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Abstract. We consider the anisotropic uniaxial formulation of the perfectly matched
layer (UPML) model for Maxwell’s equations in the time domain. We present and an-
alyze a mixed finite element method for the discretization of the UPML in the time
domain to simulate wave propagation on unbounded domains in two dimensions. On
rectangles the spatial discretization uses bilinear finite elements for the electric field
and the lowest order Raviart-Thomas divergence conforming elements for the mag-
netic field. We use a centered finite difference method for the time discretization. We
compare the finite element technique presented to the finite difference time domain
method (FDTD) via a numerical reflection coefficient analysis. We derive the numeri-
cal reflection coefficient for the case of a semi-infinite PML layer to show consistency
between the numerical and continuous models, and in the case of a finite PML to study
the effects of terminating the absorbing layer. Finally, we demonstrate the effectiveness
of the mixed finite element scheme for the UPML by a numerical example and provide
comparisons with the split field PML discretized by the FDTD method. In conclusion,
we observe that the mixed finite element scheme for the UPML model has absorbing
properties that are comparable to the FDTD method.

AMS subject classifications: 65M60, 78M10
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1 Introduction

The effective modeling of electromagnetic waves on unbounded domains by numeri-
cal techniques, such as the finite difference or the finite element method, is dependent
on the particular absorbing boundary condition used to truncate the computational do-
main. In 1994, J. P. Berenger created the perfectly matched layer (PML) technique for the
reflectionless absorption of electromagnetic waves in the time domain [4]. The PML is
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an absorbing layer that is placed around the computational domain of interest in order
to attenuate outgoing radiation. Berenger showed that his PML model allowed perfect
transmission of electromagnetic waves across the interface of the computational domain
regardless of the frequency, polarization or angle of incidence of the waves. The waves
are then attenuated exponentially with respect to depth into the absorbing layers. Since
its original inception in 1994, PML’s have also extended their applicability in areas other
than computational electromagnetics such as acoustics, elasticity, etc., [2, 3, 15–17].

The properties of the continuous PML model have been studied extensively and
are well documented. The original split field PML, proposed by Berenger, involved a
nonphysical splitting of Maxwell’s equations resulting in non-Maxwellian fields and a
weakly hyperbolic system [1]. A complex change of variables approach was used in [9,20]
to derive an equivalent PML model that did not require a splitting of Maxwell’s equa-
tions. In [22] the authors observed that a material can possess reflectionless properties if
it is assumed to be anisotropic. A single layer in this technique was termed uniaxial, and
the PML was referred to as the uniaxial PML (UPML). In this method, modifications to
Maxwell’s equations are also not required and one obtains a strongly hyperbolic system.
In [14,18] further study of the anisotropic PML is carried out. Unlike Berenger’s split field
PML, which is a nonphysical medium, the anisotropic PML can be a physically realizable
medium [20]. Thus, there are several reasons for using the anisotropic PML in numerical
simulations. In [24] the authors show that the anisotropic PML and Berenger’s split field
PML produce the same tangential fields; however, the normal fields are different as the
two methods satisfy different divergence conditions.

The finite depth of the absorbing layer allows the transmitted part of the wave to re-
turn to the computational domain. In addition, the discretization of Maxwell’s equations
introduces errors which cause the PML to be less than perfectly matched. Even so, it has
been found that the PML medium can result in reflection errors as minute as -80 dB to
-100 dB [4, 5, 9, 14].

