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Abstract. We investigate the structural and mechanical properties of single-walled
carbon nanotubes (SWNTs) under hydrostatic pressure, using constant-pressure molec-
ular dynamics (MD) simulations. We observed that all the SWNTs, independent of
their size and chirality, behave like a classical elastic ring exhibiting a buckling transi-
tion transforming their cross-sectional shape from a circle to an ellipse. The simulated
critical transition pressure agrees well with the prediction from continuum mechanics
theory, even for the smallest SWNT with a radius of 0.4nm. Accompanying the buck-
ling shape transition, there is a mechanical hardness transition, upon which the radial
moduli of the SWNTs decrease by two orders of magnitude. Further increase of pres-
sure will eventually lead to a second transition from an elliptical to a peanut shape.
The ratio of the second shape transition pressure over the first one is found to be very
close to a constant of ∼1.2, independent of the tube size and chirality.

PACS (2006): 81.07.De, 73.63.Fg, 85.35.Kt
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1 Introduction

The discovery of carbon nanotubes [1] has opened up a new area for experimental and
theoretical research. Carbon nanotubes have exhibited many fascinating properties as
well as intriguing structure-property relationships. For example, the mechanical proper-
ties of carbon nanotubes have been extensively studied, with a wide range of potential
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applications, such as to be used as the strengthening elements in composites. Single-
walled carbon nanotubes (SWNT) can be either metallic or semi-conducting depend-
ing on their size and chirality [2], and the correlations between their electrical prop-
erty and mechanical deformation have been studied both experimentally [3–7] and the-
oretically [8–15] for potential applications as nano-elements in electromechanical de-
vices [13, 16]. First-principles calculations have shown that armchair metallic SWNTs
may become semiconductor under a large flattening distortion [15]; while band gap of
zigzag semiconductor SWNTs display a high sensitivity to external strain [9].

One way to study the structural and mechanical properties of carbon nanotubes is by
applying hydrostatic pressure. A number of high-pressure experiments have been car-
ried out on bundles of SWNTs [17–21], showing pressure induced structural transitions in
the range of 1-2 GPa [17–19]. Recent experiments also showed that pressure may induce
transitions in electrical and magneto transport properties in SWNT bundles [22], which
correlate closely with the pressure induced structural shape transitions [22]. In parallel,
extensive theoretical studies, ranging from first-principles calculations [23–25], molecu-
lar dynamics (MD) simulations [25–27], to continuum mechanics modeling [25, 27] have
been performed by several groups to study properties of both isolated single SWNTs and
bundles of SWNTs under pressure.

For isolated single tubes, so far theoretical studies have mostly focused on armchair
and zigzag tubes [25, 27] under pressure, which have a high symmetrical radial atomic
structure and a short axial period. It has been shown that pressure induces a series of
shape transitions in both armchair and zigzag SWNTs, transforming their cross sections
from a circle to an elliptical and then from an elliptical to a peanut shape [27]. And a
universal geometric constant was discovered to define these two shape transitions [27].
Furthermore, a mechanical (hardness) transition was found at the first shape transition, at
which the radial moduli of SWNTs decrease by as much as two orders of magnitude [25].
Here, we report constant-pressure MD simulations of isolated SWNTs to investigate their
shape and mechanical transitions under hydrostatic pressure. In particular, we extend
previous works to chiral tubes to complete a systematic study of all three types of tubes
(armchair, zigzag and chiral). We will present some details of the method for atomic
volume partition in all three types of tubes, to facilitate the constant-pressure MD sim-
ulations of a finite system. Our simulations show that all three types of tubes behave,
essentially, in the same manner under pressure. They follow closely the prediction of
isotropic continuum mechanics analysis, down to the smallest tubes we simulated with
a radius of 0.4nm.

2 Calculation details

The molecular dynamics (MD) method is a powerful simulation tool, widely used in
chemistry, physics and materials science [28], but the traditional constant-pressure MD
method is designed for an infinite system with periodic boundary conditions and cannot
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be directly applied to a finite system in which there is no periodic boundary condition.
Sun and Gong developed a constant-pressure MD simulation scheme for treating finite
systems, in which the total volume of the system is partitioned into individual atomic
volume that can be in turn expressed as a function of the atomic coordinates [29]. This
method has been successfully used for simulations of Ni nanoparticles and carbon nan-
otubes [29], which we will adopt here. Briefly, one defines the Lagrangian L of an N-atom
system as

L=
N

∑
i

p2
i

2mi
−(φ{ri}+PextV) (2.1)

where ri, mi and pi are the coordinate, mass and momentum of the ith atom, respectively.
φ is the potential, V the volume and Pext the external pressure. The key is to add the
PextV term into total energy. For a finite system, whose volume is not uniquely defined,
we partition it as a summation of the volumes of individual atoms, Vi, as V = ∑

N
i Vi.

