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Abstract. A novel numerical method, based on physical intuition, for particle-in-cell
simulations of electromagnetic plasma microturbulence with fully kinetic ion and elec-
tron dynamics is presented. The method is based on the observation that, for low-
frequency modes of interest [ω/ωci ≪ 1, ω is the typical mode frequency and ωci is
the ion cyclotron frequency] the impact of particles that have velocities larger than the
resonant velocity, vr∼ω/k‖ (k‖ is the typical parallel wavenumber) is negligibly small
(this is especially true for the electrons). Therefore it is natural to analytically segre-
gate the electron response into an adiabatic response and a nonadiabatic response and
to numerically resolve only the latter: this approach is termed the splitting scheme.
However, the exact separation between adiabatic and nonadiabatic responses implies
that a set of coupled, nonlinear elliptic equations has to be solved; in this paper an
iterative technique based on the multigrid method is used to resolve the apparent nu-
merical difficulty. It is shown that the splitting scheme allows for clean, noise-free sim-
ulations of electromagnetic drift waves and ion temperature gradient (ITG) modes. It
is also shown that the advantage of noise-free kinetic simulations translates into better
energy conservation properties.

PACS (2006): 52.35Kt, 52.30Jb, 52.35Ra

Key words: Plasma micro-turbulence, particle-in-cell simulation, multigrid solver.

1 Introduction

There is growing experimental [2, 3] and theoretical [4, 6] evidence that the so-called
anomalous (cross-field) transport observed in toroidal fusion devices is due to microtur-
bulence (for a good review on the topic of anomalous transport, the reader should consult
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the paper by Horton [5] and references therein). Although there is now a good under-
standing of the basic mechanisms of small-scale, low-frequency turbulence in tokamak
and stellarator plasmas [7], the actual numerical modeling of such turbulent plasmas is
lagging behind the theory. In particular most numerical studies rely on the assumption
that the electrons respond adiabatically to the waves; such an assumption is of course
very useful but also implies not addressing some key physical effects associated with
kinetic (non-adiabatic) electrons.

In order to take into account wave-particle interactions and nonlinear wave effects [8]
we adopt the particle-in-cell (PIC) simulations approach to simulate the ion dynamics and
the electron dynamics. As it is well known, in view of the large mass ratio, mi/me ≫ 1,
the PIC simulation of electron dynamics suggests the use of a very small time step of
integration. However our main interest is to simulate low-frequency (ω/ωci ≪ 1), drift-
type (k||/k⊥≪1) modes for which the bulk of the electrons respond adiabatically to the
waves [4,5]. Therefore it may prove advantageous to focus on the nonadiabatic part of the
electron response rather than on the entire electron response: this is the basic idea of the
splitting scheme. In the electrostatic case the splitting scheme has been shown to be more
accurate in the linear regime [26] (e.g. linear growth rates) and in the nonlinear regime [1]
(e.g. energy conservation in the saturated state) than the conventional δ f scheme [10,11].

This paper presents a generalization of the splitting scheme to the electromagnetic
case. The electromagnetic splitting scheme is a natural extension of the electrostatic ver-
sion of the scheme [26]; however there are new numerical difficulties that require special
consideration. In addition, we show how to account for collisional effects (which were
neglected in the electrostatic case [1, 26]) in the splitting scheme.

The paper is organized as follows. In Section 2, the derivation of the electromagnetic
splitting scheme is presented and, for the sake of comparison, the model equations for
the conventional δ f method are also given. The equations governing the required scalar
fields (e.g. electrostatic potential) are also presented in the same section. Section 3 is
devoted to linear benchmarks. A potential numerical instability is discussed in detail
in Section 4. Nonlinear simulations of electromagnetic drift waves using the splitting
scheme are presented in Section 5. Concluding remarks are given in Section 6.

2 Splitting scheme for electromagnetic turbulence

2.1 Basic method

The distribution function for particle species j, denoted Fj, is governed by the collisional,
gyrokinetic Vlasov equation (in the long-wavelength limit)

dFj

dt
≡ ∂Fj

∂t
+
(

v‖b̂+VE

)
·∇Fj+

qj

mj
E‖

∂Fj

∂v‖
=Cj(Fj) , (2.1)
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where

b̂≡ b̂0+
δB⊥
B0

≡ b̂0+
∇A‖×b̂0

B0
,

VE = c
b̂0×∇Φ

B0
, (2.2)

E‖≡−b̂·∇ψ≡−b̂·∇Φ− 1

c

∂A‖
∂t

,

and b̂0≡B0/B0 is a unit vector in the direction of the equilibrium (unperturbed) magnetic
field, qj is the charge of species j, mj is the mass of species j, Φ is the electrostatic poten-
tial, A‖ is the parallel component of the magnetic vector potential, and ψ is termed the
generalized magnetic potential. The confining magnetic field is taken to be of the form
B0=B0(ẑ+θŷ) where θ≪1 is a small parameter describing the pitch of the magnetic field
(since we are restricting ourselves to a one-dimensional approximation, the gradient in

the direction of the equilibrium magnetic field is simply ∇|| f̃ = θ∂ f̃ /∂y). The collision
operator on the right-hand side of Eq. (2.1) is quite general and its explicit form is not
yet specified but we shall assume, however, that it does satisfy the basic requirements
that: (a) it annihilates a Mawxwellian distribution FMj with density n0 and temperature
Tj, Cj(FMj)=0; and (b) it conserves the particle number,

∫
Cj(Fj)dv‖=0. One can of course

demand that the collision operator satisfies additional properties, such as the conserva-
tion of momentum and energy. As it is customary in PIC simulations, the collisional
effects are treated perturbatively, and we first consider Eq. (2.1) in the collisionless limit.
For clarity, we introduce the following operators

L0≡
∂

∂t
+v‖b̂0·∇ ,

L̂j≡Vφ·∇+
qj

mj
E‖

∂

∂v‖
,

(2.3)

where Vφ = cB0×∇φ/B2
0 and φ ≡ Φ−v‖A‖/c. In the collisionless limit, Eq. (2.1) then

reduces to
dFj

dt
= L0(Fj)+ L̂j(Fj)=0.

The electrostatic potential, Φ, and the parallel component of the magnetic vector po-
tential, A‖, can be determined using the gyro-kinetic Poisson equation (in the long-
wavelength limit)

e2

Te
n0ρ2

s∇2
⊥Φ=−ρ , (2.4)

and Ampère’s law

∇2
⊥A‖=−4π

c
J‖ , (2.5)
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where ∇2
⊥≡ (∇−b̂0(b̂0·∇))2 is the perpendicular Laplacian and

ρ=∑
j

qj

∫ +∞

−∞
Fjdv‖ , J‖ =∑

j

qj

∫ +∞

−∞
v‖Fjdv‖ .

Here ρs = cs/ωci is the ion thermal velocity evaluated at the electron temperature, cs =√
Temi and ωci=eB0/(mic). Before presenting the electromagnetic version of the splitting

scheme we briefly derive the model equations based on the conventional δ f method [10,
11]. Following the standard procedure the distribution function is written as Fj=FMj+δ f j;
noting that L0(FMj) = 0 it follows that the perturbed part of the distribution function
satisfies the equation of

dδ f j

dt
=−L̂j(FMj) ,

and the corresponding dynamical equation for the weight Wj ≡δ f j/Fj is

dWj

dt
=(1−Wj)

(
κj·Vφ+

qj

Tj
E‖v‖

)
, (2.6)

where κj=κ[1−ηj(1−v2
‖)/2], κ=−∇n0/n0, v‖=v‖/Vthj and Vthj=

√
Tj/mj. The equations

of motion for the kth marker, which is specified through its coordinates in phase space
(xk(t),v‖k(t)) are

dxk

dt
=v‖kb̂0+

(
Vφ

)
xk,v‖k

,

dv‖k

dt
=

qj

mj

(
E‖
)

xk
.





(2.7)

We now proceed to derive the splitting scheme for electromagnetic simulations. Follow-
ing the same methodology as in the electrostatic case [26] we write the following Ansatz
for the distribution function for species j

Fj = Hj(ψ)FMj+hj , (2.8)

where hj denotes the nonadiabatic response and Hj(ψ) is a yet unknown function of the
generalized magnetic potential. Upon substitution of Eq. (2.8) in Eq. (2.1) one obtains the
following dynamical equation for the nonadiabatic response

dhj

dt
+

[
H′

j

(
∂

∂t
+VE·∇

)
ψ−Hjκj·Vφ

]
FMj−v‖E‖

{
H′

j +
qj

Tj
Hj

}
FMj

=0, (2.9)

where κj ≡−∇FMj/FMj and a prime denotes a derivative with respect to ψ. As in the
electrostatic version of the splitting scheme [26], we demand that the term which mul-
tiplies the parallel acceleration force vanishes; this is equivalent to demanding that the
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term between curly brackets in Eq. (2.9) vanishes implying the equation

dHj

dψ
+

qj

Tj
Hj =0,

which admits the solution of Hj(ψ)=e−q jψ/Tj . It follows immediately that the distribution
function for species j is

Fj = e−q jψ/Tj FMj+hj . (2.10)

The above equation is the essence of the electromagnetic splitting scheme. In the same
spirit as in the electrostatic version of the scheme [26], the relevant dynamics are now
contained in the weight dynamical equation associated with the nonadiabatic part of the

distribution function; specifically, introducing W
(NA)
j ≡hj/Fj, and using Eq. (2.1) with the

representation (2.10), one arrives at

dW
(NA)
j

dt
=
(

1−W
(NA)
j

)[
κj·Vφ+

qj

Tj
(ϕ+VE·∇ψ)

]
, (2.11)

where ϕ≡ ∂ψ/∂t. Two remarks are in order: first, by construction, the contribution due
to the parallel free streaming are absent in the weight equation (2.11); second, in analogy
with the electrostatic case, the quantity ϕ is treated as a distinct scalar field. Apart from
the electrostatic potential, Φ, and the parallel component of the magnetic vector, A‖,
which are obtained by solving Eqs. (2.4) and (2.5) respectively, the splitting scheme also
requires the computation of the following scalar fields: E|| for the equation of motion and
ϕ=∂ψ/∂t for the weight equation.