There are a number of publications that study the properties of the finite difference
time domain (FDTD) method (Yee scheme [26]) for discretizing the PML model (e.g.,
see [23]). There are significantly fewer publications that study the properties of the fi-
nite element method for the approximation of the PML equations. A comparison of the
anisotropic PML to the split field PML of Berenger was performed in [24], in which the
authors implement the anisotropic PML into an edge based finite element method for
a second order formulation of Maxwell’s equations. In [25] the authors use the lowest
order as well as first order tangential vector finite element methods for the discretization
of the electric field. They compare the performance of these elements with the FDTD
method when a PML is used to terminate the computational domain. They show that the
lowest order elements do not perform as well as the FDTD method; however, the first
order elements can produce more accurate results than FDTD. A time domain mixed fi-
nite element method has been used in [11] along with mass lumping techniques to solve
scattering problems on domains where a PML method based on the Zhao-Cangellaris’s
model is used to terminate the mesh [27]. The underlying partial differential equations in
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the Zhao-Cangellaris’s PML model are second order in time, whereas the anisotropic uni-
axial model consists of a system of first order PDEs. A recent paper [19] presents a new
formulation to implement the complex frequency shifted perfectly matched layer (CFS-
PML) for boundary truncation in a two-dimensional vector finite element time domain
method directly applied to Maxwell’s equations.

In this paper, we present a mixed finite element method (FEM) for the discretiza-
tion of the anisotropic uniaxial formulation of the PML, by Sacks et al., [22] in the time
domain to simulate electromagnetic wave propagation on unbounded regions. We di-
vide the computational domain into rectangles. On each rectangle, we use continuous
(piecewise) bilinear finite elements to discretize the electric field and the Raviart-Thomas
elements [21] to discretize the magnetic field. The degrees of freedom are staggered in
space as in the FDTD scheme. We use a centered finite difference scheme in time and
we stagger the temporal components of the electric and magnetic fields. We study the
effectiveness of the PML technique as an absorbing boundary condition for the mixed
FEM by performing a numerical reflection coefficient analysis. We provide comparisons
of the numerical approximations of the PML model by the mixed FEM with those of the
Zhao-Cangellaris’s PML model discretized using the FDTD scheme, presented in [12].
We compare simulations performed using the UPML discretized by the mixed FEM with
the split field PML of Berenger discretized by the FDTD method [4]. These comparisons
demonstrate that the PML technique is an effective absorbing boundary condition for the
mixed FEM, which has comparable (with FDTD) absorbing properties. We have used
this method in problems of scattering type in [7]. A mixed FEM was used for the dis-
cretization of a similar UPML formulation for the wave equation written as a system of
first order PDE’s in [8]. An advantage of FEM’s is that they can model arbitrary complex
geometrical structures effectively, whereas the FDTD method employs a stair stepping
approach that can be very inaccurate.

An outline of the remainder of this paper is as follows. In Sections 2 and 3, we describe
the UPML model and its implementation. In Section 4, we derive the two-dimensional
(2D) transverse magnetic (TM) mode of the UPML model, and we describe a mixed finite
element formulation for the UPML. Section 5 describes the numerical discretization in
space and time. We perform a numerical reflection coefficient analysis in Section 6. In this
analysis, we provide a comparison of the absorbing properties of the discrete PML model
using the mixed finite element method with those using the FDTD method. Finally, we
present numerical examples in Section 7 that demonstrate the effectiveness of the discrete
PML model using the mixed FEM. We also compare these numerical results with those
of the split field method of Berenger discretized by the FDTD method.

2 An anisotropic perfectly matched layer model

In this section we summarize the construction of the anisotropic PML. We refer the reader
to [6] for a detailed derivation of the PML model.
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We consider the time-harmonic form of Maxwell’s equations with time dependence
eiωt given by

iωB̂=−∇×Ê, iωD̂=∇×Ĥ, (2.1)

along with zero divergence conditions on B̂ and D̂. For every field vector V, V̂ denotes
its Fourier transform. Constitutive relations, which relate the electric and magnetic fluxes
(D̂,B̂) to the electric and magnetic fields (Ê,Ĥ), are added to these equations to make the
system fully determined and to describe the response of a material to the electromagnetic
fields. The most general form of these constitutive laws are

B̂=[µ̄]Ĥ; D̂=[ǭ]Ê, (2.2)

where, in (2.2) the square brackets indicate a tensor quantity. The tensors [ǭ] and [µ̄] are
defined as

[ǭ]= [ǫ]+
[σE ]

iω
, [µ̄]= [µ]+

[σM ]

iω
, (2.3)

where, [ǫ], and [µ], are the electric permittivity and the magnetic permeability tensors,
respectively. Also, [σE], and [σM], are the electric and magnetic conductivity tensors,
respectively.

