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Abstract. We describe and evaluate a numerical solution strategy for simulating sur-
face acoustic waves (SAWs) through semiconductor devices with complex geometries.
This multi-physics problem is of particular relevance to the design of SAW-based quan-
tum electronic devices. The mathematical model consists of two coupled partial dif-
ferential equations for the elastic wave propagation and the electric field, respectively,
in anisotropic piezoelectric media. These equations are discretized by the finite ele-
ment method in space and by a finite difference method in time. The latter method
yields a convenient numerical decoupling of the governing equations. We describe
how a computer implementation can utilize the decoupling and, via object-oriented
programming techniques reuse independent codes for the Poisson equation and the
linear time-dependent elasticity equation. First we apply the simulator to a simpli-
fied model problem for verifying the implementation, and thereafter we show that the
methodology is capable of simulating a real-world case from nanotechnology, involv-
ing SAWs in a geometrically non-trivial device made of Gallium Arsenide.

PACS: 02.70.Dh, 41.20.Jb, 46.25.Hf
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1 Introduction

In the process of designing quantum electronic devices based on surface acoustic waves
(SAWs) traversing piezoelectric media, it is necessary to determine the effect, on these
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waves of obstacles such as electrical gates on the surface, and also the effect of the SAW
on the low-dimensional quantum mechanical systems such as quantum wires and quan-
tum dots. In general, the gates have a non-trivial geometry, which necessitate numerical
simulation tools. The finite element method is well suited to handle complex geometries
and is widely used to model piezoelectric devices [1-6] and has recently been applied
to modelling of SAWs [7-9]. The effect on the low-dimensional quantum mechanical
systems would be analyzed through coupling the SAW simulator to both stationary and
time-dependent Schrédinger equations [10]. This would require the development of a
fast SAW simulator but also flexible and portable code.

SAWs are modes of propagation of energy along the free surface of a material such
that there is no decay along the direction of propagation but there is exponential decay
into the bulk. SAWs have been used in electrical technologies such as SAW filters [11,12]
and ultrasonic imaging [13] for many years and have also been a useful tool in probing
quantum electronic structures, for example, quantum Hall liquids [14]. Recently, much
experimental work has been performed in the field of acoustic charge transport whereby
a SAW across a GaAs/AlGaAs heterostructure is used to capture a single electron and
then transport it along a one-dimensional quantum wire [15]. This would be useful in de-
veloping an accurate current standard, but more challenging proposals to use this in the
burgeoning field of quantum information processing have been proposed [16-20]. SAWs
have also been utilized for both static quantum dot [21] and photo-luminescence experi-
ments [22,23]. The time and resources required to build such devices are immense, and
therefore the mathematical modelling of these devices before the physical construction is
advantageous. This approach requires the solution of the continuum electromechanical
equations of motion in a piezoelectric medium. The method of partial waves [12] can be
used to obtain simple analytical expressions for the waves in the bulk material, but the
the solutions say nothing about the effect of gates on the surface. Attempts to solve the
governing equations analytically for devices which do have surface gates [24-26] involve
simplifications, and the accuracy of these approximations remains uncertain.

There is a vast amount of literature on the three-dimensional finite element analysis
of piezoelectric devices [1-6], and these methods are exploited in the field of ultrasonics
to design control systems involving piezoelectric actuators and sensors [27]. Commer-
cial software such as ANSYS and ABAQUS can be used to simulate electromechanical
phenomena but lack the flexibility to couple to quantum mechanical calculations such
as iterative Poisson-Schrodinger. Therefore it is often necessary to develop ones own
computer code for modelling such devices.

In this paper, we formulate and evaluate a finite element based solution method for
the equations governing SAWs in piezoelectric media, and we formulate it in a flexible
and portable manner to allow the ability to interface with other code. The implementa-
tion is performed in an object-oriented style in order to incorporate existing solvers and
to enhance portability of the code. Such a tool can be valuable in the design of micro-
and nano-scale devices. We describe a set of boundary conditions that are capable of
efficiently exciting SAWs and demonstrate the propagation of SAWs through a GaAs-
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based device. Although our applications are specific to GaAs, the formulation is general
enough to allow simulations, with the same code (or with small modifications), of any
crystal structure provided the elastic and piezoelectric material parameters are known.

This paper is organized as follows. In Section 2 we give an overview of the math-
ematical model underlying piezoelectricity and precisely state the coupled partial dif-
ferential equations we aim to solve. Section 3 concerns a finite element formulation of
these equations and an overview of the computational algorithm is described. In Section
4 we describe the class based simulator approach used in our code design which sim-
plifies implementation and increases reliability. Section 5 presents a verification of the
implementation and an empirical estimation of convergence properties of the numeri-
cal solution method. A real-world application of the methodology, concerning a SAW
problem in nanotechnology is the subject of Section 6, before we make some concluding
remarks in the final Section.