Vi can be generally calculated by the method Voronoi polygon [30]. To treat a carbon
nanotube, however, we have partitioned the atomic volume of different types of SWNTs
as described below.

It is usually difficult to calculate the volume of an atom in an arbitrary cage structure
because it can be ambiguous to assign the open volume in the cage to individual atoms.
However, due to the high symmetry and the short period along the axial direction of
the armchair and zigzag SWNTs, an effective way can be found for their atomic volume
partition, as shown in Fig. 1a and 1b, respectively. The atomic volume of atom i (Vi)
was partitioned by dividing the cross section of the nanotube into triangles multiplied by
the single atomic-layer height, which was determined by the positions of atom i and its
three nearest neighbors (j1, j2 and j3). Accordingly, the atomic volume can be expressed
in terms of the atomic coordinates of these four atoms, i.e., Vi =Vi(Ri,Rj1 ,Rj2 ,Rj3), as the
following:

Armchair:

Vi =
1

2
×[(Zj2 −Zj3)×S∆o′ij′1

+(Zj2 −Zi)×S∆o′ij′2
+(Zi−Zj3)×S∆o′ij′3

], (2.2)

Zigzag:

Vi =
1

2
×(Zj3 −Zj1)×(S∆o′ij′1

+S∆o′ij′2
), (2.3)

with

S∆o′ij′m =
1

4

√

(ri+rjm +dijm )(ri+rjm −dijm )(ri−rjm +dijm )(−ri+rjm +dijm ), (2.4)

rn =
√

X2
n +Y2

n , n= i, j1, j2, j3, (2.5)

dijm =
√

(Xi−Xjm)2+(Yi−Yjm)2, m=1,2,3. (2.6)
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Figure 1: Atomic volume partition of (a) an armchair tube and (b) a zigzag tube. (c) Atomic surface area
partition of a chiral tube.

Here, S∆o′ij′m is the projection of S∆o′ijm to the Zo′ plane. The pressure-induced force on
atom i is then calculated by taking the minus derivative of PVi with respect to the coor-
dinates of atom i.

For chiral SWNTs, the above partition for armchair and zigzag SWNTs is not appli-
cable because of loss of symmetry. Instead, we used a different scheme by partitioning
the atomic surface area, to avoid the issue for partitioning the open space in the tube to
individual atoms, so as to account for the force applied by hydrostatic pressure to every
atom. The force was calculated by the PextSi term, where Si is the atomic area of a given
atom, which is calculated as shown in Fig. 1c. The solid red dots are the center of mass
of every hexagon rings, so every carbon atom is surrounded by three solid red dots. We
take the area of the triangle made of three solid red dots as the atomic area of the atom
at the center. The direction of force is simply taken as the inverse normal direction of
the triangular plane. This method is found to be rather effective, especially for large chi-
ral tubes when the three dots surrounding an atom are almost in the same plane, as we
compare our results of chiral tubes to those of armchair and zigzag tubes shown below.

We used Tersoff’s many-body carbon potentials [31], which have been shown to work
well for calculating the structural and mechanical properties of carbon nanotubes [32].
Periodic boundary conditions were used in the axial direction (z-direction) along the
tube with one single unit cell and free boundary conditions in the radial direction. So
effectively an infinite long isolated uncapped SWNT was simulated. Considering that
nanotubes are orders of magnitude stiffer in the axial than in the radial direction, the re-
laxation in the z-direction was negligible in the studied pressure ranges, so the relaxation
along the tube axis is neglected in the simulation.

MD simulations were carried out at the constant temperature of 300K and selected
pressures, using the constant NPT Hoover Dynamics [33] with the fifth order predictor-
corrector integration algorithm and a time step of 0.4fs. All the MD simulations ran for
two million steps and the ensemble average for all the quantities were averaged over the
last 500,000 steps. We also did static relaxation to obtain equilibrium structures using
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R. M. Wentzcovitch’s algorithm [34] with a time step of 0.85fs. The convergence criteria
were set at 5×10−5eV/Å for forces on all atoms. The equilibrium and MD structures
were simulated for a wide range of SWNT sizes: from (6,6) to (20,20) for armchair tubes,
from (10,0) to (35,0) for zigzag tubes, and from (12,3) to (20,10) for chiral tubes with their
radii varying from 0.4nm to 1.4nm.