2.2 Field equations for the splitting scheme

The general procedure to derive the various field equations is similar to that outlined in
a previous paper [26]. The general idea is to treat ϕ in the weight equation, Eq. (2.11),
as a separate scalar field rather than using a finite-difference method for ∂ψ/∂t (which
could be numerically unstable). In turn the scalar fields are determined by taking ve-
locity moments of Eq. (2.1), the gyrokinetic Poisson equation and Ampère’s law. The
self-consistent system of equations for the various scalar fields is derived in Appendix
B; all the equations given below are written in normalized gyro-kinetic units (ωcit 7→ t;
(x,y)/ρs 7→ (x,y); v‖/cs 7→ v‖; eΦ/Te 7→Φ; eψ/Te 7→ψ;A‖/(ρsB0) 7→ A‖; eϕ/(ωciTe) 7→ ϕ).
The gyrokinetic Poisson equation is

∂2Φ

∂y2
=(1+1/τ)ψ+

∫ +∞

−∞
(he−hi)dv‖− ρ̂ , (2.12)

where ρ̂≡ (1+1/τ)ψ+e−ψ/τ−eψ =O(|ψ|2). Ampère’s law takes the form of

∂2A‖
∂y2

= β
∫ +∞

−∞
(he−hi)v‖dv‖ , (2.13)
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where β≡4πn0Te/B2
0. The equation governing the parallel electric field is

(
∂2

∂y2
−η

)
E‖ = ∇||

∫ +∞

−∞
(hi−he)dv‖−β∇||

∫ +∞

−∞
(hi−he)v‖

2dv‖

+β

[
ξκn

∂A‖
∂y

+∑
j

ZjC
(1)
j

]
, (2.14)

where ξ ≡ τ(1+ηi)−ǫ−1(1+ηe) and ǫ≡me/mi ≪1 is the electron-to-ion mass ratio, C
(1)
j

is the first-order velocity moment of the collision operator (the exact definition is given
in Appendix A) and

η≡β

(∫ +∞

−∞
hidv‖+ǫ−1

∫ +∞

−∞
hedv‖

)
+eψ+

1

τ
e−ψ/τ .

In order to obtain an expression for ϕ=∂ψ/∂t it is numerically convenient to seek an ellip-
tic equation governing ̟≡ ∂E‖/∂t; a simple integration along the equilibrium magnetic
field line

ϕ(y,t)=−θ−1
∫ y

̟(y′,t)dy′ , (2.15)

provides the required quantity. The elliptic equation governing ̟ is

[
∂2

∂y2
−β(σ+σ0)

]
̟ = ∇2

||

[
β
∫ +∞

−∞
(hi−he)v‖

3dv‖−
∫ +∞

−∞
(hi−he)v‖dv‖

]

−βξκn

∂E‖
∂y

+Sc+SNL , (2.16)

where

σ0 =1+1/ǫ , σ=ǫ−1

[
eψ−1+

∫ +∞

−∞
hedv‖

]
+e−ψ/τ−1+

∫ +∞

−∞
hidv‖ , (2.17)

and

Sc = β

[
∂

∂t

(

∑
j

ZjC
(1)
j

)
−∇‖

(

∑
j

ZjC
(2)
j

)]
,

SNL = β
[(

σ0VE·κ−∇||σ̂
)

E‖−2∇||
(
σ̂E‖

)]
, (2.18)

σ̂=
∫ +∞

−∞
hiv‖dv‖+ǫ−1

∫ +∞

−∞
hev‖dv‖ .

The term SNL accounts for quadratic nonlinearities in the scalar fields and the impact of
collisional effects are given by the term labeled Sc. We note that the solution of Eq. (2.12)
for the electrostatic potential is dependent on the generalized magnetic potential, ψ. In
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turn the generalized magnetic potential requires the solution of Eq. (2.14) for the parallel
electric field since

ψ(y,t)=−θ−1
∫ y

E‖(y′,t)dy′ . (2.19)

Note that the term η on the left-hand side of Eq. (2.14) also depends on ψ; based on these
observations, one can outline a numerical procedure for the self-consistent solution of the
above system of equations. In the first step, one solves Ampère’s law, Eq. (2.13), for A||.
In the second step, assuming an initial guess for ψ (say ψ(0)), one solves Eq. (2.14) for the
parallel electric field and a new approximation, ψ(1), can be obtained using Eq. (2.19); the
approximation ψ(1) is then used in Eq. (2.14) and a new approximation ψ(2) is found: this
process can be repeated a few times until an appropriate convergence criterion between
two consecutive iterations has been reached (for example, ||ψ(ℓ+1)−ψ(ℓ)||/||ψ(ℓ) || < δ
where δ≪ 1 is a small prescribed parameter, ||•|| is a suitable norm and ℓ denotes the
iteration number); the knowledge of the generalized magnetic potential ψ allows us to
solve the gyrokinetic Poisson equation, Eq. (2.12), for the electrostatic potential, followed
by the solution of Eq. (2.16) for ̟ and Eq. (2.15) for ϕ = ∂ψ/∂t. However, it is has been
found numerically that the procedure just outlined converges rather slowly, and some-
times fails to converge altogether. Therefore we have devised an alternative numerical
procedure. Subtracting (1+1/τ)Φ from both sides of Eq. (2.12)

[
∂2

∂y2
−(1+1/τ)

]
Φ=(1+1/τ)U+

∫ +∞

−∞
(he−hi)dv‖− ρ̂ , (2.20)

where

U≡ψ−Φ= θ−1
∫ y

χ(y′,t)dy′ , (2.21)

and χ ≡ ∂A‖/∂t is a new scalar field. The elliptic equation governing χ is derived in
Appendix A:

∂2χ

∂y2
=β∇||

[∫ +∞

−∞
(hi−he)v‖

2dv‖−κnξ
∂A‖
∂y

−∑
j

ZjC
(1)
j

]

−β

[∫ +∞

−∞
hidv‖+ǫ−1

∫ +∞

−∞
hedv‖

]
E‖ . (2.22)

Note that the last term on the right-hand side of the above equation involves quadratic
nonlinearities of perturbed quantities. The set of equations (2.7), (2.11), (2.13)-(2.22) forms
a self-consistent system suitable for simulating electromagnetic microturbulence in the
presence of kinetic electrons. In order to describe the explicit form of the algorithm used
in solving the field equations in the electromagnetic splitting scheme, we adopt a simpli-
fied notation for each elliptic equation; for example, χ=χ(A‖,E‖,y) stands for Eq. (2.22).
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Using this notation, the numerical algorithm is then:

Step 1. Solve Ampère’s law: A||= A||(y) .

Step 2. Set ψ=ψ(0) [initial guess; say ψ(0) =Φ or ψ(0) =ψ(t−∆t)] .

Step 3. Solve for ψ and E|| iteratively:

E
(ℓ+1)
|| = E||(A||,ψ

(ℓ),y)

ψ(ℓ+1)= −θ−1
∫ y

E
(ℓ+1)
|| (y′,t)dy′



 ℓ=0,1,··· ,M−1

Step 4. Set E||=E
(M)
|| and ψ≡ψ(M), and solve:

χ≡ ∂A||
∂t

=χ(A||,E||,y), U≡ψ−Φ= θ−1
∫ y

χ(y′,t)dy′ ,

Φ=Φ(U,ψ,y), ̟≡ ∂E||
∂t

=̟(E||,ψ,y),

ϕ≡ ∂ψ

∂t
=−θ−1

∫ y

̟(y′,t)dy′ .

The number of iterations required for the set
{

ψ,E‖
}

(step 3 above) is small; typically
M =2 or M =3 is sufficient. Our approach is based on the exact separation between the
adiabatic response and the nonadiabatic response (see Eq. (2.10)) for both the electron
population and the ion population. However in some applications it is possible to use
the δ f scheme for the ion dynamics while the representation (2.10) remains appropriate
for the electron dynamics.

2.3 Field equations for the δ f scheme

In the next section, we shall make some comparisons with the numerical properties of
the conventional δ f scheme. The conventional electromagnetic δ f scheme requires the
solution of three elliptic equations for (Φ, A‖, E‖); the methodology for the derivation
of these elliptic equations is similar to that described in Appendix A and we omit the
algebraic details. The required elliptic equations governing Φ, A‖ and E‖ are:

∂2Φ

∂y2
=−

∫ +∞

−∞
(δ fi−δ fe)dv‖ , (2.23)

∂2 A‖
∂y2

=−β
∫ +∞

−∞
(δ fi−δ fe)v‖dv‖ , (2.24)
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and

[
∂2

∂y2
−β(σ+σ0)

]
E‖

=∇‖

∫ +∞

−∞
(δ fi−δ fe)dv‖+β

[
ξκn

∂A‖
∂y

−∇‖

∫ +∞

−∞
(δ fi−δ fe)v2

‖dv‖+∑
j

ZjC
(1)
j

]
. (2.25)

The noticeable difference between the system of field equations for the δ f scheme as com-
pared to those for the splitting scheme is that no iterative procedure is needed. However,
as for the case of the splitting scheme, the equations must be solved in a specific order; in
particular Ampère’s law, Eq. (2.24), must be solved before Eq. (2.25).

2.4 Remarks on the numerical method

The field equations for the splitting scheme and the conventional δ f scheme are elliptic
equations that can all be cast in the form of

(
∂2

∂y2
−A(y)

)
F(y,t)=S(y,t) , (2.26)

where F(y,t) is an arbitrary scalar field (such as A||, Φ, E‖, etc.), A(y) is a positive-definite
function and S(y,t) is a known source term. Note that in some cases the function A some-
times depends on other scalar fields themselves: this is the case, for example, for the
elliptic equation governing the parallel electric field, Eq. (2.14). Since the configuration
is assumed to be periodic in the y direction (with period L) one can solve Eq. (2.26) in
Fourier space and then transform back to real space. However the presence of numer-
ous quadratic nonlinearities in the PDEs governing the scalar fields Φ, A‖, E‖, ̟ and χ
would require multiple convolutions in Fourier space; in some cases [see in particular
the equation governing E|| and the definition of η below Eq. (2.14)] one would need to
carry out an infinite number of such convolutions. These observations suggest the use of
the multigrid method [15–21] for solving Eq. (2.26); the one-dimensional multigrid solver
was described and tested in [26]. It is important to note that the magnitude of A in the
finite-difference approximation of the elliptic equation (2.26) imposes a constraint on the
grid spacing. To show this consider the case A = A0 = const> 0 and define λ≡ 1/

√
A0.