2 Modelling of piezoelectric materials

For piezoelectric materials, the electric displacement depends on both the applied electric
field and mechanical strain, and the stresses depend on both the applied mechanical
strain and applied electric field. The electric displacement D; is given by

Dizel'SjEj+eijk€jk/ (2.1)

where E; denotes the electric field, €;; is the permittivity tensor, e;j is the piezoelectric
coupling constant, ¢;; is the strain tensor. The stress tensor 0} is given by

E
0ij = —ekijEx+Cijr €, (2.2)

where ¢;j; represents the 4th rank tensor of elastic parameters. Summation over repeated
indices is implied in this Section, and the superscripts S and E denote that the quantities
were measured under constant strain and constant electric field, respectively.

In the absence of free charges within the material, Gauss’s law requires the divergence
of the electric displacement to vanish:

VD = ppree =0. (2.3)

Combining Egs. (2.1) and (2.2), and the relation
o
Ei=— o (2.4)

between the electric potential ¢ and the electric field E;, together with the strain-displace-

ment relation for small strains,
1 au] ou;
= (L) 2.5
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where u; is the mechanical displacement field, we can derive a scalar partial differential
equation for ¢:

3 g3 0 u

—€p s =—Cik5—- 2.6
axi ik axk axi ikl axk ( )
This equation couples the potential ¢ and the displacements u; in the medium, and can
be used to compute the electric field. Eq. (2.4) assumes the quasi-static approximation,
which requires that very little energy is carried away by electromagnetic waves.

The displacement field in the medium is governed by Newton’s 2nd law of motion
combined with the appropriate constitutive law. The former equation reads

1= 2% 4 o @2.7)
oii; ===+ 0b;, )
1 ax] 1

where b; denotes body forces, and the double dot in ii; denotes a second-order partial
derivative in time. As Eq. (2.7) stands, it contains no damping term, which is irrelevant
in our application setting. The constitutive law stated in Eq. (2.2) relates the stress tensor
0ij to the strain tensor ¢;;, and Eq. (2.5) relates ¢;; to the displacement field #;. Combining
Egs. (2.2), (2.5), (2.7), we arrive at an equation for u; in terms of ¢:

E U bt O 90 (2.8)

From Eq. (2.8) we see how the mechanical motion is affected the electric field. In most
materials, this coupling is weak, because eijk < cgkl, and the effect of the piezoelectric
potential on the mechanical deformation is negligible. On the other hand, the effect of
the mechanical deformation on the potential is always significant according to Eq. (2.6).
However, in cases where an external electric field is applied through surface gates, the
term in ¢ may be sufficiently large to contribute significantly to the mechanical motion,
and these cases receive the focus of the present paper.

To illustrate the nature of these equations we explicitly write out the coupling terms
for the piezoelectric material GaAs. The elastic parameters of a crystal are usually given
in a coordinate system with its x, ¥ and z axes parallel to the crystal X, Y and Z axes.
For consistency with acoustoelectric charge transport experiments, we align the positive
x axis with the crystal positive [011] axes, and the positive z axis with the crystal positive
[100] axis. To achieve this we perform a 45 degree rotation of the crystal, around the z
axis.

In the transformed frame, the only non-zero components of the piezoelectric tensor
are ej5 = —ep =e31 = —e3p. For generality, we illustrate our method using the different val-
ues of the piezoelectric tensor. Using the assumptions stated in the previous paragraph,
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and neglecting body forces, we can write out equations Egs. (2.8) and (2.6) as

I )

qu_a x]kla +a_ a_+a_ 1Sa (2.9)
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In [25] and [26] analytical solutions of these equations were obtained, under the assump-
tion that the ¢ term in Egs. (2.9)-(2.11) can be ignored. This means that the mechanical
motion is decoupled from the electric field, but an electric field is induced from the me-
chanical motion. The reliability of such simplifications is limited to cases where the exter-
nal potential ¢ is small. Also, the obtained solutions are for two-dimensional cases only
and are therefore of minor interest when studying the effect of surface gates. Solving the
fully coupled system of PDEs demands numerical techniques like the one described in
the next Section.

The presence of a quantum system can be incorporated as a charge distribution p(x, y,
z) in the right-hand-side of the Poisson equation i.e. Eq. (2.12) of the decoupled problem.
In the most interesting case, the charge distribution will depend on the potential ¢ which
is being solved for. We therefore have a charge distribution of the form p(x, y, z, ¢). This
may be solved through an iterative technique involving the Poisson and Schrédinger
equations for example. However, such a computation is beyond the scope of the present
paper which will form the basis of our future work.

3 Finite element formulation

We shall use the finite element method in space and the finite difference method in time.
The reasons for applying the finite element method are the need for handling geomet-
rically complicated domains and the fact that the method works very well for elasticity
problems without coupling to ¢ as well as for the Poisson equation for ¢.