3 Results and discussion

3.1 Structural shape transitions

Fig. 2 shows the typical MD simulated cross sections of a (10,10) armchair SWNT at 300K
as a function of pressure (P), demonstrating a series of shape transitions induced by pres-
sure. Five snap shots with a time interval of 20 ps are shown at each pressure after equi-
libration. At P=0 (Fig. 2a), the tube maintains a circular “equilibrium” shape. Although
a single snapshot of the cross section at any given time instance is not exactly a circle, the
average of all the snap shots (cross sections) over a period of time is always a circle. This
just indicates that the tube thermally fluctuates around its equilibrium circular shape.

At P = 1.55 GPa (Fig. 2b), the tube cross section transforms into an elliptical shape,
exhibiting its first buckling shape transition, i.e., a spontaneous symmetry breaking tran-
sition into a structure of lower symmetry. Again, at any given time instance, thermal fluc-
tuation makes the shape slightly distorted, but time average over many snap shots con-
verges into a perfect elliptical shape, representing the characteristic shape for the given
pressure. One notices that the tube rotates from one snap shot to the next, which is ac-
tually an artifact of the MD simulation. Due to the finite tube size (length) used in the
simulation, when random velocities were initially assigned to all the atoms according
to the temperature, a spurious residual angular momentum was artificially introduced,
causing the system to rotate. For sufficiently long tubes, this residual momentum should
be averaged out to zero over all atomic velocities. The same is true for simulations at all
other pressures (see Figs. 2c and 2d).

At P =1.75 GPa (Fig. 2c), the tube undergoes its second shape transition: transform-
ing from an elliptical shape of all positive curvature along its perimeter (i.e., the convex
shape), as shown in Fig. 2b, into a peanut shape containing two segments of negative
curvature (i.e., nonconvex shape), as shown in Fig. 2d, with snap shots of cross sections
at P = 2.2 GPa. So, the second shape transition point is uniquely defined with a shape
that contains two points of zero curvature, as shown in Fig. 2c, with a transition pressure
of 1.75 GPa.

The same series of pressure induced structural shape transitions have been found in
all three types of SWNTs we have simulated, which have also been shown by static struc-
tural relaxations at zero temperature. In general, the effect of finite temperature doesn’t
influence the general trend of pressure induced shape transitions, but only cause a ther-
mal fluctuation around the equilibrium shape and a broadening of shape transitions, e.g.,
the transition pressure shown in Fig. 5. Thus, for the ease of comparison, we will use the
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Figure 2: MD simulated cross sections of an armchair (10,10) SWNT at pressures of (a) 0, (b) 1.55, (c) 1.75,
and (d) 2.2 GPa at 300K. There are 5 snapshots with a time interval of 20ps for every pressure.

equilibrium structures simulated at zero temperature to make a comparison with the
continuum analysis, as discussed below.

As typical examples for illustration, Fig. 3 shows the tube cross sections of three differ-
ent types of SWNTs under pressure obtained from static relaxation, including the (12,0)
zigzag (Fig. 3a), the (12,6) chiral (Fig. 3b), and the (12,12) armchair (Fig. 3c) tubes. In-
dependent of their chiralities and sizes, all three classes of tubes display the same series
of shape transitions induced by pressure, with the red tube marking the first shape tran-
sition from circle to ellipse and the yellow tube marking the second transition from el-
lipse to peanut. The insensitivity on chirality indicates that the structural and mechanical
properties of SWNTs are highly isotropic, with little directional dependence.

The first shape transition is a physical transition, which can be qualitatively well un-
derstood within the framework of continuum theory of buckling of elastic rings. For
example, according to the continuum buckling theory [35–37], the transition pressure for
the first shape transition from a circle to an ellipse occurs at a pressure of P1 = 3D/R3

0,
where D =Yt3/12(1−ν2) is the tube flexural rigidity, Y is the Young’s modulus, ν is the
Poisson ratio, and t is the “effective” tube wall thickness; R0 is the original tube radius.
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Figure 3: Evolution of cross-sections of SWNTs under hydrostatic pressure. (a) (12,0) zigzag, (b) (12,6) chiral,
and (c) (12,12) armchair SWNT. The red tubes mark the first shape transition, and the yellow tubes mark the
second shape transition, as discussed in the text.
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Figure 4: The dependence of the first transition pressures on tube radius and a fit to P1=3D/R3. Open circles:
armchair tubes; Solid circles: zigzag tubes; Open squares: chiral tubes.