If the grid spacing is denoted ∆y, we must resolve the scale associated with λ; numeri-
cally this implies that the condition ∆y<λ must be satisfied. The multigrid method used
in this paper is based on a set of consecutive V cycles; the basic solver on each subgrid
to damp the modes (modes of the algebraic error, not physical modes!) is the weighted
Jacobi solver, as in [26].
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3 Linear electromagnetic simulations

The linear dispersion for modes of the form exp(−iωt+ik·x), based on the electromag-
netic splitting scheme, is derived in Appendix B and is shown to be

D(ω,k)=ωb+(1−βΩ2)

[
ω(1+1/τ)+∑

j

Zjζ jR(ζ j)

]
=0, (3.1)

where b≡ k2
⊥ρ2

s , Ω≡ω/(k‖cs), β≡4πen0Te/B2
0,

R(ζ j)≡
ω⋆

ζ j
(1+ηjζ

2
j )+Z(ζ j)

[
ωθj+ω⋆

(
1−ηj/2+ηjζ

2
j

)]
,

ζ j = ω/(
√

2k‖Vthj), θj ≡ZjTe/Tj, ω⋆ =(kyρs)cs/Ln is the drift frequency, ηj ≡ Ln/LTj
and

Z(ζ) is the plasma dispersion function with complex argument ζ of Fried and Conte [14].
Before considering the linear benchmark with the complete dispersion relation, Eq. (3.1),
we first study the normal modes of the system for ω⋆ ≡ 0; in this limit the dispersion
relation (3.1) simplifies to

b+(1−βΩ2)
[
1+τ−1+τ−1ζiZ(ζi)+ζeZ(ζe)

]
=0. (3.2)

For the case of a simulated plasma with cold ions and warm electrons, ζe ≪ 1≪ ζi, one
can expand the plasma dispersion function [14] in the appropriate limits; assuming that
βΩ2 ≫ 1 one obtains the real mode frequency associated with the kinetic shear-Alfvén
wave

ωr =±k‖cs

√
1+b√

β
. (3.3)

The imaginary part of Eq. (3.2) in the appropriate limit yields the damping rate, γ, of the
kinetic shear-Alfvén wave

γ

k‖cs
=−

√
π

8

√
me

mi

b

β
. (3.4)

We note that both the real mode frequency and the damping rate of the kinetic shear-
Alfvén wave decreases with increasing β. The numerical solution of the dispersion rela-
tion (3.1) (or, for the case ω⋆≡0, Eq. (3.2)) is carried out using Muller’s method, which is
basically a generalization of the secant method based on quadratic interpolation [22–24].
Muller’s method is not self-starting and one must initially specify three points in the com-
plex plane. Although these starting points can be selected arbitrarily it is computationally
more economical to carry out the root finding procedure in the vicinity of an analytical es-

timate of the location of the root (ω
(a)
r ,γ(a)). Specifically we can specify two points in the

complex plane which label the lower right corner (ωr1,γ1) and upper left corner (ωr2,γ2)
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ω

γ

r

(ω , γ)

(ω , γ)( ω , γ )

r1

r2r

(a) (a)

2

1

Figure 1: Given an analytical estimate for the real mode frequency, ω
(a)
r , and for the linear growth rate, γ(a), the

dispersion relation is solved using the Box-Muller algorithm in part of the complex plane defined by ωr1<ωr<ωr2
and γ1 <γ<γ2 (represented by a closed dotted line).

Figure 2: Time evolution of the real (plain) and imaginary (dotted) parts of the generalized magnetic potential
ψ for a linear simulation of normal mode (kinetic shear Alfvèn mode) with Ne =Ni=28657 markers for β=0.1%.
The length of the system is L = 16ρs on a grid with Ng = 64 grid points. The pitch of the magnetic field is
θ =0.01. The time step of integration is ωci∆t=0.5.

of a rectangle that encloses (ω
(a)
r ,γ(a)); this is illustrated in Fig. 1. Muller’s method is

used in the triangle formed by (ωr1,γ1), (ωr2,γ1) and (ωr2,γ2); if no root is found, then
one uses Muller’s method once again in the triangle formed by (ωr1,γ1), (ωr2,γ2) and
(ωr1,γ2). If an approximate location of the root(s) cannot be found then one must vary
the point locations (ωr1,γ1) and (ωr2,γ2) such as to encompass an appropriate area of the
complex plane.

Fig. 2 shows the time evolution of the real (plain) and imaginary (dotted) parts of the
generalized magnetic potential ψ for a linear simulation of the kinetic shear Alfvèn wave
with Ne = Ni = 28657 markers for β = 0.1%. The length of the system is L = 16ρs on a
grid with Ng = 64 grid points. The pitch of the magnetic field is θ = 0.01 and the time
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step of integration is ωci∆t = 0.5; only the n = 1 mode, corresponding to k⊥ρs = 0.39, is
retained in the system. Fig. 3 shows the time evolution of the magnitude of the parallel
component of the magnetic vector for the same simulation as in Fig. 2. The damping rate
of the kinetic shear-Alfvén wave, estimated from the slope of the dashed line, is found
to be γ/ωci =−0.00804 which is in good agreement with the damping rate computed
from the numerical solution of the dispersion relation (3.2), γ(N)/ωci =−0.00809 (here
the superscript ‘(N)’ means the given quantity has been computed numerically from the
exact dispersion relation).

Fig. 4 shows the power spectrum of |ψ2| based on Nt = 5000 time steps. The peaks
of the power spectrum in Fig. 4 are located at ωr/ωci =±0.129 in excellent agreement

with the numerical solution, ω
(N)
r /ωci=±0.130. A simulation with the same physical pa-

rameters and the same initial conditions using the standard δ f scheme yields a damping
rate which is about 10% too large, γ/ωci =−0.00892. The inaccuracy of the δ f scheme
as compared to the electromagnetic splitting scheme will be discussed below. An im-
portant aspect of the electromagnetic splitting scheme is the time step of integration. A
simple (numerical) stability analysis shows that the time step is constrained by the so-
called Courant-Friedrichs-Lewy (CFL) criterion [9] k‖Vmax∆t < 1 where Vmax is a typical
maximum velocity, usually of the order of the electron thermal velocity. It is important
to realize that, as the number of markers in the simulated plasma is increased, the tail of
the numerically-loaded distribution function becomes progressively more populated; in
other words, the maximum velocity, Vmax, increases with the number of markers in the
simulation. Although the markers in the tail of the distribution have a negligible impact
on the low-frequency modes of interest, they do constrain the time step of integration.
Our numerical experiments have shown that it is possible to use a time step marginally
larger that the CFL time step, (∆t)CFL =1/(k‖Vmax), although to the detriment of numer-
ical accuracy.

Fig. 5 shows the damping rate of the kinetic shear-Alfvén wave as a function of β
for various time steps of integration. The thin plain lines with diamonds, triangles and
squares show the measured damping rates for ωci∆t = 1.0, ωci∆t = 0.5 and ωci∆t = 0.1,
respectively. The thick dashed line represents the numerical solution of the dispersion
relation, Eq. (3.2). The number of markers is Ne =Ni=46368 and the total simulation time
is ωciT=500; the maximum velocity at t=0 is approximately 4 times the electron thermal
velocity from which we conclude ωci(∆t)CFL ≃0.67. Note that as the β value is increased
both the real mode frequency, Eq. (3.3), and the damping rate, Eq. (3.4), become smaller
in magnitude. Therefore if one demands good numerical accuracy for the damping rate
for a large magnetic pressure (say β & 1.0%) one needs to use a time step of integration
such that ∆t< (∆t)CFL.

Fig. 6 shows a different perspective of the impact of the time step of integration on
the accuracy of the electromagnetic splitting scheme where the measured damping rate
(plain line) as a function of the time step integration, for a simulation with β = 1% is
shown. The dashed line represents the numerical value, based on the solution of Eq. (3.2),
which is found to be γ(N)/ωci =−9.915×10−4.
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Figure 3: Time evolution of the norm of the parallel component of the vector potential for the same parameters
as in Fig. 1. The slope of the dotted line is used as an estimate of the damping rate of the normal mode.

Figure 4: Power of spectrum of the generalized magnetic potential for a linear simulations of normal mode
based on Nt = 5000 time steps. The exact real mode frequency is ωr/ωci =±0.130 is in excellent agreement
with the computed real frequency ωr/ωci±0.129.

After having investigated the properties of the normal mode of the system for ω⋆ =0
we study the case of electromagnetic drift waves and electromagnetic ITG modes. We
first consider the case of electromagnetic drift waves, that is ηi = ηe = 0. We have car-
ried out a linear simulation using Ne = Ni = 28657 markers on a grid of length L = 16ρs

and a time step of ωci∆t = 1.0; the density scalelength parameter is taken as κnρs = 0.15
and β = 0.02%. The electromagnetic splitting scheme yields a mode frequency and a
linear growth rate of (ωr;γ)/ωci = (5.14×10−2;2.42×10−3) in excellent agreement with
the exact values, determined from the numerical solution of the complete dispersion re-

lation Eq. (3.1), (ω
(N)
r ;γ(N))/ωci = (5.14×10−2;2.46×10−3). In contrast, using the same

physical parameters and the same initial conditions, the conventional δ f method yields
(ωr;γ)/ωci = (4.95×10−2;2.18×10−3); although the real part of the mode frequency is



J. L. V. Lewandowski and L. E. Zakharov / Commun. Comput. Phys., 2 (2007), pp. 684-722 697

Figure 5: Damping rate of the kinetic shear-Alfvén wave as a function of β for various time steps of integration:
ωci∆t = 1 (thin plain line with diamond symbols); ωci∆t = 0.5 (thin plain line with triangle symbols); and
ωci∆t=0.1 (thin plain line with square symbols). The thick dashed curves represents the numerical solution of
the complete dispersion relation, Eq. (3.2). The number of markers is Ne = Ni =46368 and the total simulation
time used in each case, during which the damping rate is evaluated, is the same: ωciT =500.

Figure 6: Damping rate of the kinetic shear-Alfvén wave as a function of the time step of integration. The

damping rate based on the numerical solution of the dispersion relation (3.2) is γ(N)/ωci=−8.915×10−4. The
total simulation time and the number of electron and ion markers are the same as in Fig. 4.

in reasonable agreement with the exact value, the measured growth rate departs quite
significantly from the theoretical value. By varying the drive of the drift waves, i.e. by
varying κn, we have systematically observed an accuracy problem with the δ f scheme; a
similar observation was also reported in the electrostatic case [26]. In order to understand
the difference in accuracy between the conventional δ f scheme and the electromagnetic
splitting scheme, one can resort to the information contained in the power spectrum.