We point out that the finite element formulation presented in this paper is indepen-
dent of the choice of element shape, as this would be problem dependent. The elasticity
part of the problem has three degrees of freedom - one for each component of the dis-
placement vector. The electrical part has one degree of freedom for the electric potential.
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3.1 The Poisson equation with piezoelectric coupling

Before continuing further, it is convenient to introduce a superscript £ to denote the time
level, for example, ¢’ is ¢ at time level /. The electrostatic potential ¢’ due to mechanical
displacements u! in the piezoelectric material concerned is given by Eq. (2.12). The finite
element formulation of such a Poisson equation is well covered in the literature [10,28-
30]. The basic idea is to approximate ¢’ by a linear combination of basis functions Nj,
Pl ~ Pl = Z] 1 ]'cp]e, insert ¢ in the Poisson equation, and demand the residual to be
orthogonal to the space spanned by {Njy,--,N, }. The Laplace term is integrated by parts.

The only non-trivial aspect of the formulation in the present setting is the right-hand
side, where the second-order derivatives of the elastic field demand integration by parts.
This is achieved through a special form of Green’s Theorem,

3 2
_ /Q qba—lfdxdydz: /Q £1pdxdydz— fr pypn-dT. (3.1)

The finite element method applied to the equation for ¢ transforms the PDE problem to
a linear system of equations,

Py'=f", (3.2)
where the ‘stiffness’ matrix P has its (i,j) element given by

oN; ON; E)N ON; 9N; ON;
/ Ly ——J1dO .
ox ax By 9y | 9z 0z

(3.3)

The ¢ vector in Eq. (3.2) contains the values of ¢’ at the nodal points. The i-th component
f! of the right-hand side vector fg can be written as

o’
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When the displacement field entering f/ is known, a standard Poisson solver can be used
to compute 4)7 .

For the piezoelectric coupling terms, one can also use the more general formulations
described in open literature. However for GaAs, which is the most frequently used ma-
terial for acoustoelectric charge transport experiments, most of the terms of piezoelectric
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tensor are zero and, although we have formulated the most general heterogeneous case,
the equations, particularly the right-hand-side of Eq. (2.12), simplify considerably for the
homogenous case after combining mixed derivatives.

3.2 The elasticity problem with electric field loading

For the finite element formulation of Eq. (2.8) it is easier to first start with Eq. (2.7) and
insert the constitutive law given by Eq. (2.2) and the strain-displacement relation given
by Eq. (2.5) in the finite element integrals. The time derivative in Eq. (2.8) can be approx-
imated by a second-order accurate finite difference method. Sampling Eq. (2.8) at time
level ¢ then yields

ul=t—2ubultt an}

—_Y ¢
0 AR = ax]- +ob;, (3.5)

where At is the time step length and quantities with the ¢ superscript are functions of
space only. This time discretization introduces an operator decoupling such that the orig-
inally coupled governing equations can be solved in sequence. No accuracy is lost by this
operator decoupling beyond that implied by the finite difference itself in Eq. (3.5). More
precisely, Uf} contains cpg, which is known, such that we can easily solve for uf“ using old
values of ¢. On the next time level (£+1), we can find ¢‘*!
(+1
u; .
The main motivation for the explicit time differencing in Eq. (3.5) is numerical effi-

ciency: (i) we decouple the equations, which simplifies the numerics and the implemen-
tation, and (ii) there is no need to solve large sparse linear systems of equations in the
elasticity part of the problem (if the mass matrix is lumped). Nevertheless, the time dif-
ference Eq. (3.5) leads to a conditionally stable scheme, where At must be of the order
of the smallest element size. In wave propagation problems, uniform high resolution
is frequently needed in space and time, typically compatible with the stability restric-
tion, which makes such explicit schemes appropriate. On the other hand, in applications
where adaptive grids with great variation in element size are needed, one may benefit
from implicit schemes (for example, of Newmark type) [29].

The finite element formulation of Eq. (3.5) is easiest to express if we switch to a typical
“finite element engineering” notation, especially when we deal with anisotropic media.
The stress and strain tensors are expressed as vectors,

using the recently computed

T
= (UXXIUyy/UZZ/UyZ/UZXIny) ’

T
E= (ExXIEnyEZZ/zeyZ/z‘SZX/ZEyX) .