This relationship is indeed followed by all the SWNTs we have simulated, as shown in
Fig. 4. By fitting the simulation results to this relation, we obtained the carbon nanotube
flexural rigidity, D∼1.13 eV, which differs by ∼30% from the value of 0.85 eV obtained
by Yakobson et al. [38] using a different interatomic potential and fitting to different tube
deformations.
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Figure 5: The volume of a (10,10) armchair SWNT as a function of pressure simulated at 0 and 300K.

3.2 Mechanical hardness transition

Accompanying the first circle-to-ellipse shape transition, the tubes exhibit also a mechan-
ical transition, upon which the tube radial modulus may decrease by several orders of
magnitude. This is clearly reflected in the plot of pressure-volume (P-V) relationships, as
shown in Fig. 5 for the case of a (10,10) armchair SWNT as an example. One sees that there
is drastic change in the slope of the P-V curve around the point of the first shape tran-
sition pressure of ∼ 1.55 GPa. Below the transition pressure, the P-V curve has a rather
small slope, indicating that the volume decreases only slightly with increasing pressure,
characteristic of a “hard” phase. Above the transition pressure, the P-V has a much larger
slope, indicating that the volume decreases rapidly with increasing pressure, character-
istic of a “soft” phase. Also, the transition is very sharp at zero temperature (black dots
and line), as obtained from static relaxation; while it is somewhat thermally broadened at
the finite temperature of 300K (open circles and line), as obtained from MD simulations.

Such a correlated SWNT shape and hardness transition induced by pressure can be
understood by continuum mechanics analysis [25, 27]. Imaging the hollow tube to be
made of structureless membrane subject to outside hydrodynamic pressure that can be
treated as a pressing force from outside, the tube will response to the increasing pres-
sure (outside force) by adjusting its cross-section size and shape to generate an internal
tensional force to balance the outside force. With increasing pressure, the circular tube
initially shrinks its cross section from a radius R0 to a smaller radius R. In doing so,
the tube perimeter length is reduced from (2πR0) to (2πR), which causes a compression
strain energy of E = C(1−R/R0)2(πR), where C = Yt/(1−ν2) is the in-plane stiffness.
In addition, the tube curvature along the perimeter is increased from (1/R0) to (1/R),
which causes an increase of bending strain energy of E=πD(1/R−1/R0). Consequently,
to maintain the circular shape, the tube must increase both its compression and bending
strain energy with increasing pressure as its radius decreases. Because it usually costs
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much higher energy to compress a beam than to bend a beam (Microscopically, this is
to say that it is much harder to change bond length than to change bond angle [25]), at
certain point the tube perimeter length becomes no longer compressible. But on the other
hand, the tube cross sectional area must continue to decrease with increasing pressure,
and then the only way to do so is for the tube to “buckle” into an elliptical shape with the
same perimeter length but smaller area, since the circle has the largest area among all the
possible shapes for the given perimeter length.

The above is the underlying physical reason driving the first shape transition, as was
actually realized more than one century ago [35] in the terms of classical theory of buck-
ling of elastic rings. One can view the tube cross section as a ring of atomic beads con-
nected with elastic spring coils in between. As the ring shrinks under pressure, the spac-
ing of coils continues to decrease until hitting a point that the coils are touching each
other. At this point, the length of spring and hence the perimeter length of the ring can’t
decrease anymore, so the ring buckles into an elliptical shape to decrease its enclosed area
under pressure. The buckling is a spontaneous process, which may occur at any point of
“bead” along the ring randomly. But as long as it occurs it will continue along the same
path.

On the same principle, one can easily understand the mechanical hardness transition
associated with the buckling shape transition. Below the transition pressure, the circular
tube shrinks with cost of both compression and bending strain energy, so it is relatively
hard to shrink behaving as a hard phase. The radial modulus of this hard phase can be
analytically derived by taking derivative of both these two energy terms with the respect
to tube radius, as Bh = C/2R0+3D/4R3

0 ≈ C/2R0. So, the modulus of the hard phases
is dominated by compression, which decreases approximately linearly with increasing
radius; the larger the tube, the softer the tube. This relationship is indeed followed by all
the simulation results, as shown in Fig. 6a. Here, the simulation data are obtained from
the numerically derived slopes of P-V curves for the part below the transition pressure, as
typically shown in Fig. 5. By fitting the data for all the tube types and sizes, we obtained
the tube in-plane stiffness constant, C=26.12eV/Å2.