The split-field PML, introduced by Berenger [4], is a hypothetical medium based on a
mathematical model. In [18] Mittra and Pekel showed that Berenger’s PML is equivalent
to Maxwell’s equations with a diagonally anisotropic tensor appearing in the constitu-
tive relations for D and B. For a single interface the anisotropic medium is uniaxial and
is composed of both the electric permittivity and magnetic permeability tensors. This
uniaxial formulation performs as well as the original split-field PML while avoiding the
nonphysical field splitting. By properly defining a general constitutive tensor [S], which
we will define in Section 3, we can use the UPML in the interior working volume as well
as the absorbing layer. This tensor provides a lossless isotropic medium in the primary
computation zone and individual UPML absorbers adjacent to the outer lattice boundary
planes for mitigation of spurious wave reflections. The fields excited within the UPML
are also plane wave in nature and satisfy Maxwell’s curl equations.

The derivation of the PML properties for the tensor constitutive laws is done directly
by Sacks et al., [22] and also by Gedney [14]. In the PML layers the impedance matching
assumption must be satisfied, i.e., the impedance of the layer must match that of free
space: ǫ−1

0 µ0 =[ǭ]−1[µ̄]. This implies

[ǭ]

ǫ0
=

[µ̄]

µ0
=[S]. (2.4)

Hence, the constitutive parameters inside the PML layer are [ǭ] = ǫ0[S] and [µ̄] = µ0[S],
where [S] is a diagonal tensor.
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3 Implementation of the uniaxial PML

To apply the perfectly matched layer to electromagnetic computations, the half infinite
layer is replaced with a layer of finite depth and backed with a more conventional bound-
ary condition, such as a perfect electric conductor (PEC). This truncation of the layer will
lead to reflections generated at the PEC surface which can propagate back through the
layer to re-enter the computational region. In this case, the reflection coefficient R is a
function of the angle of incidence θ, the depth of the PML δ, as well as the diagonal ele-
ments of the (diagonal) tensor [S] in (2.4). These diagonal elements of [S] in the PML are
chosen in order for the attenuation of waves in the PML to be sufficient so that the waves
striking the PEC surface are negligible in magnitude. Perfectly matched layers are then
placed near each edge (face in 3D) of the computational domain where a non-reflecting
condition is desired. This leads to overlapping PML regions in the corners of the domain.

As shown in [22], the correct form of the tensor which appears in the constitutive laws
for these regions is the product

[S]= [S]x[S]y[S]z, (3.1)

where component [S]α in the product in (3.1) is responsible for attenuation in the α direc-
tion, for α = x,y,z. All three of the component tensors in (3.1) are diagonal and have the
forms

[S]x =





s−1
x 0 0
0 sx 0
0 0 sx



; [S]y =





sy 0 0
0 s−1

y 0

0 0 sy



; [S]z =





sz 0 0
0 sz 0
0 0 s−1

z



. (3.2)

Here sα governs the attenuation of the electromagnetic waves in the α direction for α =
x,y,z.

When designing PMLs for implementation, it is important to choose the parameters
sα so that the resulting frequency domain equations can be easily converted back into the
time domain. The simplest of these [14] which we employ here is

sα =1+
σα

iωǫ0
, where σα ≥0, α= x,y,z. (3.3)

The PML interface represents a discontinuity in the conductivities σα. To reduce the nu-
merical reflections caused by these discontinuous conductivities the σα are chosen to be
functions of the variable α (for e.g., σx is taken to be a function of x in the [S]x com-
ponent of the PML tensor). Choosing these functions so that σα = 0, i.e., sα = 1, at the
interface makes the PML a continuous extension of the medium being matched and re-
duces numerical reflections at the interface. Increasing the value of σα with depth in the
layer allows for greater overall attenuation while keeping down the numerical reflections.
Gedney [14] suggests a conductivity profile