The constitutive law can then be written as

ngDsf—i—pf, (3.6)
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where the p’ term represents the loading from the electric field, and D is a symmetric
6 X 6 matrix of the elasticity coefficients (previously denoted by cgk,):

C11 C12 €13 Ci4 C15 Ci16
C12 €13 Ci4 C15 Ci16

€13 C14 C15 Ci16

D= . (3.7)

symmetric €14 C15 C16

€15 Ci6

C16

The displacement field at a time level / is approximated according to
n
uf =i’ =Y Njuj,
j=1

where uf is the value of the displacement field at node j at time level /. The strain-
displacement relation then becomes

Nir O 0
0 Ny O
n

‘_ 0 1 0 0 N,
€ —Z;B]uj, Bi=| , Ni. Ni, (3.8)

= , ,

Nz',z 0 Ni,x

L Ni,y Ni,x 0

The comma notation here denotes partial derivative: N; , =0N;/0x.
A finite element formulation of Eq. (3.5) using the aforementioned notation becomes
(see [28] for a detailed derivation without the ¢ term)

n
[oNi LN (1~ 2uf +ul*)d0+ A2 [ B o'
Q j=1 Q
_AR / 0bN:dQ+ AL / £/ N, (3.9)
(@) 200)

Here, t' is the traction on the boundary, arising from integrating the divergence of the
stress in Eq. (3.5) by parts. Inserting the constitutive law in the term [ B} cdQ yields
Q

n
/ BIDBQ | ul+ / BT p'dQ.
=1 \a o)
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The final discrete equations arising from the equation of motion can be written as
=yl — g VL APM T (—Kul 4+ B+ @), (3.10)

where M is an efficient inverse of the mass matrix M resulting from the [, oN;N;dQ)
integral. We construct M ! as the inverse of the lumped mass matrix (using the row-
sum technique to lump the matrix). The matrix K stems from the standard “stiffness”
term [ B! DB;d() representing anisotropic elasticity, B' is the effect of body forces and

surface tractions, and ®" is the contribution from the electric field. The i-th block (arising
from node i) in @' takes the form <I>f = fQBiTpZ, which from Egs. (2.9) to (2.11) results in

o 99! 9 9
/QNZ|:$€31¥+B 615a :|dQ

0 a¢f o’
ol = _/ ey — ,
i QN [ay%z % +a e ay] dQ)

0 apt 9  9¢’
/QN [a— 158——1_@624 ay}dﬂ

which is straightforwardly integrated by parts using Green’s Theorem.

Our governing equations require initial conditions. Let us assume that the elastic
body is at rest such that du; /9t =0. The external electric field is then turned on. After the
initial transients the displacement field have faded out, and we have a stationary initial
state of our system, modeled by the equations

Py’ =f(u"), 3.11)
Ku® =p°+®°(¢?). (3.12)

These two coupled equations are solved by an iterative Gauss-Seidel-like technique, i.e.,
the equations are solved one at a time, using the most recent approximation of the other
field in the right-hand side term. Each linear system is solved by a MILU preconditioned
conjugate gradient method [31]. The solution of Egs. (3.11) and (3.12), along with the
assumption of stationarity, du /0t =0, comprise the initial condition.

Asboundary conditions, we either have prescribed traction components or prescribed
displacement components, along with prescribed electric potential or prescribed normal
component of the electric field. The displacement equation needs three boundary condi-
tions at each point at the boundary, while the equation for ¢ needs one condition at each
point.

From ou/ot =0 at t =0 it follows by a second-order difference approximation that
u' =u~!. From Egs. (3.10) and (3.12) it follows that u' =u" =u~!. The loads removed at
t=0" will first come into play at the second time level.
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Algorithm 3.1

¢=0 (time level counter)

k=0 (iteration counter)

while & <egpit
solve Eq. (3.11) w.r.t ¢k
solve Eq. (3.12) w.r.t u0k
compute e=||u"* —u0F 1| 4[| pOF— 01|
k+—k+1 end while

¢l =0, ul =1

for £=1,2,3,--- until end of simulation
solve Eq. (3.10) w.r.t u‘*1
solve Eq. (3.2) w.r.t ¢!*1

The computational algorithm can now be formulated as in Algorithm 3.1.

Comments on Stability. The stability criterion of the explicit finite difference scheme in
time, when decoupled from the electric field problem, requires At <2/wmax [32], where
wmax is the highest natural frequency of the vibrating system. One may find wnax as the
square root of the largest eigenvalue of the problem K—AM =0. An approximate bound
ON Wmax can be estimated from a relation wmax =2c/hegr, Where c is the speed of elastic
waves and hg is the smallest effective element length. The stability criterion now reduces
to the common Courant, Friedrichs, and Lewy (CFL) condition:

At< Oéheff/C. (313)

Here, « is a factor to be adjusted since the /g parameter is normally roughly computed
from element sizes or application of Gerschgorin’s theorem applied to the underlying
eigenvalue problem. For wave problems the CFL condition is frequently not particularly
restrictive since the length and period of a wave are usually proportional, leading to a
natural choice of At/h=const.