Fig. 7 shows the power spectrum for |ψ|2 based on a linear simulation with Nt =5000
time steps, κnρs =0.1 and β =0.01%. The peak of the power spectrum is located around

ωr/ωci =3.7×10−2 in good agreement with the exact numerical value of ω
(N)
r /ωci =3.5×
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10−2. However the power spectrum shows the appearance of high-frequency modes in
the simulated plasma; it is interesting (but not surprising) to note that the high-frequency
modes appear in the vicinity of the shear Alfvén frequency ωA = k‖cs/

√
β (using the

simulation parameters mentioned above, the shear Alfvén frequency, ωA = k‖cs/
√

β, is

found to be ωA/ωci ≃ 0.39). Fig. 8 shows the power spectrum for |ψ|2 based on a linear
simulation using the electromagnetic splitting scheme; all the physical and simulation
parameters, as well as the initial conditions, are the same as in Fig. 7. The high-frequency
noise is absent from the simulated plasma. The reason for the high-frequency modes in the
δ f scheme is due to the fact that fast particles, v‖∼ωA/k‖, introduce noise in the weight
equation (see the v‖ contribution in Eq. (2.6)) which is then fed into the field equations.
The electromagnetic splitting scheme circumvents this problem by analytically removing
the source of the ‘noise contamination’ by the fast particles, that is by removing the v‖
term in the weight equation, Eq. (2.11). This is the reason for the significant differences
between Figs. 7 and 8.

We continue our study of the linear properties of the electromagnetic splitting scheme
by considering the finite-β ITG mode. In particular we study the transition between the
ITG branch and the drift wave branch by varying the density scalelength parameter κn

while keeping the ion temperature gradient parameter, κTi
, fixed; here κTi

ρs = 0.1. Fig. 9
shows the real part of the mode frequency for a linear simulation, using the electromag-
netic splitting scheme, with Ni = Ne =46368 markers and β =0.01%, as a function of the
parameter κn. The thin plain line in Fig. 9 represents the numerical solution of the disper-
sion relation, Eq. (3.1), whereas the squares (connected through a dotted line) represents
the computed value of ωr. Note that as κn increases the ITG parameter ηi decreases. The
right curve is the drift wave branch whereas the left curve, κnρs .0.04, represents the ITG
branch. Fig. 10 shows the linear growth rate for the same set of simulations as in Fig. 9.
Note that near the transition from the ITG branch to the drift wave branch, which occurs
around κnρs ≃ 0.04, the computed growth rate departs moderately from the theoretical
value; the reason for the discrepancy is due to the fact that the linear growth rate is very
small in this region. However the overall agreement between the computed and theo-
retical linear growth rates is excellent. As mentioned earlier, the efficient removal of the
noise in the simulated plasma is a reason for the success of the electromagnetic splitting
scheme. Another reason for the good agreement shown in Figs. 9 and 10 is also due to
the fact that the number of markers per cell, Nc ≡Ne/Ng (recall Ng is the number of grid
points in the simulation domain), used in these simulations is large; in Figs. 9 and 10,
we have Nc =724. Increasing Nc is equivalent to increase the resolution of the simulated
plasma in phase space which, in turn, implies that the accuracy of the computed lin-
ear growth rate is improved (this is of course true for both the electromagnetic splitting
scheme and the conventional δ f scheme). However an increase in Nc implies an increase
in the computational effort, denoted Wcomp.

For sufficiently large values of Nc we have Wcomp ∝ Nc. Therefore it is important
to select a value of Nc such as to achieve a phase space resolution to correctly model
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Figure 7: Power spectrum of |ψ|2 for a linear simulation of electromagnetic drift waves using the standard δ f
scheme based on Nt =5000 time steps. Other parameters are: κnρs =0.1, β=0.01% and ωci∆t=1.0.

Figure 8: Power spectrum of |ψ|2 for a linear simulation of electromagnetic drift waves using the electromagnetic
splitting scheme based on Nt =5000 time steps. Other parameters are: κnρs =0.1, β=0.01% and ωci∆t=1.0.

the physics of interest, while at the same time to minimize the computational work. In
order to understand the phase space resolution requirements, we have carried a set of
linear simulations of electromagnetic drift waves by varying the parameters Nc while
keeping other parameters fixed (κnρs = 0.15, L = 16ρs, Ng = 64, β = 0.05%, Nt = 2000 and
ωci∆t =1.0). Note that the total number of electron markers has been taken equal to the
total number of ion markers. Fig. 11 shows the linear growth rate of electromagnetic drift
waves as a function of Nc. The thick dashed line shows the exact (numerical) value of
the linear growth rate: γ(N)/ωci =2.5×10−3. The computed linear growth rates using the
electromagnetic splitting scheme are shown as squares whereas the triangles are for the
conventional δ f scheme. As observed previously the splitting scheme is more accurate
than the δ f scheme. There are two important observations that can be made based on
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Figure 9: Real part of the mode frequency as a function of κn using the electromagnetic splitting scheme.
The parameter ηi is varied such that the parameter κTi

is held fixed with κTi
ρs = 0.1. Other parameters are:

ωci∆t=1.0, L=16ρs and β=10−4.

Figure 10: Linear growth rate as a function of κn using the electromagnetic splitting scheme. The parameter ηi
is varied such that the parameter κTi

is held fixed with κTi
ρs =0.1. Other parameters are: ωci∆t=1.0, L=16ρs

and β=10−4.

Fig. 11. First, the number of markers per cell required to achieve a reasonably accurate
linear growth rate is in the range Nc ∈ [10,100] both for the splitting scheme and the δ f
scheme; however when the physical parameters suggest the presence of a robust linear
growth rate, a smaller value of Nc can be used in the simulations. The second observation
pertaining to Fig. 11 is regarding the asymptotic behavior of the computed linear growth
rate.

It would seem plausible in the limit Nc 7→ ∞ that the difference between the com-
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Figure 11: Linear growth rate as a function of the number of markers per cell, Nc, for linear electromagnetic
drift wave simulations. The parameters used are: κnρs =0.15, Ng =64, Nt =2000, ωci∆t=1.0 and β=0.05%.

puted growth rate and the theoretical growth rate would (almost) vanish, since the re-
gion of velocity space around vr ∼ωr/k‖ contains more markers as Nc increases. How-
ever the finite grid spacing and time step of integration do also affect the accuracy of
the simulations. In our specific case (for the physical and simulation parameters of
Fig. 11), the spatial resolution should not significantly affect the computed linear growth,
since we have been considering the lowest-order mode number (n = 1), i.e. we have
k⊥∆x=(2πn/L)(L/Ng)=2π/Ng =π/32≪1. However the time step of integration may
have a more dramatic impact on the accuracy of the computed linear growth rate. To
prove this point, a set of linear simulations for the same parameters as in Fig. 11, and for
a fixed number of markers per cell of Nc =105, has been carried out by varying the time
step of integration. For the sake of comparison, the total simulation time for each simu-
lation is fixed to ωciT=2000; therefore the number of time steps used varies according to
Nt =N (T/∆t) where N (x) denotes the nearest integer to x.

Fig. 12 shows the computed linear growth rate as a function of the time step of inte-
gration; the dashed line shows the exact linear growth rate, γ(N)/ωci = 2.5036×10−3. A
numerical instability occurs for ωci∆t&2.0; as expected the computed linear growth rate
satisfies the correct asymptotic behavior of

lim
∆t 7→0

∣∣∣γ−γ(N)
∣∣∣=0.

In summary, the accuracy of the splitting scheme is related to its noise suppressing prop-
erty. Specifically the noise contamination of the simulated plasma is almost inexistent.
This can be traced back to the absence of v‖ contribution in the weight equation, see,
Eq. (2.11). In addition, as discussed in Section 5, the absence of terms involving the par-
allel velocity (of the electrons) in the weight equation is also crucial in achieving energy
conservation (this is also true in the electrostatic version of the scheme [1]). The number
of markers per cell also influence the accuracy of the scheme in the linear regime (this
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Figure 12: Linear growth rate as a function of the time step of integration for linear electromagnetic drift wave
simulations. The parameters used are: κnρs =0.15, Ng =64, Nt =2000, Nc = Ne/Ng =105 and β=0.05%. The
dashed line shows the exact (theoretical) value obtained from the numerical solution of the dispersion relation,
Eq. (3.1).

is of course true for the δ f scheme and other related numerical approaches). The appro-
priate number of markers per cell, Nc, depends on the magnitude of the linear growth
rate, γ; the smaller γ the larger Nc and vice-versa. The time step of integration is also an
important factor: although it is possible to marginally violate the CFL criterion [9], this
occurs at the cost of the accuracy; for improved accuracy one must usually use a time
step smaller than (or close to) (∆t)CFL.

The simulation results presented so far were for low-β plasmas, i.e. βmi/me <1. We
have performed a linear simulation with Nc = 448 markers per cell, Ng = 64, ωci∆t = 1.0
and κnρs = 0.1. The plasma beta is β = 0.06% which is slightly larger than the critical
value βc = me/mi. The theoretical growth rate in this case is γ(N)/ωci = 0.00098. The
measured growth rate is found to be γ/ωci =0.00034: this is almost 3 times smaller than
the theoretical value. If we increase β further we found that the measured linear growth
rate becomes much larger than its theoretical value; smaller time steps and more markers
per cell did not alleviate the problem. A further increase in β resulted in a numerical
instability. This numerical instability is investigated in the next section.

4 Numerical dispersion relation

As it is has been mentioned in the previous section, a numerical instability appears to
occur when β is of the order of (or larger than) the mass ratio, me/mi. As it turns out
increasing the resolution in configuration space (increasing the number of grid points,
Ng) and in phase space (increasing the number of markers per cell, Nc) does not cure the
problem. Therefore it is worth looking back at the field equations actually being solved
in the splitting scheme and investigate their linear properties.

In order to explain the behavior of the simulated plasma around β∼me/mi we con-
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sider a simplified set of field equations by neglecting scalar nonlinearities of second order
and higher as well as all collisional effects. The resulting set of field equations is given by

(
∂2

∂y2
−η

)
Φ=ηU−ρ (4.1)

∂2 A‖
∂y2

=−βJ‖ , (4.2)

(
∂2

∂y2
−η

)
E‖=∇‖ρ−β∇||P+βξκ

∂A‖
∂y

, (4.3)

∂2χ

∂y2
= β

(
∇‖P−ξκ

∂A‖
∂y

)
, (4.4)

(
∂2

∂y2
−β/ǫ

)
̟ =∇2

‖(βQ− J‖)−βξκ
∂E‖
∂y

, (4.5)

where η =1+1/τ and κ≡κn (this slight change of notation for κn is to prevent confusion
with the Fourier mode representation; see below, Eq. (4.8)). In addition we have the usual
relations of χ=∇‖U, ̟=−∇‖ϕ and ϕ=∂ψ/∂t. In Eqs. (4.1)-(4.5) we have introduced the
following quantities

ρ=
∫ +∞

−∞
(hi−he)dv‖ , J‖ =

∫ +∞

−∞
(hi−he)v‖dv‖ ,

P=
∫ +∞

−∞
(hi−he)v2

‖dv‖ , Q=
∫ +∞

−∞
(hi−he)v3

‖dv‖ .