σα(α)=
σmax|α−α0|m

δm
, α= x,y,z, (3.4)
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where δ is the depth of the layer, α = α0 is the interface between the PML and the com-
putational domain, and m is the order of the polynomial variation. Gedney remarks that
values of m between 3 and 4 are believed to be optimal. For the conductivity profile (3.4)
the PML parameters can be determined for given values of m,δ, and the desired reflection
coefficient at normal incidence, R0, as

σmax≈
(m+1)ln(1/R0)

2δ
. (3.5)

4 A mixed finite element formulation for the UPML in two

dimensions

From the time-harmonic Maxwell’s curl equations in the UPML (2.1) along with (2.2),
(2.3) and (2.4), Ampere’s and Faraday’s laws can be written as

{

iωµ0[S]Ĥ=−∇×Ê (Maxwell-Faraday’s Law),

iωǫ0[S]Ê=∇×Ĥ (Maxwell-Ampere’s Law).
(4.1)

In (4.1), [S] is the diagonal tensor defined via (3.1)-(3.5). In the presence of this diagonal
tensor a plane wave is purely transmitted into the uniaxial medium. The tensor [S] is
no longer uniaxial by strict definition but rather is anisotropic. However, the anisotropic
PML is still referred to as uniaxial, since it is uniaxial in the non overlapping PML regions.

Let ∂q = ∂/∂q denote the derivative w.r.t q, for q = x, y, z, t. To obtain the 2D model
of the UPML we assume no variation in the z direction (i.e., ∂z =0). In the 2D transverse
magnetic (TM) mode the electromagnetic field has three components Ez, Hx, and Hy.
In this case, we have σz = 0 and sz = 1 in the UPML, and the time-harmonic Maxwell’s
equations (4.1) in the uniaxial medium can be written in scalar form as















iωµ0sys−1
x Ĥx =−∂yÊz,

iωµ0sxs−1
y Ĥy =−∂xÊz,

iωǫ0sxsyÊz =∂xĤy−∂yĤx.

(4.2)

To avoid a computationally intensive implementation we define suitable constitutive
relationships that facilitate the decoupling of the frequency dependent terms [23]. To this
end, we introduce the fields















B̂x =µ0s−1
x Ĥx,

B̂y =µ0s−1
y Ĥy,

D̂z =µ0syÊz.

(4.3)

Substituting the definitions (4.3) in (4.2), using the defining relations for sx and sy from
(3.3), and then transforming into the time domain by using the inverse Fourier transform
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yields an equivalent system of time-domain differential equations given as











































∂tB=− 1

ǫ0
Σ2B−−→

curlE,

∂tH=
1

µ0
∂tB+

1

ǫ0µ0
Σ1B,

∂tD=− 1

ǫ0
σxD+curlH,

∂tE=− 1

ǫ0
σyE+

1

ǫ0
∂tD.

(4.4)

In the above H=(Hx,Hy)T, B=(Bx,By)T, E=Ez and D= Dz. Also, in (4.4)

Σ1 =

(

σx 0
0 σy

)

; Σ2 =

(

σy 0
0 σx

)

. (4.5)

Let D denote the computational domain in R
2. We denote the domain D along with the

surrounding finite PML layers by Ω. In (4.4), the operators denoted by
−→
curl, and curl are

linear differential operators which are defined as

−→
curlφ=(∂yφ,−∂xφ)T, ∀ φ∈D′(Ω), (4.6)

curlv=∂xvy−∂yvx, ∀ v=(vx,vy)
T ∈D′(Ω)2, (4.7)

where D′(Ω) is the space of distributions on Ω. The operator curl appears as the (formal)

transpose of the operator
−→
curl [13], i.e.,

〈curlv,φ〉= 〈v,
−→
curlφ〉, ∀v∈D′(Ω)2, φ∈D′(Ω), (4.8)

with 〈·,·〉 being the appropriate inner product. Thus, the PML model consists in solving
system (4.4) for the six variables Bx, By, Hx, Hy, D, E in Ω, with PEC conditions on ∂Ω to
terminate the PML; namely, n×E=0, on ∂Ω, where n is the outward unit normal to ∂Ω.
In the case of the 2D TM mode the PEC condition translates to E=Ez =0, on ∂Ω.