4 Object-oriented implementation

A significant trend in modern software development is to formulate numerical algo-
rithms such that reliable and well-tested software components can be combined together
to form a new simulator. Our numerical approach was in particular inspired by such an
approach. With the time discretization we were able to split the coupled u;—¢ system such
that at each time level we first solve for a new displacement field (1;) and then we solve
for the corresponding electric potential (¢). In each of the two equations, the effect of the
other only enters through a right-hand side “forcing” term. This allows us, in principle,
to reuse a solver for elastic vibrations and a Poisson solver, as long as these solvers can
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implement a new right-hand side term that couples to another solver. From a principal
point of view, this idea is simple and attractive. However, the implementation of the idea
in practice may be less feasible if the design of the underlying solvers is not sufficiently
flexible.

To allow for building the compound u;—¢ solver from separate u; and ¢ solvers we
propose to apply principles from object-oriented programming. The time-dependent
elasticity solver and the Poisson solver are realized as two independent objects, imple-
mented via classes in C++. Actually, we have reused the Poisson2 class from [28] as the
Poisson solver, and the Elasticvibi class from [28] as the elastic vibration solver. The
latter is a subclass of Elasticity2, a pure quasi time-dependent elasticity solver (without
the acceleration term in the momentum equation). These classes are implemented using
building blocks from the Diffpack library [28].

The Poisson2 and Elasticvibi classes have no knowledge of each other. The only com-
mon feature is their design. This design is crucial for reuse of the classes to solve the
coupled problem, but the design approach suggested for Diffpack solvers [28,33,34] has
proven to be successful in this respect. Diffpack solvers are realized as classes containing
objects for grids, scalar/vector fields, linear systems, etc. The coefficients in a PDE are
evaluated through virtual functions. When the solver is stand-alone, these virtual func-
tions contain mathematical expressions or measured data, but when solvers are com-
bined, the virtual functions are reimplemented in subclasses and connected to data in
other solvers. This principle reflects the underlying mathematics: the coefficients in a
single PDE are considered known, but in a system of PDEs, the coefficients typically
couple to unknown quantities governed by the PDEs. The present coupled system is an
example where the right-hand side in the Poisson equation couples to the primary un-
known in the elastic vibration solver, while a right-hand side term in the elastic vibration
solver couples to the primary unknown in the Poisson equation. When the solvers are
used independently there are no such couplings.

Fig. 1 shows an outline of the class design for the compound solver. From class
Poisson2 we derive a subclass Poisson2_glue, which reimplements the virtual function in
Poisson2 for evaluating the right-hand side in that equation. In this new function we need
to compute an expression involving the displacement field available in the Elasticvibi
class. A manager class, simply called Manager, holds pointers to all classes for the individ-
ual PDEs in the system of PDEs, and each PDE class holds a pointer to the manager class,
thus enabling a two-way communication. With these pointers, we can connect data from
any other solver class to the Poisson2_glue class. In the virtual function evaluating the
right-hand side we can typically call mng->elastic->u to get a vector field object for u; that
we can evaluate at the current integration point. This object has support for evaluating
derivatives of the field as well.

Similarly, we derive a subclass ElasticVibi_glue Of ElasticVibi, add a pointer to the
manager class, and override the virtual function for evaluating the right-hand side. Now
we need to compute expressions involving ¢, but this is easily accomplished by the point-
ers, e.g., mg->poisson->u if u is the name of the unknown scalar field in the Poisson2 solver.
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» is-arelationship

» has-arelationship .
Elasticity2
Poisson2 ElastVibl
Poisson2_glue ElastVibl_glue
3 4
;% poisson elastic /
mng % % / / mng
< 4
Manager

Figure 1: Relationships between classes. The base classes, Poisson2 and Elasticity2 perform the solution
of the standard time-independent Poisson and elasticity equations, respectively. ElasticVibl is derived from
Elastcity2 and solves for time-dependent elastic motion. The classes Poisson2_glue and ElasticVibl_glue
implement the coupling between the electrostatic and mechanical equations, and these classes are controlled by
the Manager class.

The “glue” classes Poisson2_glue and ElasticVibl_glue are very small compared to the
real solver classes they inherit from. A “glue” class typically needs about a page of code
unless it adds additional computations. The manager class is a bit more comprehensive
since it implements the overall solution algorithm, i.e., the time stepping and the calls to
the independent solvers.

The benefit from using object-oriented programming in the way we have outlined
is that the original well-tested Poisson and elastic vibration solvers can be reused in a
system of PDEs without any modifications. The original solver classes reside in separate
files and are hence not subject to any side effects from editing the source code. The “glue”
class is also in a separate file and enables the original solver to speak to a manager in
charge of solving a compound system of PDEs. The advantages are clear: reliability is
increased by reusing well-tested solvers, and the compound solver is modularized. Our
experience is that this design reduces the development time significantly. Especially the
debugging phase is greatly simplified. Atany time, the underlying solvers can be trivially
pulled out of the compound system and verified independently.