(4.6)

The above expressions require to take the appropriate velocity moments of the nona-
diabatic responses for both species. In contrast with the usual derivation of the linear
dispersion relation (presented in Appendix B), the scalar field ϕ = ∂ψ/∂t is treated as an
independent scalar field (that is on the same footing as Φ or A‖) since this is the actual
quantity used in the dynamical evolution of the non-adiabatic weight, Eq. (2.11). Substi-
tuting Eq. (2.10) in Eq. (2.1), neglecting collisional effects, assuming perturbations of the
form exp(ik·x−iωt), and linearizing, we obtain (in physical units)

hj =
(
−iω+ik‖v‖

)−1
[

θjωci
eϕ

Te
−iω⋆gj

eφ

Te

]
FMj , (4.7)

where all the quantities have been defined in Appendix B. As just mentioned we treat ϕ in
the above equation as an independent scalar field, rather than making the real space-to-
Fourier space transformation of ϕ 7→−iωψ, as done in Appendix B. The set of simplified
equations (4.1)-(4.5) has no nonlinear terms; further the system being assumed to be pe-
riodic in the y direction with period L, it is convenient to write each fluctuating quantity,
say Φ, as

Φ(y,t)=∑
n

Φn(t)eik0ny , (4.8)
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where k0≡2π/L. Similar Fourier representations are used for the scalar fields, A‖, ̟, E‖,
χ, and for the velocity moments, ρ, J‖, P, Q, defined in Eq. (4.6). The velocity moment of
the nonadiabatic response (4.7) of order k is found to be

N
(k)
j ≡

∫ +∞

−∞
hjv

k
‖dv‖ =−in0ck

s

(
√

2αj)
k

ω‖j

3

∑
ℓ=0

R
(ℓ)
j Z(k+ℓ)(ζ j) , (4.9)

where αj =
√

(Tjmi)/(Temj), ω‖j =
√

2k‖Vthj,

R
(0)
j = θjωci(eϕ/Te)−iω⋆(1−ηj/2)(eΦ/Te), R

(1)
j = iω⋆(1−ηj/2)

√
2αj(A‖/(ρsB0)),

R
(2)
j =−iω⋆ηj(eΦ/Te), R

(3)
j = iω⋆ηj

√
2αj(A‖/(ρsB0)),

and

Z(k) (ζ)≡ 1√
π

∫ +∞

−∞

xk

x−ζ
e−x2

dx ,

for non-negative integer k and complex ζ. The required amplitudes (Φn,A‖n,ϕn) can be
obtained by writing Eqs. (4.1)-(4.5) in Fourier space; this procedure yields




Φn

A‖n

ϕn


=M




ρn

J‖n

Pn

Qn


≡




r1 r2 r3 0
0 β/k2

⊥ 0 0
s1 s2 s3 s4







ρn

J‖n

Pn

Qn


 , (4.10)

where

r1 =1/(k2
⊥+η), r2 =−β2ηξκ/(θk4

⊥(k2
⊥+η)), r3 = βη/(k2

⊥(k2
⊥+η)),

s1 = iξ2/k⊥, s2 = iξ3/(θk⊥), s3 =−iβξ2/k⊥, s4 = iβξ1/(θk⊥),

ξ1 =
θ2k2

⊥
k2
⊥+β/ǫ

, ξ2 =
βξκk2

⊥
(k2

⊥+η)(k2
⊥+β/ǫ)

, ξ3 =
β3ξ2κ2−θ2k2

⊥(k2
⊥+η)

(k2
⊥+η)(k2

⊥+β/ǫ)
.

We must now determine the linear response of the velocity moments in Eq. (4.6) in terms
of the perturbed scalar fields Φ, A‖ and ϕ. Using the expression for the velocity moments
of the nonadiabatic response, Eq. (4.9), one gets




ρn

J‖n

Pn

Qn


=−iQ




Φn

A‖n

ϕn


≡−i




a0 b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3







Φn

A‖n

ϕn


 , (4.11)

where

ak =∑
j

(
√

2αj)
kZjα

(k)
j , bk =∑

j

(
√

2αj)
kZjβ

(k)
j , ck =∑

j

(
√

2αj)
kZjµ

(k)
j ,
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Figure 13: Linear growth rate as a function of β for electromagnetic drift waves with κnρs = 0.1, Nc = 448
markers per cell, Ng = 64, ωci∆t = 1.0 and k⊥ρs = 0.39. The thick dashed line is the exact expression for the
linear growth rate, the plain line with diamond symbols represent the growth rate as measured from the linear
simulations and the plain line with triangle symbols represents the solution of the ‘numerical dispersion relation’,
Eq. (4.12).

(for k=1,2,3); in addition the following definitions have been used:

α
(k)
j = θj

ωci

ω‖j
Z(k)(ζ j) , β

(k)
j =−i

ω⋆

ω‖j
S(k)(ζ j) , µ

(k)
j = i

ω⋆

ω‖j

√
2αjS

(k+1)(ζ j) ,

and

S(k)(ζ j)≡
[
1+ηj(ζ2

j −1/2)
]

Z(k)(ζ j)+ηj

[
Ik+1+ζ j Ik

]
,

where the definition of Ik for non-negative integer k is given in Appendix B. Combin-
ing Eqs. (4.10) and (4.11) the numerical dispersion relation based on the electromagnetic
splitting scheme is

DNUM(ω;k)≡det (I+iQM)=0, (4.12)

where I is the identity matrix, and the matrices M and Q are defined in Eqs. (4.10) and
(4.11), respectively. Since both the dispersion relation, Eq. (3.1), and the numerical disper-
sion relation, Eq. (4.12), are based on linearized equations they should be equivalent. For
β≪me/mi the numerical solution of Eqs. (3.1) and (4.12) do, in fact, agree exactly (within
round-off errors) over many decades in β (specifically β ∈ [10−12,10−4]). However the
numerical solution of the numerical dispersion relation (4.12) reveals the presence of a
spurious mode with a substantial growth rate for β&me/mi. This is shown as a plain line
with triangles in Fig. 13 (for a linear simulation with κnρs=0.1, ωci∆t=1.0, k⊥ρs=0.39 and
Nc = 448 markers per cell). The computed linear growth rate using the splitting scheme
is shown as a plain line with diamond symbols. The dashed line represents the linear
growth determined from the dispersion relation (3.1); the linear growth rate decreases
approximately linearly with β for small β:
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γ≈ (1−βΩ2
0)

√
πζ0

1+b
[ω⋆(1−ηe/2)−ωr0] , (4.13)

where ζ0 =ωr0/(
√

2k||Vthe), ωr0 =ω⋆/(1+b), Ω0 =ωr0/(k||cs) and b= k2
⊥ρ2

s . Fig. 13 indi-
cates that a spurious mode is present in the simulation. However, given the complexity
of the numerical dispersion relation, Eq. (4.12), the origin of the numerical instability re-
mains unclear. Recall that for ω⋆ ≡ 0, the electromagnetic splitting scheme is not only
numerically stable but also very accurate even for β≫me/mi (see, for example, Fig. 5).
This suggests that the origin of the numerical instability can presumably be related to the
drive due to the density gradient. To show this, let us Fourier transform Eqs. (4.2), (4.3)
and (4.5), except the term involving the parallel gradient (for reasons that will become clear
below)

(k2
y+η)E‖n =∇‖(βPn−ρn)−ikyβξκA‖n , (4.14)

k2
y A‖n = βJ‖n , (4.15)

and

(k2
y+β/ǫ)̟n =∇2

‖(J‖n−βQn)+ikyβξκE‖n , (4.16)

where ky ≡nk0. Using Eqs. (4.14) and (4.15) in Eq. (4.16) one gets

̟n =
1

k2
y+β/ǫ

∇2
‖(J‖n−βQn)+c2 J‖n−ic1∇‖(βPn−ρn) , (4.17)

where

c1 =−βξκ
ky

(k2
y+β/ǫ)(k2

y +η)
, c2 =

β3ξ2κ2

(k2
y+β/ǫ)(k2

y +η)
.

Upon inspection of Eq. (4.17), the numerical instability for finite ω⋆ arises from the odd
velocity moments, that is from the current density and the heat flux density. Specifically,
using the real space to Fourier space transformation of ∇‖ 7→ iθky in Eq. (4.17) for the
current density only one finds

̟n =−αJ‖n−
β

k2
y+β/ǫ

∇2
‖Qn−ic1∇‖(βPn−ρn) , (4.18)

where

α≡ 1

k2
y+ β̂

[
θ2k2

y−
ǫβ̂3κ2(1+ηe)2

k2
y+η

]
, (4.19)
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and β̂ ≡ β/ǫ. The source of the numerical instability is now evident. For small β the
factor multiplying the current density is positive; as β increases the value of α decreases
and ultimately becomes negative. A negative coefficient α is equivalent to a negative
diffusion coefficient in a (linear) diffusion equation: there is no bounded solutions to
such equations. Of course there are other terms on the right-hand side of Eq. (4.18) that
may partially mitigate the effect of a negative coefficient α. The critical β for the numerical
stability of the electromagnetic splitting scheme is obtained by solving α(βc) = 0 which
yields

βc =

(
θǫky

κ(1+ηe)

)2/3

(k2
y+1+1/τ)1/3. (4.20)

For the simulation parameters of Fig. 13, one finds that βc=9.95×10−4, in excellent agree-
ment with the threshold of the numerical instability observed in the actual simulations.
It is not clear if it is possible to avoid this numerical instability; more work is required to
settle this issue.

5 Nonlinear electromagnetic simulations

In this section we present nonlinear simulations of electromagnetic drift waves in the
collisionless case (Section 5.1) and in the presence of collisions (Section 5.2).

5.1 Collisionless nonlinear simulations

Fig. 14 shows the nonlinear time evolution of the lowest-order mode (n=1) for the gener-
alized magnetic potential ψ. All the modes are retained in this simulation and are allowed
to evolve freely (no smoothing of high-n modes is carried out). The simulation parame-
ters are: Nc = 105, ωci∆t = 1.0, κnρs = 0.1 and β = 0.01%. Since the linear growth rate for
the n = 1 mode is of the order of γℓ/ωci ∼ 10−3 nonlinear effects will become important
for t & 1/γℓ ≈ 103ω−1

ci ; this effect is clearly visible in Fig. 14. Ultimately the n = 1 mode
(and all other modes present in the system) saturates.