Based on the above discussion, we consider the following variational formulation of
system (4.4) which is suitable for discretization by finite elements.

Find (E(·,t), D(·,t), H(·,t), B(·,t)) ∈ H1
0(Ω)×H1

0(Ω)×[L2(Ω)]2×[L2(Ω)]2 such that
for all Ψ∈ [L2(Ω)]2, for all φ∈H1

0(Ω),











































d

dt

∫

Ω
B·Ψ dx=− 1

ǫ0

∫

Ω
Σ2B·Ψ dx−

∫

Ω

−→
curlE·Ψ dx,

d

dt

∫

Ω
H·Ψ dx=

1

µ0

d

dt

∫

Ω
B·Ψ dx+

1

ǫ0µ0

∫

Ω
Σ1B·Ψ dx,

d

dt

∫

Ω
D ·φ dx=− 1

ǫ0

∫

Ω
σxD ·φ dx+

∫

Ω

−→
curlφ·H dx,

d

dt

∫

Ω
E·φ dx=− 1

ǫ0

∫

Ω
σyE·φ dx+

1

ǫ0

d

dt

∫

Ω
D ·φ dx,

(4.9)
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Figure 1: A sample domain element K. The degrees of freedom for the electric and magnetic fields are staggered
in space. The degrees of freedom for the electric field E are at the nodes of the square. The degrees of freedom
for Hx and Hy are at the midpoints of edges parallel to the x-axis and y-axis, respectively.

along with the initial conditions

E(x,0)=E0, D(x,0)= D0, H(x,0)=H0, B(x,0)=B0, for x∈Ω. (4.10)

We assume that the fields (E,D,H,B) are sufficiently differentiable in time. We note that,

for E∈L2(Ω),
−→
curlE=(∂yE,−∂xE)T∈ [L2(Ω)]2 implies that both the partial derivatives of

E must be in L2(Ω). Hence we must have E∈H1(Ω).
In [6] we have derived energy decay results for the 2D TM mode of the UPML (4.9),

for specific values of σx and σy.

5 The discrete mixed finite element scheme

5.1 Spatial discretization

Let Ω be a union of rectangles defining a regular mesh (Th) with square elements (K) of
edge h>0 as in Fig. 1. We consider the following approximation space for H and B:

Vh =
{

Ψh ∈ [L2(Ω)]2| ∀K∈Th,Ψh|K ∈RT[0]

}

, (5.1)

where, RT[0] = P10×P01, is the lowest order Raviart-Thomas space [21] and for k1, k2 ∈
N∪{0},

Pk1k2
=

{

p(x1,x2)|p(x1,x2)= ∑
0≤i≤k1

∑
0≤j≤k2

aijx
i
1x

j
2

}

.
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The basis functions for Hx have unity value along an ey edge and are zero over all other
edges. Similarly, the basis functions for Hy have unity value along an ex edge and are
zero over all other edges (see Fig. 1).

The approximation space for E and D is chosen to be

Uh ={φh ∈H1
0(Ω)| ∀K∈Th,φh|K ∈Q1}, (5.2)

where the space Q1 = P11. The basis functions for E have unity value at one node and
are zero at all other nodes. Fig. 1 shows the locations for the degrees of freedom for the
electric and magnetic fields.

Based on the approximation spaces described above the spatially discrete scheme is:
Find (Eh(·,t),Dh(·,t),Hh(·,t),Bh(·,t))∈Uh×Uh×Vh×Vh such that for all Ψh ∈Vh, and for
all φh∈Uh,











































d

dt

∫

Ω
Bh ·Ψhdx=− 1

ǫ0

∫

Ω
Σ1Bh ·Ψhdx−

∫

Ω

−→
curlEh ·Ψhdx,

d

dt

∫

Ω
Hh ·Ψhdx=

1

µ0

d

dt

∫

Ω
Bh ·Ψhdx+

1

ǫ0µ0

∫

Ω
Σ2Bh ·Ψhdx,

d

dt

∫

Ω
Dh ·φh dx=− 1

ǫ0

∫

Ω
σxDh ·φh dx+

∫

Ω

−→
curlφh ·Hh dx,

d

dt

∫

Ω
Eh ·φh dx=− 1

ǫ0

∫

Ω
σyEh ·φh dx+

1

ǫ0

d

dt

∫

Ω
Dh ·φh dx.