5 Verification

Before showing numerical results for a physically relevant application, we report on the
estimated numerical accuracy of the code, thereby establishing evidence for the correct-
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ness of the implementation. To investigate numerical errors, we compare numerical re-
sults with an exact solution. The exact solution is based on the assumption of a displace-
ment field in z direction only, depending on x and t only. Physically, a normal traction
is applied at all x = const and y = const boundaries to avoid displacements in the x and
y directions, but in the code we implement this situation by essential boundary condi-
tions u, = u, =0. We also assume that ¢ = ¢(x,t) and that the material is isotropic. The
governing equations then reduce to

Qﬁzzﬂ% +€15227€2b, (5.1)

e?% =e5 882;22 (5.2)
These equations can be scaled to yield

i =t a—xf (5.3)

327";:%. 54

The constant a is zero or unity corresponding to whether the elasticity problem couples
to the electric field problem or not. (The three coefficients in the original system are scaled
away by choosing an appropriate time scale, ¢ scale, and u; scale.) One possible solution
of Egs. (5.3)—(5.4) reads

uz(x,t) =¢(x,t) =cos(kv1+at)sin(kx). (5.5)
In our tests we choose () as a three-dimensional beam and k=", with n being an integer

and L the length of the beam. The ends of the beam are then f1xed.
Our verification procedure consists of estimating the convergence rate of the numeri-
cal method. A scalar error measure e is expected to behave like

e=Ah"+BAF,

where A and B are constants independent of the element size /1 and the time step At.
From the involved approximations, we expect s =2 and r = 1+¢, where q is the order of
the polynomials in an element. In particular, for linear or trilinear elements, r <2, and
if h and At are chosen such that i/ At = const, we see that e ~ h". From two successive
experiments, (h;_1, ¢;_1) and (h;,e;) we may estimate a convergence rate r; from

Ine;/e;_4
=
Y Inhi/hi
We have investigated three error measures, given as different norms of the error field
E=u,—1,, where 1, is the numerical solution and u, is the exact solution:

— 2
Bl [, 140, VEls = ( [ ) 56

[l (0) =sup(|E(x)], x€ Q).
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Table 1: Error norms and estimated convergence rates for waves in a piezoelectric material, with h=10At¢.

h ||E||1 | rates ||E||;2 | rates ||E||L~ | rates
0.05 | 2.440-10°° 2.710-10~° 3.830-10~7
0.1 |9.760-107> | 1.999 | 1.084-10~° | 2.000 | 1.533-10~° | 2.000
02 |3.902-107* | 1.999 | 4.335-1075 | 1.999 | 6.130-107° | 1.999
0.25 | 6.096-10~% | 1.999 | 6.771-107° | 1.999 | 9.574-10~° | 1.999
0.5 |2432:1073 | 1.996 | 2.702-10~% | 1.996 | 3.819-107° | 1.996

Table 1 displays the values of the error norms and the associated estimates of the con-
vergence rates 7;. As the grid spacing h and the time step At are reduced, the numerical
solution converges to the exact solution with the expected rate of two. This provides ev-
idence for the correctness of the implementation and indicates that our overall solution
method, including the operator decoupling, is of second order in time and space. The
spatial convergence rate is expected to increase with the order of the polynomials used
in the elements.

6 A surface acoustic wave application

In order to show that our suggested numerical model may be applied to real-world phe-
nomena, we apply it to a problem in quantum electronics, specifically in acoustic charge
transport. We simulate a SAW propagating through a nano-scale substrate of GaAs.
SAWs are particular solutions of Egs. (2.9) - (2.12) such that they propagate without decay
on the surface of a material but decay exponentially into the bulk. The solutions typically
have the form,

=y Uyje M7=t g = Y e kazellke—ct) 6.1)
j j

assuming x is the direction of propagation, z is the direction into the bulk (z— —o0), and
the decay constants g;, may be complex, allowing for oscillatory decay (in an exponen-
tial envelope) into the bulk as is the case for GaAs [35]. The U;; and ®; are constant
amplitudes, and k is a wavenumber. It is a straightforward mathematical procedure to
determine the decay constants and wave velocity [12]. However, we are interested in
the more complicated dynamics taking place when an obstacle in the form of a charged
metallic gate is placed on the surface.