Fig. 15 shows the Fourier spectrum of the electrostatic potential for a nonlinear elec-
tromagnetic simulation using the splitting scheme in the fully saturated state (ωciT =
5000). The simulation parameters used are: Ng = 256, θ = 10−2, κnρs = 0.1, ωci∆t = 1.0,
Ni = Ne = 6765 and β = 0.01%. The χ2 fit, shown as a thin plain line in Fig. 15, indicates
that the Fourier spectrum for the electrostatic potential follows a power law |Φk|∼k−2.36.
Fig. 16 shows the Fourier spectrum for the parallel component of the vector potential, A‖,

for the same simulation as in Fig. 15. The χ2 fit shows that |A‖k|∼k−2.40. Interestingly, the
exponent α in |A‖k|∼ k−α is weakly dependent on the plasma β at least for βmi/me < 1.
For instance, one finds that α=2.30 for β=0.02% and α=2.31 for β=0.04%; the very weak
dependence of α on the plasma β is not explained.
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Figure 14: Nonlinear simulations of electromagnetic drift waves using the splitting scheme. The amplitude
of the n = 1 ψ mode as a function of time is shown. The physical and simulation parameters are: Nc = 105,
ωci∆t=1.0, κnρs =0.1 and β=0.01%.

Figure 15: Spectrum of the electrostatic potential as a function of the mode number at the end (ωciT =5000)
of a nonlinear simulation with 6765 markers. The physical and simulation parameters are: Ng =256, θ =10−2,

κnρs =0.1, ωci∆t=1.0 and β=0.01%. The χ2 fit (shown as a plain line) yields |Φk|∼ k−2.36.

We now address the question of energy conservation. As shown in Appendix C, in
the absence of collisions, the total energy E must be conserved:

E(t)=K(t)+U(t)+UM(t)=E(0) . (5.1)

Here K, U and UM, defined as

K≡∑
j

mj

2

∫
v||

2Fjdv||d
3x , U≡ e2n0ρs

2

2Te

∫
|∇⊥Φ|2d3x , UM≡ 1

8π

∫ ∣∣∇⊥A‖
∣∣2d3x ,

represent the volume averaged total kinetic energy, electrostatic potential energy and
magnetic potential energy, respectively. As it was shown in the previous section, the
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Figure 16: Spectrum of the parallel component of the vector potential as a function of the mode number for
the same simulation as in Fig. 15. The χ2 fit (shown as a plain line) yields

∣∣A‖k

∣∣∼ k−2.40.

splitting scheme is more accurate than the δ f scheme as far as the linear properties (real
mode frequency and growth rate) of the simulated plasma are concerned. However the
significant advantage of the splitting scheme over the conventional δ f scheme is its non-
linear properties. The energy conservation (or lack of) is a meaningful test in assessing
the performance of a given numerical scheme and its correct implementation. Fig. 17
shows the time evolution of the total energy variation, E(t)−E(0), as a function of time
for nonlinear, collisionless simulations; the parameters are: Nc =10 (number of markers
per cell), Ng = 64, ωci∆t = 1.0, κn = 0.1 and β = 0.01%. The dotted line is the time evolu-
tion of E(t)−E(0) obtained using the splitting scheme whereas the plain line is the same
quantity based on the conventional δ f scheme; the initial conditions in phase space for
both runs are identical. In order to achieve perfect energy conservation one would need
an infinite number of markers per cell and an infinitesimally small time step. However
the time evolution of the total energy for the splitting scheme does not display a secular
growth as for the case of the δ f scheme. We believe that this is an important feature of
the splitting scheme.

5.2 Nonlinear simulations with collisional effects

All simulations reported up to this point were carried out in the collisionless regime. In
this section, we study the impact of collisional effects on electromagnetic drift modes.
For simplicity we neglect collisional effects on the ion dynamics. The collision operator
for the electron distribution function Fe is taken to be of the form

C(Fe)=νei

[
V2

the

∂2Fe

∂v2
‖

+
∂

∂v‖

(
v‖Fe

)
]

, (5.2)
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Figure 17: Total energy variation, E(t)−E(0), as a function of time for a nonlinear simulations of electromagnetic
drift waves with κnρs=0.1, β=0.01%, Nc=10 and ωci∆t=1.0. The plain line is for the splitting scheme whereas
the dotted line is for the conventional δ f scheme (the same initial conditions in phase space were used for both
simulations).

where the basic collision frequency νei is taken to be constant and Vthe =
√

Te/me is the
electron thermal velocity. The first term on the right-hand side represents the diffusive
component in velocity space whereas the second contribution is due to the drag term. We
note that the collision operator (5.2) satisfies the minimum requirements mentioned in
Section 2, that is: it annihilates a Maxwellian distribution function; and that it conserves
particle number

C(FMe)=
∫ +∞

−∞
C(Fe)dv‖ =0.

Note that collisional effects do influence the scalar fields that enter the formulation of the
electromagnetic splitting scheme. In particular the equations governing E||, Eq. (2.14),
and ̟, Eq. (2.16), depend on the velocity moments of the collision term. Using Eq. (5.2)
the relevant quantities are (in normalized gyrokinetic units)

∑
j

ZjC
(1)
j =νei

∫ +∞

−∞
hev‖dv‖ ,

∑
j

ZjC
(2)
j =2νei

[∫ +∞

−∞
hev2

‖dv‖−ǫ−1
∫ +∞

−∞
hedv‖

]
.

(5.3)

Note that only the nonadiabatic response enters the above equations: this is a quite gen-
eral result. To show this, we operate with the collision operator on the distribution func-
tion written in the form of Fj = FMje

−q jψ/Tj +hj to obtain

C(Fj)=C
(

FMje
−q jψ/Tj

)
+C(hj)= e−q jψ/TjC(FMj)+C(hj)=C(hj) ,
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Figure 18: Time evolution of 〈ψ〉, as defined in Eq. (5.4), for a nonlinear simulations of collisional electromagnetic
drift waves with Ni = Ne =6765 markers, Ng =256, ωci∆t=1.0 and β=0.01%.

where we have exploited the fact that the collision operator is linear and that it annihilates
a Maxwellian distribution. We have carried out nonlinear simulations using the electro-
magnetic splitting scheme for various collision frequencies. The implementation of the
collision operator (5.2) is based on the conventional approach of operator splitting [12,25]:
in the first step, one integrates the collisionless orbits for each marker; in the second step,
the scattering in velocity space, according to Eq. (5.2), is accounted for. Although this
method is easy to implement, it is also noisy and possibly inaccurate (alternatively one
can use a gridless, low-noise method for implementing the collisional effects [13] in PIC
simulations). We expect the collision frequency to influence the turbulence level in the
fully nonlinear regime. Since all the modes are retained in nonlinear simulations it is not
meaningful to study the saturation of a single mode. Therefore we prefer to monitor the
time evolution of

〈ψ〉(t)≡
(

1

L

∫ L

0
ψ2(y′,t)dy′

)1/2

. (5.4)

Fig. 18 shows the time evolution of 〈ψ〉 for a nonlinear simulation of collisional electro-
magnetic drift waves with Ni = Ne = 6765 markers, Ng = 256, κnρs = 0.1 and ωci∆t = 1.0.

The plain line is for the collisionless case, the dashed line is for νei/ωci = 10−2 whereas
the dotted line is for νei/ωci = 10−1. Note that when the plasma is highly collisional,
νei/ωci = 10−1, the quantity 〈ψ〉 does not saturate. To understand this, we substitute
Fe = FMe+δ fe in Eq. (2.1)

(
∂

∂t
+v‖∇‖

)
δ fe−

e

me
E‖

∂δ fe

∂v‖
=C(FMe)− L̂e(FMe) , (5.5)

where the definitions of Eq. (2.3) have been used. The last term on the right-hand side
of Eq. (5.5) represents the (linear) drive from the free energy stored in the electron pres-
sure gradient. The only nonlinear term in the above equation is the last term on the
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left-hand side of Eq. (5.5) which accounts for trapping of markers, with a characteris-
tic frequency denoted ωt, in the generalized magnetic potential ψ: in this simple one-
dimensional model, this is the only source of nonlinearity that contributes to the satura-
tion of the turbulence. We now consider the impact of the collision term on the saturation
level of the turbulence. As the collision frequency is increased the electron markers that
were originally trapped in the ψ potential (last term on the left hand-side of Eq. (5.5))
become progressively untrapped; ultimately when the collision frequency is sufficiently
large, νei &ωt, the turbulence cannot saturate and 〈ψ〉 keeps on growing. In a real three-
dimensional system the cross-field electromagnetic nonlinearities would also contribute
to the saturation of the turbulence.

6 Conclusions

We have presented the electromagnetic splitting scheme suitable for PIC simulations of
microturbulence in the presence of kinetic electrons. It has been found that the electro-
magnetic splitting scheme allows for noise-free simulations of drift waves and ITG modes
with fully kinetic electrons; in comparison the conventional δ f scheme for the electron
dynamics does not perform well, partly due to the fact that noise residing outside the
normal modes of the system feeds back into the weight equation.

The present work has been carried out in a simple one-dimensional configuration;
all contributions involving the E×B nonlinearity and the nonlinearity arising due to the
magnetic flutter, M=∇A‖×B0/B2

0, are absent in this simple model. The generalization
of the electromagnetic splitting scheme to simulate plasma microturbulence in realistic
fusion machines (e.g. tokamaks and stellarators) would require considerable efforts. Let
us attempt to estimate the computational cost to include kinetic electron dynamics us-
ing the present scheme in a global, toroidal PIC code for the simulation of microturbu-
lence. Specifically let us compare the computing requirements of a 3D simulation of ITG
modes with adiabatic electrons with that of an equivalent simulation with fully kinetic
electrons in the electromagnetic regime using the splitting scheme. Most computational
work comes from the solution of global elliptic equations (‘field solve’) and from the time
advance of markers in phase space (‘particle pushing’). For simplicity we shall assume
that the turbulence is quasi two-dimensional (in the plane perpendicular to B0); the ellip-
tic equations can then be solved on a set of poloidal planes. Based on the electromagnetic

splitting scheme one must resolve the magnetic skin depth, λs =ρs/β̂ and β̂≡
√

βmi/me

[this requirement arises from the very nature of the elliptic equations to be solved (see
Eq. (2.26) and following discussion)]. However in most situations it is sufficient to resolve
the λs scale only radially while a ρs poloidally is appropriate. Therefore the number of

grid points per poloidal plane required is of the order of N
(β)
g ∼πa2/(ρsλs), where a is the

minor radius of the plasma (here the superscript ‘β’ refers to the electromagnetic simula-
tion). The corresponding number of grid points for the electrostatic case is Ng ∼πa2/ρ2

s .
The number of global elliptic equations to be solved for the electromagnetic case with
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fully kinetic electrons is N
(β)
f =5; there is only one (N f =1) such global elliptic equation to

be solved for the case of an electrostatic simulation with adiabatic electrons. Assuming
that one uses a near-optimal solver for the solution of each elliptic equation, the compu-

tational work for the field solve is proportional to N f Ng; noting that N
(β)
g /Ng∼ρs/λs = β̂

it follows

N
(β)
f N

(β)
g

N f Ng
∼5β̂ .