Above the transition pressure, the tube changes into an elliptical shape of approxi-
mately constant perimeter length. It shrinks (reducing its cross-section area) with cost
of only bending strain energy, so it is relatively easy to shrink behaving as a soft phase.
The radial modulus of this soft phase can’t be analytically derived, because the actual
shape changing with pressure is not analytically expressible, as they fall into a family
of different elliptical curves [27, 39]. For example, they start with shapes like an ellipse
and change later into a peanut. Sun et al. had derived the modulus of the soft phase
as Bs = 19D/R3

0, using the simplest elliptical function x2/a2+y2/b2 = 1 to represent the
soft-phase shape [25]. But this turned out to be an overestimate of more than six times
too big. Instead, we have derived numerically from our simulations that the modulus
of the soft phase is Bs = 3D/R3

0, as shown in Fig. 6b. This has also been confirmed by
more elaborated variational geometric analysis using minimum-energy elastica [39]. It
indicates that the simple elliptical shape assumed by Sun et al. is not of the lowest bend-



460 J. Zang, O. Aldás-Palacios and F. Liu / Commun. Comput. Phys., 2 (2007), pp. 451-465

(a)

4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
h
(e

V
/Å

3 )

R(Å)

Zigzag nanotubes
Armchair nanotubes

 B
h
=C/2R,C=26.12eV/Å

Chiral nanotubes

(b)

4 6 8 10 12 14

0.00

0.01

0.02

0.03

0.04

0.05

4 6 8 10 12 14

0.00

0.01

0.02

0.03

0.04

0.05

4 6 8 10 12 14

0.00

0.01

0.02

0.03

0.04

0.05

4 6 8 10 12 14

0.00

0.01

0.02

0.03

0.04

0.05

B
s(e

V
/Å

3 )

R(Å)

Zigzag nanotubes
Armchair nanotubes

Chiral nanotubes

B
s
=3D/R3,D=1.08eV

(c)

4 6 8 10 12 14
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

4 6 8 10 12 14
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

4 6 8 10 12 14
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

4 6 8 10 12 14
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

B
s/B

h

R(Å)

Zigzag nanotubes
Armchair nanotubes

Chiral nanotubes

B
s
/B

h
=h2/2R2,h=0.703Å

Figure 6: The bulk modulus of (a) hard phase, (b) soft phase and (c) the ratio of bulk modulus in the soft
to hard phase, as a function of SWNT radius. Dots are simulated data and lines are fittings to the derived
analytical expressions.
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ing energy among all the possible elliptical functions that the tube can take. By fitting to
the expression of Bs = 3D/R3

0 with the data simulated from all the tube types and sizes
shown in Fig. 6b, we obtained the tube flexural rigidity, D∼ 1.08eV. This agrees excel-
lently with the value of 1.13eV obtained above from fitting the simulation data of the first
transition pressure. So, in turn, such an excellent agreement reconfirms the correctness
of the expression of the soft-phase modulus used for the fitting, which happens to be the
same as the expression of the transition pressure, P1=3D/R3

0. However, the physical link
between the two is not clear, as the expression for the soft-phase modulus could not be
derived analytically but only empirically by numerical fitting.

Given the expressions of the tube radial modulus in the two phases below and above
the first shape transition, it is straightforward to show that the ratio of the modulus of
the soft phase over the hard phases is Bs/Bh = t2/2R2

0, which scales quadratically with
the ratio of the “effective” tube wall thickness (t) over the tube radius (R0). In general,
t is about one to two orders magnitude smaller than R0, so Bs is typically several orders
of magnitude smaller than Bh. This is quantitatively shown in Fig. 6c, where we plot the
simulated data of Bs/Bh, falling in the range of ∼ 10−2 to 10−3, as a function of R0. Also,
all the data independent of tube type and size follow closely the expected relationship
of Bs/Bh = t2/2R2

0. By fitting the data to this relationship, we obtained the tube effective
wall thickness to be t∼0.7Å, which agrees well with the previously estimated values of
0.66Å [38].

