities, the sum of the transition
rates, SN = ∑

N
n=1rn, is computed, retaining the partial sums Sn. A random number r ∈

[0,SN) is then selected and one searches through the list of events until r<Sn. For lattice-
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based KMC, it is important to make this search efficient, but the search represents a very
small part of the computation for OLKMC. Following standard KMC practice, the time
interval between two events can then be selected randomly from a Poisson distribution
∆t=−log(u)/SN , where u∈ [0,1) is a uniformly distributed random number.

In the present situation, the extremely high cost of evaluating the transition and bind-
ing state energies, along with the relatively well-structured environment of a weakly
strained lattice, suggests augmenting this procedure with reliable under- (řn ≤ rn) and
over- (r̂n ≥ rn) estimates of the actual rates. The over-estimates allow one to restrict the
expensive update calculations to the event that is actually selected, at the small cost of
sometimes rejecting a move. To implement this, replace the sum of rates with the overes-
timate ŜN =∑

N
n=1 r̂n and proceed as before. After a candidate has been selected, calculate

the true rate rn and compare the selected random number r with the revised partial sum
Ŝn−1+rn to determine whether or not the event should be rejected. In either case, the time
should be advanced using over-estimated rates. An accepted event is realized by mov-
ing this atom to the approximate location of its new position where it will be re-relaxed
at some later point in the simulation. If a reliable under-estimate is also available, one
can avoid the optimization calculations on many of the iterations by also comparing the
selected random number r with the underestimate Ŝn−1+ řn. If r falls short of this num-
ber, one can execute the event without checking for rejection, thus avoiding the actual
rate calculation.

3 Impurity diffusion in a strained FCC nanowire

As a prototype problem, we test the algorithm in the context of impurity diffusion in a
strained FCC nanowire. Fig. 1(a) shows an FCC unit cell which can be decomposed into
one octahedral section and eight tetrahedral sections, as suggested by Fig. 1(b). If the re-
pulsive interaction between the impurity and the lattice particles is tuned appropriately,
the impurity particles will occupy local minima at the centers of these polyhedral regions,
as shown in Fig. 1(b). We use the perfect FCC lattice to generate initial guesses for the
local minima and saddle points of a strained lattice. This allows us to efficiently simulate
the interstitial diffusion of impurities in weakly strained crystals.

The ideal FCC lattice can be defined using integer combinations of three basis vectors

a=
î+ ĵ√

2
×ae b=

î+k̂√
2
×ae c=

k̂+ ĵ√
2
×ae, (3.1)

where ae = 6
√

2σa is the equilibrium distance between two atoms in an isolated environ-
ment. An arbitrary lattice point can be defined by v=n1a+n2b+n3c. As shown in Fig. 2,
we define the nanowire geometry by orientating the axis parallel to a unit vector n̂, cho-
sen orthogonal to a faceting direction, and include in the initial wire all lattice points v

satisfying
|v·n̂|≤ L, (3.2a)
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|v−(v·n̂)n̂|≤R, (3.2b)

where L and R are the length and radius of the nanowire respectively. Each local energy
minimum has a number of saddle points associated with it. Figs. 3(a) and 3(b) show
octahedral (O) and tetrahedral (T) sites, respectively, where the small spheres at the center
of each face represent near-by saddle points while the large spheres represent the local
minima. For an O-site, there are eight saddle points while there are four for a tetrahedron.
In the search for the location of saddle points in a strained system, initial guesses can be
based on these ideal structures. For example, when an impurity rests in an O-site, the
initial guesses are

x=xeq +dO×ei
T, i∈{1,2,.. .,8}, (3.3)

where xeq ∈R
3 is a local minimum. The distance between the local minimum and the

saddle point is dO and {ei} is a set of eight unit vectors pointing in the direction of the
initial guesses
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The distance dO can be expressed in terms of ae based on the geometry of an octahedron

dO =

√
6ae

6
. (3.5)

For a T-site, the initial guesses are

x=xeq +dT×eij
T, i∈{1,2,.. . ,8} j∈{1,2,3,4} , (3.6)

where dT is the distance between the local minima and saddle point

dT =
(5
√

6−3
√

10)ae

15
. (3.7)

As indicated by in Fig. 1(b), an O-site is adjacent to eight T-sites, each having a distinct
orientation. The set of initial guesses can be formed from the same guesses {ei} used in
the octahedral case, but must be indexed by both the eight possible tetrahedral orienta-
tions and the four faces of each tetrahedron. Thus, eij ∈R

3 represents an initial guess for
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(a) (b)

Figure 1: FCC unit cell composed of one octahedral section and eight tetrahedral sections. (a) FCC unit cell
and (b) Decomposition of FCC unit cell.

n
^

R

L

Figure 2: FCC nanowire with its axis parallel to a unit vector n̂, chosen orthogonal to a faceting direction. Here,
L and R are the length and radius of the nanowire, respectively.