We conclude that the computational cost of the field solve in the electromagnetic case is

approximately 5β̂ times larger than that for the electrostatic case with adiabatic electrons.
For a plasma with β=5%, we find that the above ratio is approximately 48. The compu-
tational cost for the ‘particle pushing’ scales approximately linearly with the number of
markers in the simulation; note that the relevant parameter as far as phase space resolu-
tion is concerned is the number of markers per cell, Nc, rather than the total number of
markers in the simulated plasma. Therefore the computational cost for particle pushing
is proportional to NsNc Ng where Ns is the number of species in the simulation. Assuming
that the time step of integration for the electrostatic and electromagnetic simulations do
not differ too much (a very optimistic approximation) and that Nc in both simulations is
comparable, we find that

N
(β)
s N

(β)
c N

(β)
g

NsNc Ng
∼2β̂ .

For β = 5% the above ratio is about 19. In summary, the overall computational cost can
be estimated according to

Wcomp ∼C1NpN f Ng+C2NpNs NcNg+C3 ,

where N f is the number of global elliptic equations to be solved, Ng is the number of grid
points per poloidal plane, Np is the number of poloidal planes in the simulation, Nc is
the number of markers per cell for a given species and Ns is the number of species, C1,C2

and C3 are constants. We conclude that a generalization of the electromagnetic splitting
scheme to toroidal geometry is computationally prohibitive but may be within reach of
massively-parallel supercomputers in the near future.

As mentioned earlier the generalization of the electromagnetic splitting scheme to
simulate plasma microturbulence in realistic fusion machines (e.g. tokamaks and stel-
larators) would require considerable efforts. There are three obvious stumbling blocks to
generalize the electromagnetic splitting scheme to fully three-dimensional, toroidal plas-
mas. First, as just discussed, the computational cost is prohibitive. The second stumbling
block of the present version of the scheme is that it displays a cancelation problem which,
if not addressed properly, generates a numerical instability. In order to bypass this nu-

merical instability one can write the distribution function as Fj = e−q jΦ/Tj FMj+ ĥj (this is
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essentially the electrostatic version of the splitting scheme [26]) where the response, ĥj,
does contain an adiabatic part which is not resolved explicitly. Such an approach will
not be as accurate both linearly and nonlinearly as the electromagnetic splitting scheme
but it is numerically easier to implement. Finally, even if one can solve all the required
elliptic equations accurately, the intermediate quantities ϕ and ψ (given by Eq. (2.15)
and Eq. (2.19), respectively) are determined from an integration along the equilibrium
magnetic field line; to carry out such an integration accurately and efficiently in a toroidal
system is far from obvious.

A Derivation of the field equations for the electromagnetic split-

ting scheme

The derivation of the field equations used in the electromagnetic splitting scheme re-
quires the evolution equations of the first few velocity moments for the distribution func-
tions of both species. Multiply

(
∂

∂t
+VE·∇

)
Fj+v‖b̂·∇Fj+

qj

mj
E‖

∂Fj

∂v‖
=Cj(Fj) , (A.1)

by vk
‖, where k is a positive integer, and integrate over velocity space

(
∂

∂t
+VE·∇

)
M(k)

j +b̂·∇M(k+1)
j −kE‖

qj

mj
M(k−1)

j =C
(k)
j , (A.2)

where

M(k)
j ≡

∫ +∞

−∞
Fjv

k
‖dv‖ , (A.3)

and

C
(k)
j ≡

∫ +∞

−∞
Cj(Fj)vk

‖dv‖ . (A.4)

Writing Fj = FMj+δ f j, where FMj is a Maxwellian distribution with density n0 and tem-
perature Tj, we note that Eq. (A.3) can be written as

M(k)
j =n0(

√
2Vthj)

k Ik+M
(k)
j ,

where Vthj =
√

Tj/mj,

Ik≡
1√
π

∫ +∞

−∞
xke−x2

dx ,
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and

M
(k)
j ≡

∫ +∞

−∞
δ f jv

k
‖dv‖ , (A.5)

is the kth velocity moments of the perturbed distribution function. Multiplying Eq. (A.2)
for k = 0 with qj and summing over species yields an equation for the charge number

density ρ≡∑j qjM(0)
j

(
∂

∂t
+VE·∇

)
ρ+b̂·∇J‖ =∑

j

qjC
(0)
j =0, (A.6)

where J‖≡∑j qjM(1)
j and we have exploited the fact that the collision operator conserves

particle number (for each species independently). We can proceed in a similar fashion
using Eq. (A.2) to obtain the evolution equations for higher-order velocity moments;
straightforward algebra shows that

(
∂

∂t
+VE·∇

)
J‖+b̂·∇P−n0ξM·κ−(σ+σ0)E‖=∑

j

qjC
(1)
j , (A.7)

and
(

∂

∂t
+VE·∇

)
P+b̂·∇Q−n0ξVE·κ−2σ̂E‖=∑

j

qjC
(2)
j , (A.8)

where σ0 ≡ n0 ∑j q
2
j /mj, σ≡∑j q

2
j M

(0)
j /mj, σ̂≡∑j q

2
j M

(1)
j /mj, ξ ≡∑j qjTj(1+ηj)/mj, M≡

∇A‖×B0/B2
0 is the magnetic flutter, P≡∑j qj M

(2)
j is the pressure density and Q≡∑j qj M

(3)
j

is the heat flux density. In order to determined the evolution equations for Φ, E‖ and
∂ψ/∂t, we make use of the gyro-kinetic Poisson equation (in the long wavelength)

e2

Te
n0ρ2

s∇2
⊥Φ=−ρ , (A.9)

and Ampère’s law

∇2
⊥A‖=−4π

c
J‖ . (A.10)

We note that the parallel gradient of a perturbed quantity f̃ can be written as

b̂·∇ f̃ = b̂0·∇ f̃ +M·∇ f̃ ≡∇‖ f̃ +B−1
0

[
f̃ ,A‖

]
,

where [ f̃ ,A‖]≡ b̂0·(∇ f̃ ×∇A‖) denotes the Poisson bracket for the pair ( f̃ ,A‖). In the

context of the one-dimensional model used here, it should be noted that [ f̃ , g̃]≡0 for any
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perturbed quantities f̃ and g̃; it follows immediately that the parallel gradient of f̃ takes
the simple form of

b̂·∇ f̃ = b̂0·∇ f̃ =∇‖ f̃ . (A.11)

In the simple one-dimensional model, the above expression is valid for any perturbed

quantity f̃ ; in the general (two- or three-dimensional) case, however, Eq. (A.11) does not

apply. The equation governing E‖=−b̂·∇ψ=−b̂·∇Φ− 1
c ∂A‖/∂t can be obtained from

Eqs. (A.9) and (A.10)

∇2
⊥E‖=

Te

e2n0ρ2
s

b̂·∇ρ+
4π

c2

∂J‖
∂t

,

which, when combined with Eq. (A.7), yields an Helmholtz-like equation

[
∇2

⊥−
4π

c2
(σ+σ0)

]
E‖=

Te

e2n0ρ2
s

b̂·∇ρ+
4π

c2

(
ξn0M·κ+∑

j

qjC
(1)
j −∇‖P

)
. (A.12)

In deriving Eq. (A.12) we have made use of the fact that, in this simple one-dimensional

model, the parallel gradient operator (b̂·∇) and the perpendicular Laplacian operator
(∇2

⊥) commute (this is not true in the general three-dimensional case). Introducing the
intermediary scalar field ̟≡ ∂E‖/∂t, taking the time derivative of Eq. (A.12) and using
Eqs. (A.6)-(A.8), we obtain the following elliptic (Helmholtz-type) equation

[
∇2

⊥−
4π

c2
(σ+σ0)

]
̟ =

4π

c2
∇2

‖Q− Te

e2n0ρ2
s

∇2
‖ J‖−

4πn0ξκn

cθB0
∇‖E‖+SNL+Sc , (A.13)

where

Sc =
4π

c2

[
∂

∂t ∑
j

qjC
(1)
j −∇‖

(

∑
j

qjC
(2)
j

)]
,

arises dues to the collisional effects, and

SNL =
4π

c2

[(
σ0VE·κ−∇‖σ̂

)
E‖−2∇‖

(
σ̂E‖

)]
,

accounts for quadratic nonlinearities in the parallel electric field. Finally we must de-
termine the elliptic equation governing χ ≡ (1/c)∂A‖/∂t; taking the time derivative of
Ampère’s law, Eq. (A.10), and using Eq. (A.7), the required equation is found to be

∇2
⊥χ=

4π

c2

[
∇‖P−n0ξM·κ−(σ+σ0)E‖−∑

j

qjC
(1)
j

]
. (A.14)
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Solving Eqs. (A.12) and (A.13) for E‖ and ̟, respectively, one can determine the scalar
fields ψ and ϕ≡∂ψ/∂t according to

ψ(y,t)=−θ−1
∫ y

E‖(y′,t)dy′ ,

ϕ(y,t)=
∂ψ

∂t
=−θ−1

∫ y

̟(y′,t)dy′ ,

where we have used the expression for the parallel gradient along the equilibrium mag-

netic field, ∇‖ f̃ = θ∂ f̃ /∂y. Using Fj = e−q jψ/Tj FMj+hj the velocity moments of the per-
turbed distribution, Eq. (A.5) can be written as:

M
(k)
j =

(
e−q jψ/Tj−1

)∫ +∞

−∞
FMjv‖

kdv‖+
∫ +∞

−∞
hjv‖

kdv‖ .