3.3 Scaling relation between the two shape transitions

Another very interesting discovery on the pressure induced SWNT shape transitions is
there exists a universal constant relating the second shape transition to the first one [27].
This was first realized from simulations as shown in Fig. 7, where the ratio of the tube
cross-sectional areas at the second transition (A2) over those at the first transition (A1)
is plotted as a function of tube radius for all three types of SWNTs studied. Apparently,
this ratio appears to be a constant of ∼0.82, independent of tube size and chirality. This
indicated the existence of a geometric constant, because the second transition is a purely
geometric transition, which does not give rise to changes in the tube’s physical proper-
ties. For example, mechanically, the first transition changes the tube’s behavior under
pressure from both compression and bending to pure bending, while the second tran-
sition changes only the tube geometry from a convex to nonconvex shape. Beyond the
first shape transition, the tube continues to deform by pure bending passing through the
second shape transition point.

The existence of such a universal geometric constant was then proved by formulating
a variational geometrical problem to minimize bending energy of a family of closed plane
curves with fixed arc length [27,39]. The solutions (minimum-energy curves of elastica) of
this variational problem represent correctly the cross-sectional shape evolution of SWNTs
under pressure, as illustrated in Fig. 8, in which we compare the mathematical solutions
of curves (black lines) with the simulated atomic positional contours, and the two match
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Figure 8: Evolution of cross-sections of SWNTs under hydrostatic pressure, illustrating the perfect agreement
between the solutions of variational geometry analysis (black lines) and atomistic simulations of a (18,18) tube.
The color dots are atoms with the red marks the first shape transition and the yellow the second.

each other perfectly. The variational analysis indeed confirmed the existence of such
a geometric constant [27, 39]. Further, it facilitated the numerical computation of the
accurate value of this geometric constant, an irrational number to be 0.819469.

The existence of this geometric constant relating the second and the first shape transi-
tion indicates also that there will be a scaling relation between the first and second tran-
sition pressure. Based on continuum elastic theory, the pressure and the cross-sectional
area at the two transition points are related as P1−P2 = Bs ln(A2/A1). Here Bs is the
radial modulus of the SWNT in the soft phase between P1 and P2. We have shown
above that Bs and P1 have the same expression, i.e., Bs = P1 = 3D/R3

0. Then, we obtain
P2/P1 =1−ln(A2/A1)≈1.2, as A2/A1 is the constant of ∼0.82. This is indeed confirmed
by our simulations as shown in Fig. 9.
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Figure 9: Simulated ratio of the second transition pressure (P2) to the first (P1) as a function of SWNT radius.

Such scaling relations of transition pressures can be useful in designing carbon nan-
otube pressure sensors [16]. It has been shown that if the pressure is increased further
beyond the second shape transition to drive the tube into a peanut shape, eventually it
will cause an electrical tube transition, making an armchair metal tube semiconducting
due to additional tube wall interaction [16]. This provides a unique electromechanical
mechanism for sensing pressure, for which scaling relationships are used for pressure
calibration.

4 Summary

In summary, we have carried out extensive MD dynamics simulations of SWNTs, to in-
vestigate their structural and mechanical properties under hydrostatic pressure. We show
a series of pressure induced tube cross-sectional shape transitions. First, the tube trans-
forms from a circle to an ellipse, driven by a competition between the energy penalties
of compressing vs. bending the tube. Second, the tube transforms from an ellipse to
a peanut, as a pure geometric transformation from a convex to nonconvex shape with-
out changing the tube physical properties (such as the harness). Accompanying the first
circle-to-ellipse shape transition, the tube exhibits also a hard-to-soft mechanical transi-
tion, upon which the radial moduli of the SWNTs decrease by several orders of mag-
nitude. Further, there exists a universal geometric constant and scaling relationship in
pressure between the first and the second shape transition. All the pressure induced
structural and mechanical transitions of SWNTs, as obtained from simulations, are shown
to be well described by continuum mechanics theory even for the smallest tube studied
with a radius of ∼0.4nm. These include qualitative scaling relations as well as quantita-
tive elastic parameters, i.e., the critical pressure of the first transition, the radial moduli
of the soft and hard phases and their ratio, and the geometric constant defining the sec-
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ond to first shape transition, etc. The SWNTs are found to be highly isotropic in their
structural and mechanical behavior, with all the properties studied to be independent of
chirality.
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