In acoustic charge transport, the time-varying electric potential accompanying the
SAW is used to transport electrons which are trapped in the minima of the waves. To
perform further manipulation on these electrons, for example, to remove some from a
minimum, external electric fields must be applied, and this is achieved by applying volt-
ages to metallic gates placed on the surface. In general, the gates have different electrical
and mechanical properties to the bulk piezoelectric material and so we may expect to see
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interesting effects if for example a SAW is passed through the compound structure. Here,
we perform three simulations where we pass a SAW through a piece of GaAs. The first
will be a bare SAW, as a check to see we do excite the required modes. The following
two will have a metallic gate of contrasting mechanical properties to GaAs with a static
voltage applied on it. In the first of these, we decouple the mechanical motion from the
electric field (while keeping the electric field coupled to the mechanical motion). In the
second we allow the full mutual coupling between the electrical and mechanical fields to
take place. The dimensions of the gate are 600 nm x 400 nm x 200 nm. To magnify the
effect of the compound material structure we use a fictitious material for the gate, similar
in crystal structure to GaAs, but with the elastic constants and mass density changed by
one order of magnitude. Moreover, we apply a relatively large voltage of 1.5 V so that
the coupling of the mechanical displacement to the electric field is evident.

In the numerical simulations we have implemented 8-noded hexahedral brick ele-
ments with 2 x2 x 2 Gauss-Legendre integration. The spacing along the direction of the
SAW propagation - Ax is chosen to be 100 nm. The time integration parameter At is
1.25x 1072 ns.

6.1 Experiments with surface acoustic waves

In realistic SAW-based devices, bulk waves and SAWs are excited by the application of
a microwave signal to an interdigitated transducer. The waves propagate outward from
the source, with bulk waves dissipating energy into the bulk and surface acoustic waves
travelling through the free surface. In acoustoelectric charge transport experiments, the
quantum devices are located several thousand microns away from the source where one
would expect to see only surface acoustic waves. To simulate the entire system would
therefore require vast computational resources (the wavelength of a SAW is one micron
and approximately ten nodes would be required across one wavelength for a satisfactory
description). Instead we describe a system of boundary conditions which excite acoustic
waves with SAWs dominating over the bulk waves within a few microns of the source.

6.1.1 Excitation of SAWs

We point out that to be consistent with the formulation presented in the previous Sections
and hence acoustoelectric charge transport experiments, in our simulations the SAW trav-
els along the crystal positive [011] axis, with the positive z axis aligned with the crystal
positive [100] axis.

In order to excite the SAW modes, we apply a time-dependent Dirichlet boundary
condition to the z component of the displacement field on a small region on the grid.
This can be expressed as

uy=u,=0, u,=Asin(27ft),

(6.2)
xo<x<x;, z=8000nm.
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Figure 2: A schematic diagram of the experimental setup for simulating SAWs. The gate is centered at
(8.9-10% nm, 2.6-10% nm).
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Figure 3: The relative amplitudes and phases of the displacements uy and u;, parallel and perpendicular
respectively, to the SAW propagation.

The thickness of the membrane is given by x; —xp =100 nm. To prevent diffraction
effects from the surfaces - y =0 nm and y = 5200 nm and to ensure generation of plane
waves, we have forced u, =0 on these surfaces. The frequency f used is 2.7 GHz and
the amplitude A is chosen so that the SAW amplitude is approximately 20 mV at a depth
of 100 nm. Traction free boundary conditions for the mechanical equations and zero
normal electrical displacements are implemented at the surfaces. We found this system
of boundary conditions to be a particularly efficient means of generating coherent SAWs.
The setup is shown in Fig. 2.

Fig. 3 is a result of a simulation showing the 77/2 phase difference between the x and
z components of the displacement vector, and the larger z amplitude, suggesting ellipti-
cal polarization in the sagittal plane. Figs. 4(a) and 4(b) show two-dimensional slices, in
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Figure 4: (a) Plane waves of the electric potential, 100 nm below the surface, at time 1.6 ns. (b) Surface
nature of the electric potential, at time 1.6 ns. The SAWs have a significant amplitude between z=28000 nm
and z=7000 nm and have a significantly reduced amplitude below z=7000 nm.

perpendicular planes, of the full three-dimensional solutions. The first shows the non-
decaying nature of these waves along the propagation direction. The SAW wavelength
can be seen to be approximately 1000 nm and its velocity is computed to be approxi-
mately 2700 +50 ms~!, which is in good agreement with analytical calculations for the
wave velocity. The second figure shows the surface nature of these waves; the greatest
amplitude is near the surface and there is no observable decay in the direction of propa-
gation but they decay exponentially into the bulk. On the far left of each image (close to
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Figure 5: A typical curve of the electric potential as a function of depth into the bulk. The precise shape of the
curve clearly depends on the exact time and spatial coordinate the data was taken as the amplitude of the SAW
varies from —20 mV to +20 mV. However, all such curves have the oscillatory decay into the bulk becoming
negligible within a few microns.

where the boundary condition is applied), bulk waves may be observed but as the waves
propagate towards the right, they dissipate all their energy into the bulk and the only
remaining waves are the surface waves. Fig. 5 shows the SAW amplitude as a function
of depth. We see that the amplitude undergoes oscillatory (complex exponential) decay
into the bulk and is negligible a few microns below the surface, again in good agreement
with analytical expressions derivable from Eq. (6.1) [35].