In gyrokinetic units [ωcit 7→t; x/ρs 7→x; v‖/cs 7→v‖; eΦ/Te 7→Φ; eψ/Te 7→ψ; A‖/(ρsB0) 7→A‖;
eϕ/(ωciTe) 7→ ϕ; χ/(csB0) 7→χ; eρsE‖/Te 7→E‖] the field equations can be written as

∂2Φ

∂y2
=(1+1/τ)ψ+

∫ +∞

−∞
(he−hi)dv‖− ρ̂ , (A.15)

where ρ̂=(1+1/τ)ψ+e−ψ/τ−eψ =O(|ψ|2);

∂2 A‖
∂y2

= β
∫ +∞

−∞
(he−hi)v‖dv‖ ; (A.16)

(
∂2

∂y2
−η

)
E‖=∇||

∫ +∞

−∞
(hi−he)dv‖−β∇||

∫ +∞

−∞
(hi−he)v‖

2dv‖

+β

[
ξκn

∂A‖
∂y

−∑
j

ZjC
(1)
j

]
, (A.17)

where ξ =τ(1+ηi)−ǫ−1(1+ηe) and

η≡β

(∫ +∞

−∞
hidv‖+ǫ−1

∫ +∞

−∞
hedv‖

)
+eψ+

1

τ
e−ψ/τ ;

[
∂2

∂y2
−β(σ+σ0)

]
̟ =∇2

||

[
β
∫ +∞

−∞
(hi−he)v‖

3dv‖−
∫ +∞

−∞
(hi−he)v‖dv‖

]

−βξκn

∂E‖
∂y

+Sc+SNL, (A.18)

where σ0, σ, Sc, SNL and σ̂ are defined by (2.17) and (2.18). Finally,

∂2χ

∂y2
=β∇||

[∫ +∞

−∞
(hi−he)v‖

2dv‖−κnξ
∂A‖
∂y

−∑
j

ZjC
(1)
j

]

−β

[∫ +∞

−∞
hidv‖+ǫ−1

∫ +∞

−∞
hedv‖

]
E‖ . (A.19)
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B Linear properties of electromagnetic drift waves

Using the formulation of the splitting scheme the distribution function for species j is
given by

Fj = Hj(ψ)FMj+hj , (B.1)

where Hj(ψ) = exp
(
−qjψ/Tj

)
; substitution of representation (B.1) in the collisionless

Vlasov equation, dFj/dt = 0, yields an equation governing the nonadiabatic part of the
distribution function

dhj

dt
= Hj(ψ)

[
qj

Tj
FMj

(
∂

∂t
+VE·∇

)
ψ−Vφ·∇FMj

]
, (B.2)

where Vφ = cb̂0×∇φ/B0 is the drift velocity associated with the gradient of the gener-
alized potential φ≡Φ−v‖A‖/c. Linearizing Eq. (B.2), and assuming modes of the form
exp(−iωt+ik·x), one gets

(−iω+ik‖v‖)hj =

(
−iω

qjψ

Tj
−iω⋆

eφ

Te
gj(v‖)

)
FMj , (B.3)

where ω⋆ =(kyρs)cs/Ln, gj(v||)= 1−ηj(1−v||
2)/2 and v|| = v‖/Vthj is the parallel veloc-

ity normalized to the thermal velocity. It is convenient to normalize the scalar fields as
follows:

(ψ̃,Φ̃,φ̃)= e(ψ,Φ,φ)/Te, Ã‖= A‖/(ρsB0).

It is easy to show that these definitions are consistent with the normalized velocity ṽ|| =
v‖/cs since φ̃ = Φ̃− ṽ|| Ã‖. However, as we shall take velocity moments of the linear re-

sponse, it is convenient to write φ̃ in terms of v|| as φ̃= Φ̃−αjv|| Ã‖, where

αj ≡Vthj/cs =
√

(Tjmi)/(Temj).

We note that αi =
√

τ = O(1) for the ions, and αe = 1/
√

ǫ ≫ 1 for the electrons (here
ǫ≡me/mi is the electron-to-ion mass ratio and τ = Ti/Te). Using the linearized form of

the parallel electric field, E‖ =−b̂0·∇Φ−(1/c)∂A‖/∂t, one gets Ã‖ = (k‖cs)(Φ̃−ψ̃)/ω,

which allows us to write the generalized potential φ̃ as

φ̃=
ζ j−x

ζ j
Φ̃+

x

ζ j
ψ̃ , (B.4)

where ζ j ≡ω/ω‖j, ω‖j =
√

2k‖Vthj and x=v||/
√

2. Using Eq. (B.4) in Eq. (B.3) we obtain

hj =
ω⋆

ω
gj(x)FMjΦ̃−i

(
A0j+A1jx+A2jx

3
)
P−1FMjψ̃ , (B.5)
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where A0j =ωθj, A1j =ω⋆(1−ηj/2)/ζ j , A2j =ω⋆ηj/ζ j, θj =ZjTe/Tj and P= iω(x−ζ j)/ζ j.

We introduce the kth velocity moment of the nonadiabatic response as

M
(k)
j ≡

∫ +∞

−∞
v‖

khjdv‖ . (B.6)

Using Eq. (B.5) we find that

M
(k)
j =n0(

√
2Vthj)

k

{
ω⋆

ω

[
(1−ηj/2)Ik+ηj Ik+2

]
Φ̃

− 1

ω‖j

[
A0jZ

(k)(ζ j)+A1jZ
(k+1)(ζ j)+A2jZ

(k+3)(ζ j)
]

ψ̃

}
, (B.7)

where

Ik ≡
1√
π

∫ +∞

−∞
e−x2

xkdx , (B.8)

and

Z(k) (ζ)≡ 1√
π

∫ +∞

−∞

xk

x−ζ
e−x2

dx , (B.9)

for non-negative integer k. Note that the definition (B.9) for k=0 is related to plasma dis-
persion function of Fried and Conte [14], Z(ζ)≡Z(0)(ζ). The definite integral (B.8) van-
ishes for k odd, I0=1 and Ik=(k−1)!!/2k/2 for even integer k≥2 (here n!!=(n)(n−2)(n−
4)···(3)(1) for n odd). Substituting the linearized form of Eq. (B.1), Fj =(1−θjψ̃)FMj+hj,
in the expression for the charge density one gets

ρ=∑
j

qj

∫ +∞

−∞
Fjdv‖ =−en0(1+1/τ)ψ̃−n0∑

j

qj

ω‖j
R(ζ j)ψ̃ . (B.10)

Similarly one can calculate the current density as

J‖=∑
j

qj

∫ +∞

−∞
v‖Fjdv‖ =−n0

k‖
∑

j

qj

[
ωθj+ζ jR(ζ j)

]
ψ̃ , (B.11)

where

R(ζ j)=A0jZ(ζ j)+A1jZ
(1)(ζ j)+A2jZ

(3)(ζ j)

=
ω⋆

ζ j
(1+ηjζ

2
j )+Z(ζ j)

[
ωθj+ω⋆

(
1−ηj/2+ηjζ

2
j

)]
. (B.12)

The expression for the charge density, Eq. (B.10), and the current density, Eq. (B.11), can
be used in the gyrokinetic Poisson equation, ρ2

s∇2
⊥Φ̃=−ρ̃=−ρ/(en0), and Ampère’s law,
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ρ2
s∇2

⊥ Ã‖=−β J̃‖, where J̃‖= J‖/(en0cs), to obtain the linear dispersion for electromagnetic
drift waves

D(ω,k)=ωb+(1−βΩ2)

[
ω(1+1/τ)+∑

j

Zjζ jR(ζ j)

]
=0, (B.13)

where b = k2
⊥ρ2

s , Ω = ω/(k‖cs) and β = 4πen0Te/B2
0. In the electrostatic limit, assuming

cold ions (ζi ≫1) and warm electrons (ζe ≪1), and noting that

ζeR(ζe)≃ω⋆+i
√

πζe [ω⋆(1−ηe/2)−ω] ,

and

ζiR(ζi)≃−ω

τ
− 1

2ζi
2

[ω/τ+ω⋆(1+ηi)] ,

the dispersion relation (B.13) yields the mode frequency ω = ωr+iγ with real frequency
and growth rate given by

ωr =
ω⋆

1+b
, γ≃δ≡

√
π

2

ωr

k‖Vthe
[ω⋆(1−ηe/2)−ωr] (β=0) . (B.14)

In the absence of a background density gradient, ω⋆ = 0, the dispersion relation (B.13)
takes the form of

D(ω,k)=b+(1−βΩ2)
(

1+1/τ+τ−1ζiZ(ζi)+ζeZ(ζe)
)

=0 (ω⋆ =0) , (B.15)

which in the cold-ion, warm-electron limit, ζe ≪ 1≪ ζi, yields the kinetic shear Alfvén
wave with real mode frequency

ωr =±ωA

√
1+b , (B.16)

with a damping rate given by

γ

ωA
=−

√
π

8

√
me

mi

b√
β

. (B.17)

Here ωA ≡ (k‖cs)/
√

β is the shear Alfvén wave frequency.

C Energy conservation for a finite-β plasma

We start from the collisionless Vlasov equation written in the form

dFj

dt
=

∂Fj

∂t
+Vgc·∇Fj+

qj

mj
b̂·E

∂Fj

∂v||
=0, (C.1)
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where
E=−∇ψ=−∇Φ+E

(T)
‖ b̂0, E

(T)
‖ =−(1/c)∂A‖/∂t,

and the guiding center velocity, Vgc =v||b̂+VE, satisfies ∇·Vgc =0 since ∇·b̂=∇·VE =0
(slab geometry). Noting that VE·∇ψ=0 it follows that

Vgc·∇ψ=v‖b̂·∇ψ . (C.2)

Operating with
∫

v2
‖/2(•)d3xdv|| on Eq. (C.1), using ∇·Vgc=0 and Eq. (C.2), we arrive at

∂

∂t

∫ v||
2

2
Fjd

3xdv||+
qj

mj

∫
Vgc·∇ψFjd

3xdv|| =0.

Multiplying the above equation by mj, summing over species and using Eq. (C.1), one
gets

∂K

∂t
=−∑

j

qj

∫
Φ

∂nj

∂t
d3x+∑

j

qj

∫
ΓjE

(T)
‖ d3x , (C.3)

where Γj =
∫

v‖Fjdv‖ and

K≡∑
j

mj

2

∫
v||

2Fjdv||d
3x , (C.4)

is the volume-averaged total kinetic energy. Taking the time derivative of the gyro-kinetic
Poisson equation and Ampère’s law one can write

∂K

∂t
=

e2n0ρs
2

Te

∫
Φ∇2

⊥
∂Φ

∂t
d3x+

1

4π

∫ ∂A‖
∂t

∇2
⊥A‖d3x. (C.5)

The last step of the derivation is based on the relation

∂

∂t
∇·
(

A‖∇⊥A‖
)
=

1

2

∂

∂t

∣∣∇⊥A‖
∣∣2+∇

2
⊥A‖

∂A‖
∂t

+∇·

(
A‖

∂

∂t
∇⊥A‖

)
(C.6)

and a similar expression for Φ; if follows that Eq. (C.5) can be written as

∂

∂t
(K+U+UM)=0, (C.7)

where

U≡ e2n0ρs
2

2Te

∫
|∇⊥Φ|2d3x (C.8)

is the volume-averaged electrostatic field energy and

UM≡ 1

8π

∫ ∣∣∇⊥A‖
∣∣2 d3x (C.9)

is the volume-averaged magnetic field energy.
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