(5.3)

5.2 Temporal discretization

For the temporal discretization we use a centered second order accurate finite difference
scheme. For k∈Z let,

D∆tV
k =

Vk+1/2−Vk−1/2

∆t
, V

k
=

Vk+1/2+Vk−1/2

2
. (5.4)

Let (·,·) denote the inner product in L2(Ω). We can now describe the fully discrete

scheme in space and time as: Find (En+1
h ,Dn+1

h ,H
n+ 1

2

h ,B
n+ 1

2

h )∈Uh×Uh×Vh×Vh such that
for all Ψh ∈Vh, for all φh∈Uh,











































(i) (D∆tB
n
h ,Ψh)=− 1

ǫ0
(Σ2Bn

h ,Ψh)−(
−→
curlEn

h , Ψh),

(ii) (D∆tH
n
h ,Ψh)=

1

µ0
(D∆tB

n
h ,Ψh)+

1

ǫ0µ0
(Σ1Bn

h ,Ψh),

(iii) (D∆tD
n+ 1

2

h ,φh)=− 1

ǫ0
(σxDh

n+ 1
2 ,φh)+(

−→
curlφh,H

n+ 1
2

h ),

(iv) (D∆tE
n+ 1

2

h ,φh)=− 1

ǫ0
(σyEh

n+ 1
2 ,φh)+

1

ǫ0
(D∆tD

n+ 1
2

h , φh).

(5.5)
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6 Analysis of the discrete PML model

In this section we study the properties of the discrete mixed FEM-UPML model by per-
forming a plane wave analysis to calculate the reflection coefficient. We refer the reader
to [6] for a detailed stability and dispersion analysis of the mixed FEM method for the
discretization of the UPML and a comparison with the FDTD scheme.

In the discrete setting the PML model is no longer perfectly matched since the dis-
cretization introduces some error which manifests itself as spurious reflections. There is
also error that is introduced due to the termination of the PML. We study the errors in-
troduced in the discrete model by calculating the reflection coefficient of an infinite PML
(to study the errors caused by the discretization) as well as the reflection coefficient of a
finite PML (to study the errors introduced by terminating the PML).

For simplicity we assume in this section that ǫ0=µ0=1. Let us also assume an infinite
PML in the region x>0. Thus, σy =0 and let σx =σ. Considering exact integration in time,
we will look for solutions of the form

V(x,y,t)= V̂(x,y)eiωt, (6.1)

to the semi-discrete system (5.3). Substituting (6.1) in (5.3), we obtain the time harmonic
system























































iω(B̂x,ψx)=−
(

∂yÊ,ψx

)

,

iω(Ĥx,ψx)= iω
((

1+
σ

iω

)

B̂x,ψx

)

,

iω
((

1+
σ

iω

)

B̂y,ψy

)

=
(

∂xÊ,ψy

)

,

iω(Ĥy,ψy)= iω(B̂y,ψy),

iω
((

1+
σ

iω

)

D̂,φ
)

=
(

Ĥx,∂yφ
)

−
(

Ĥy,∂xφ
)

,

iω(Ê,φ)= iω(D̂,φ).