(a) (b)

Figure 3: Illustration of local minima and corresponding saddle points. The small spheres at the center of each
face represent near-by saddle points while the larger spheres represent the local minima. (a) Octahedron and
(b) Tetrahedron.
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Here the faces of the tetrahedron have been labelled so that each row in the matrix on the
right-hand side is repeated four times.

For these initial guesses to be valid, the impurity must interact relatively weak with
the primary crystal, so that the FCC structure remains intact. Also, the equilibrium sep-
aration between an impurity and a lattice particle must be larger than the distance sepa-
rating the central point in the O- or T-sites from the centers of their respective faces. If the
latter condition is not met, there will be a different local minima structure for impurity
locations where local minima are associated with each undeformed lattice site in a sattle-
light configuration. With these considerations in mind, we model the interaction of the
impurity with the primary material forming the lattice using a Lennard Jones potential
(2.1) with different material parameters. For interactions between impurities, we use the
values Ub = 0.1 ev and σb = 0.4σa. The interaction between a nanowire particle and an
impurity is defined by Uab =

√
UaUb and σab =(σa+σb)/2.

To simulate impurity diffusion in strained nanowires, we first uniformly stretch or
compress the wire by transforming the axial coordinate z → (1+ǫ)z and then relax the
transformed configuration to the local minimum that this approximates while constrain-
ing the layers of atoms at the ends of the nanowire. We assume all impurities evaporate
once they reach the nanowire wall.

4 Results

We begin by illustrating diffusion of a single impurity in a statically strained nanowire.
Figs. 4(a) and 4(b) show a sample path that demonstrates the detailed trajectory of one
impurity diffusing from the central point to the boundary of a nanowire. The impurity
alternately diffuses through the adjacent O- and T-sites. The binding energy in T-sites
is higher than O-sites, so that the impurity binds preferentially in the O-sites and, on
average, the time intervals spent in these sites are much longer than in the T-sites. This is
consistent with one’s intuition and in agreement with the existing theory [16].

Fig. 5 illustrates a simulation with multiple impurities diffusing simultaneously. Sev-
eral O-sites are randomly selected as initial impurity locations. In the case when adjacent
O and T-sites are occupied, the number of saddle points is less than eight in an O-site and
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(a) (b)

Figure 4: Sample path of impurity diffusion. (a) Sample path and (b) Side view of sample path.

(a) (b)

Figure 5: Diffusion of multiple impurities. (a) Final positions of multiple impurities and (b) Top view of multiple
impurities.

less than four in a T-site. Figs. 5(a) and 5(b) show both the side and top view of the final
position distribution for a simulation with multiple impurities.

To test our code and as a step toward building a faster lattice-based KMC that ac-
counts for elastic effects using tabulated rates and interpolation, we have collected a
number of energy barriers in Table 1 using a relaxation scheme that does not rely on
any form of the frozen crystal approximation. The table shows the energy barriers for
a single adatom in a central O or T site diffusing in each of the eight possible directions
defined in Eq. (3.4) with 1% and 2% strain along the three principal faceting directions
100,110 and 111. The unstrained numbers are 0.833 ev for an O-site and 0.125 ev for a
T-site. Note that the rates for a given axis orientation come in groups that are consistent
with the symmetry of the given axis. To evaluate the extent to which the frozen crystal
approximation can be relied upon, we have also collected these energy barriers using an
approximation (Table 2) where the potential energy landscape is probed for saddle points
by moving only a single atom at a time. It is clear from the comparison that neglecting
the distortion of the crystal around the hopping atom tends to give a much higher energy
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Table 1: This table shows the energy barriers for a single adatom in a central O and T site diffusing in each of
the eight possible directions defined in (3.4) with 1% and 2% strain along the three principal faceting directions
100,110 and 111. The total number of atoms in the nanowire for the 100, 110 and 111 cases is 946, 990 and
1012, respectively. The data for Table 1 was calculated by relaxing the full system.

1% 2%
100 110 111 100 110 111

O T O T O T O T O T O T

e1 0.810 0.124 0.820 0.140 0.860 0.197 0.790 0.119 0.820 0.161 0.880 0.249
e2 0.810 0.124 0.820 0.140 0.770 0.103 0.790 0.119 0.820 0.161 0.730 0.089
e3 0.810 0.124 0.820 0.140 0.770 0.103 0.790 0.119 0.820 0.161 0.770 0.103
e4 0.810 0.124 0.820 0.140 0.860 0.197 0.790 0.119 0.820 0.161 0.880 0.249
e5 0.810 0.124 0.790 0.110 0.770 0.103 0.790 0.119 0.740 0.086 0.730 0.089
e6 0.810 0.124 0.790 0.110 0.770 0.103 0.790 0.119 0.740 0.086 0.730 0.089
e7 0.810 0.124 0.790 0.110 0.770 0.103 0.790 0.119 0.740 0.086 0.730 0.089
e8 0.810 0.124 0.790 0.110 0.770 0.103 0.790 0.119 0.740 0.086 0.730 0.089

Table 2: This table shows the energy barriers, calculated using the frozen crystal approximation, for a single
adatom in a central O and T site diffusing in each of the eight possible directions defined in (3.4) with 1% and
2% strain along the three principal faceting directions 100, 110 and 111. The total number of atoms in the
nanowire for the 100, 110 and 111 cases is 946, 990 and 1012, respectively.