6.1.2 The effect of the compound mechanical structure

Fig. 6(a) shows the magnitude of the displacement field as the SAW moving from the
left of the figure to the right, passes through the gate when the mechanical motion is
decoupled from the electric field. The gate is centered at (8.9-10° nm, 2.6-10° nm). We
observe a trough (due to damping of the wave) to the right. We also observe vibrations
moving away from the gate along the y direction. Since in this simulation, the mechanical
motion is independent of the electric fields, this damping is due purely to the presence
of a mechanical structure on the surface. The damping of the mechanical amplitude may
be large enough to affect the electric potential. In this simulation, the electric potential is
not affected significantly as shown in Fig. 6(b). The central blur is the electric potential
due to the gate. The SAW peak emerging from the gate has been damped in the central
region.

6.1.3 The effect of electromechanical coupling

Fig. 7(a) shows the magnitude of the displacement field, at time 2 ns, as the SAW passes
through the gate, in the case where mutual coupling between the electric and mechanical
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Figure 6: (a) The magnitude of the displacement field U= ,/u,u,, at time 2 ns, as the SAW moving from left

to right, passes through the gate centered at (8.9~1O3 nm, 2.6-10° nm) and shown by a white square. The
mechanical motion is decoupled from the electric field. (b) The total electric potential, at time 2 ns, as the SAW
passes through the gate when the mechanical motion is decoupled from the electric field. The scale has been
restricted so that the SAW potential is visible. The central blur, which is due to the large external potential has
the value of 1.5 V at its center. The white square shows the position of the gate.

fields is allowed. As in the decoupled case, we observe a trough (due to damping of the
wave) to the right. Again, we also see vibrations moving away from the gate along the y
direction. Comparing Figs. 6(a) and 7(a), we see that there is additional mechanical de-
formation throughout the material due to the presence of a charged metallic gate. Also,
the scale of Fig. 7(a) is shifted up compared to that of Fig. 6(a). By looking at the dis-
placement field at time 0 i.e. before the arrival of the SAW, we can see the displacement
resulting from the applied electric field. This is shown in Fig. 7(b).
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Figure 7: (a) The magnitude of the displacement field U=/u,u; , at time 2 ns, as the SAW moving from left

to right, passes through the gate centered at (8.9~103 nm, 2.6-10° nm) and shown by a white square, when
full coupling between electric and mechanical fields is allowed. (b) The magnitude of the displacement field
U= \/u,u,, at time 0, demonstrating the mechanical strains caused purely by the gate with a 1.5 V applied

voltage centered at (8.9~103 nm, 2.6-10° nm) and shown by a white square, when full coupling between electric
and mechanical fields are allowed.

7 Summary and concluding remarks

Our aim with this paper is to suggest a computationally fast method for simulating SAWs
in piezoelectric devices where stress, deformation, and a quasi-static electric field are
fully coupled. The basic idea of the numerical scheme is to use a finite difference ap-
proximation in time that decouples the elasticity and the electric field problems such
that these can be solved in sequence at each time level. This decoupling can also be ex-
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plored in computer implementations, because independent solvers for anisotropic elas-
ticity problems and Poisson problems can be joined together. We showed in particular
how object-oriented programming techniques can realize such couplings in a very con-
venient way.

Through numerical experiments in a physically one-dimensional wave propagation
problem we have verified that the three-dimensional code reproduces the expected quad-
ratic convergence in space and time if linear or trilinear elements are used.

We have applied the proposed numerical methodology to real SAW phenomena in a
device with complicated geometry. We have described a system of boundary conditions
which are capable of exciting SAW modes in a small computational domain. We have
performed simulations where we have demonstrated the effects on the SAW of a charged
metallic gate. The results indicate that the method is capable of predicting the expected
complex elasto-electric dynamics in such a device.

The methodology could easily be applied to simulate SAWs through devices such as
GaAs/AlGaAs heterostructures with more complicated surface gate geometries.

The principal limitation of the equation decoupling is a stability criterion on the time
step length. Implicit methods may remove time step restrictions, but at a cost of the need
to solve large coupled linear systems at each time level. The computer implementation is
also more involved and requires a special-purpose solution rather than just joining two
well-tested equation components. However, for wave propagation problems one usu-
ally needs a fine mesh and a small time step to resolve the waves, typically leading to
h/ At = const, which is in accordance with the stability criterion. Explicit time stepping
approaches are therefore highly relevant and allow efficient algorithms and implementa-
tions.

Forthcoming numerical work will focus on domain decomposition methods for par-
allelizing the solver and thereby enable simulation of large-scale SAW problems. The
described time stepping approach and associated equation decoupling are particularly
well suited for parallel computing, because the elasticity problem can be made “perfectly
parallel”, and very efficient parallelization strategies exist for the Poisson equation.
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