(6.2)

We assume that σ is a piecewise constant function of x with jumps at x= lh, l =0,1,2,··· ,
where h=hx =hy is the mesh step size. Let

σl =

{

Value of σ on (lh,(l+1)h), if l≥0,

0, if l <0.
(6.3)

Using the definition (3.3), we have

sx,l = sl =1+
σl

iω
. (6.4)

Since σy = 0, we have sy = 1. The PML is in the half space x > 0 and the computational
domain is in the half space x < 0. Therefore, x = 0 is the interface between the PML and
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Figure 2: Dependency diagram for an interior super element.

the interior computational region. Let us define the following matrix vector products for
an arbitrary double subscripted vector u:



































Mxul,m =4ul,m+ul−1,m+ul+1,m,

Myul,m =4ul,m+ul,m−1+ul,m+1,

S̃xul,m = Myul−1/2,m−Myul+1/2,m,

S̃yul,m = Mxul,m−1/2−Mxul,m+1/2,

Mzul,m = Mx Myul,m.

(6.5)

Consider an interior super element as shown in Fig. 2. Using the definitions from (6.5)
in the spatial discretization of (6.2), we obtain the following system of equations that
corresponds to the spatially discrete mixed finite element scheme (5.3):































































Mx B̂l,m+1/2 =
i

ωh
Mx(Êl,m+1−Êl,m),

MxĤl,m+1/2 =

(

sl +sl−1

2

)

Mx B̂l,m+1/2,

sl MyB̂l+1/2,m =
−i

ωh
My(Êl+1,m−Êl,m),

MyĤl+1/2,m = MyB̂l+1/2,m,
(

sl +sl−1

2

)

MzD̂l,m =
−6i

ωh
(S̃yĤl,m−S̃xĤl,m),

MzÊl,m = MzD̂l,m.

(6.6)
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Combining the equations in (6.6), we obtain an equation in E by eliminating the other
variables

−ω2h2

6

(

sl +sl−1

2

)

MzÊl,m =

(

sl +sl−1

2

)

(MxÊl,m+1−2MxÊl,m+MxÊl,m−1)

+
1

sl
(MyÊl+1,m−MyÊl,m)− 1

sl−1
(MyÊl,m−MyÊl−1,m). (6.7)

We now look for solutions to (6.7) of the form

Êl,m = Êle
−ikymh. (6.8)

After substituting (6.8) in (6.7), and performing some algebra, we obtain

− ζω2h2

6

(

sl +sl−1

2

)

(4Êl +Êl−1+Êl+1)=
1

sl
(Êl+1−Êl)−

1

sl−1
(Êl−Êl−1), (6.9)

where the coefficient ζ is defined as

ζ =1− 12

ω2h2

(

sin2(kyh/2)

1+2cos2(kyh/2)

)

. (6.10)

Let kx and k
pml
x be the x components of the wave vector in free space and the PML, respec-

tively. To calculate the reflection coefficient for the infinite PML, we look for solutions to
(6.9) of the form

Êl =

{

e−ikxhl +Reikxhl , for l <0,

Te−k
pml
x hl, for l >0,

(6.11)

where the reflection coefficient is R, and T is the transmission coefficient. Consider the
equations associated to the node at the interface l =0 and one node each on either side of
the interface at l =1, and l =−1. From (6.9) we have































− ζω2h2

6
(4Ê−1+Ê−2+Ê0)=(Ê0−Ê−1)−(Ê−1−Ê−2),

− ζω2h2

6

(

1+s0

2

)

(4Ê0+Ê−1+Ê1)=
1

s0
(Ê1−Ê0)−(Ê0−Ê−1),

− ζω2h2

6

(

s1+s0

2

)

(4Ê1+Ê0+Ê2)=
1

s1
(Ê2−Ê1)−

1

s0
(Ê1−Ê0),

(6.12)

where ζ is defined in (6.10), and sl is defined in (6.4). Substituting for Êl from (6.11) in
(6.12) we obtain three equations in the unknowns Ê0, R and T. Solving these resulting
equations for R, we can show that the reflection coefficient has the Taylor series expansion

R=− 1

16ω2
(ω2−k2

y)σ(σ+2iω)h2 +
1

48ω3
σ2(σ+2iω)(ω2−k2

y)
3/2h3+O(h4). (6.13)
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The formula (6.13) implies that the reflection coefficient is proportional to h2.
Next, we study the effects of terminating the PML by a PEC. This amounts to setting