1% 2%
100 110 111 100 110 111

O T O T O T O T O T O T

e1 2.780 0.520 2.813 0.592 2.983 0.848 2.720 0.510 2.832 0.698 3.069 1.092
e2 2.780 0.520 2.813 0.592 2.641 0.425 2.720 0.510 2.832 0.698 2.505 0.363
e3 2.780 0.520 2.813 0.592 2.641 0.425 2.720 0.510 2.832 0.698 2.505 0.363
e4 2.780 0.520 2.813 0.592 2.983 0.848 2.720 0.510 2.832 0.698 3.069 1.092
e5 2.780 0.520 2.695 0.451 2.641 0.425 2.720 0.510 2.566 0.356 2.505 0.363
e6 2.780 0.520 2.695 0.451 2.641 0.425 2.720 0.510 2.566 0.356 2.505 0.363
e7 2.780 0.520 2.695 0.451 2.641 0.425 2.720 0.510 2.566 0.356 2.505 0.363
e8 2.780 0.520 2.695 0.451 2.641 0.425 2.720 0.510 2.566 0.356 2.505 0.363

barrier in the case of interstitial diffusion.

Next we explore the possibility of using some intermediate type of frozen crystal ap-
proximation by constraining all but a limited set of atoms in the vicinity of the hopping
atom. These results are shown in Figs. 6(a) and 6(b), where we plot the energy barrier
value obtained as a function of the number of unconstrained neighbors in the calcu-
lation. Figs. 6(a) and 6(b) show that one can obtain about 95% accuracy for an O-site
by relaxing 50 unconstrained neighbors and 92% accuracy for a T-site using 100 uncon-
strained neighbors. Below, we shall use this level of accuracy, which corresponds to a
constrained-neighbor cut-off radius of r =3ae, to calculate energy barriers under various
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Figure 6: A plot of the energy barrier obtained as a function of the number of unconstrained neighbors for an
O-site and T-site at the center of a wire under 2% strain and oriented perpendicular to the {100} facet.
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Figure 7: A plot of the energy barrier versus strain for an O-site at the center of wires with different orientations.
The calculations use a frozen crystal approximation with an unconstrained-neighbor cut-off distance r = 3σa.
(a) Stretching in the 100 direction, (b) Stretching in the 110 direction and (c) Stretching in the 111 direction.

states of stress.

In Figs. 7(a)-7(c) we consider the influence of uniaxial stretching on interstial diffu-
sion. We find that the hopping rate for a single atom is increased in some directions and
decreased in others when the nanowire is stretched. For instance, stretching the nanowire
along the 100 direction will uniformly decrease the energy barrier for each of the eight
possible directions defined in Eq. (3.4). Stretching along the 111 direction, however, gives
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Figure 8: A plot of the energy barrier as a function distance from the center of the nanowire for an O-site and
T-site lying in a central cross-section a wire under 2% strain and oriented perpendicular to the {100} facet.

rise to an increase in energy barrier for the e1 (or geometrically equivalent) direction
and a decrease in energy barrier for e2 (or geometrically equivalent) direction. When
stretched along 110 direction, the energy barriers are decreased for the e5 direction while
there is almost no changes for the e1 direction. Since both T-sites and O-sites show the
same trends for energy barrier variation versus strain, only energy barriers for an O-site
are plotted.

Finally, as shown in Fig. 8, the energy barriers are relatively uniform in the interior
of the uniformly stretched wire. Hence, one can correct the energy barrier by adding
a constant to it in order to employ the frozen crystal method. There are, however, sig-
nificant variations as one approaches the surface of the wire. This type of surface effect
is especially important in heteroepitaxy. Our results suggest the possibility of a hybrid
simulation that combines lattice-based KMC in the interior and off-lattice KMC near the
surface. Unlike the present implementation, however, it is extremely difficult to antic-
ipate the approximate location of transition points near surfaces due to reconstruction,
especially for strained surfaces.

5 Conclusion

We have implemented a 3D OLKMC algorithm capable of simulating off-lattice phenom-
ena in various nanodevices. This method differs from previous off-lattice work in that
it is aimed at weakly strained systems where the lattice geometry can provide good ini-
tial guesses for transition points. In order to demonstrate the method, we examined a
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strained FCC nanowire using a Lennard-Jones potential. We explored the possibility of
some type of frozen crystal approximation and found that although neglecting the local
distortion of the crystal gives rise to a much higher energy barrier, one can still employ
some forms of frozen crystal approximation by either adding a correction to the energy
barrier or by using a larger set of unconstrained atoms. Our simulations showed that
the hopping rate for an adatom is not uniformly altered by a macroscopic strain, but is
dependent on the stretching direction as well as the hopping direction of an adatom. We
provided evidence that suggests rates in regions of the crystals with a slowly varying
elastic field could be computed on a coarsenned length-scale and tabulated for use in a
lattice-based approach in these regions.
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