Ê=0 at the boundary x=δ=Nh of the PML, i.e. ÊN=0. Here, N is the number of nodes per
wavelength, i.e., the thickness of the PML is one wavelength and the number of nodes
per wavelength is equal to the number of nodes in the PML. To obtain the reflection
coefficient we write equation (6.9) for all the nodes in the PML as well as for the node at
the interface of the working volume and PML, Ê0, and node Ê−1 in the working volume
which is h distance away from the interface. Assuming that we know the value of Ê−2

we obtain a system of equations

AE=−(ω2h2ζ+6)E−2 ẽ1. (6.14)

In the above E=[Ê−1,Ê0,Ê1,··· ,ÊN−1]
T, ẽ1 =[1,0,0,··· ]T and the matrix of coefficients ob-

tained from (6.9) is

A=





















b−1 c0 0 ··· 0
a−1 b0 c1 0 ··· 0

0 a0 b1 c2
. . .

...
...

. . .
. . .

. . .
. . . 0

cN−1

0 0 ··· 0 aN−2 bN−1





















, (6.15)

where

al = ζω2h2

(

sl+1+sl

2

)

+
6

sl
,

bl =4ζω2h2

(

sl−1+sl

2

)

−6

(

1

sl
+

1

sl−1

)

,

cl = ζω2h2

(

sl−1+sl−2

2

)

+
6

sl−1
.

(6.16)

We can solve system (6.15) for the value of R by using (6.11) for l =−1 and l =−2. In this
case the reflection coefficient is calculated to be

R=−e2ikxh

(

1+(ω2h2ζ+6)κ eikxh

1+(ω2h2ζ+6)κe−ikx h

)

, (6.17)

where κ is the first diagonal entry in A−1.
Fig. 3 plots the reflection coefficient in decibels, Db (i.e., 20log10 R), versus the number

of nodes per wavelength N for different values of R0, the reflection coefficient at normal
incidence for θ =0 (top) and θ =π/4 (bottom). Fig. 4 plots the reflection coefficient in Db
versus the angle of incidence θ for R0=10−2 (top) and R0=10−4 (bottom). In these figures
we compare the reflection coefficient for the mixed FEM scheme with the reflection co-
efficient for the TE mode of the Zhao-Cangellaris’s PML model using the FDTD scheme
which was presented in [12]. As can be seen in these plots the reflection properties of the
FEM compare well with those of the FDTD method.
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Figure 3: Numerical reflection coefficient for θ =0 (top) and θ = π/4 (bottom). We note that, as we increase

the number of nodes per wavelength, the numerical reflection coefficient in both cases approaches Rcosθ
0 (exact).

In this plot σmax =3.

We note that the numerical reflection coefficient converges to the reflection coefficient
of the continuous model, which is Rcosθ

0 as we increase the value of N. We also note that as
θ approaches the value π the numerical reflection coefficient approaches the value 1. This
is a well known behavior of PML models, i.e., waves that are propagating transversely
to the interface between the domain of interest and a single PML, are not absorbed by
the PML. However, these waves get absorbed into the corner regions where two PMLs
overlap. We note again that the plots were obtained by considering PMLs that are one
wavelength thick, i.e., the number of nodes per wavelength is the number of nodes in the
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Figure 4: Numerical reflection coefficient for R0 = 10−2 (top), R0 = 10−4 (bottom). As N is increased, the

numerical reflection coefficient converges to Rcosθ
0 (exact). In this plot σmax =3.

PML.

Fig. 5 (left) plots the convergence of the numerical reflection coefficient to the theoret-
ical reflection coefficient, as the number of points per wavelength is increased. Here we
have used θ = 0. In all the above figures the polynomial grading (3.4) was chosen for σ
with m = 3 and σmax as in (3.5). The PML is in the region x > 0. Thus, x0 = 0 in (3.4) for
α= x.

The power of the polynomial grading for σ has an effect on the numerical reflection
errors as is known from analysis of PML models discretized using the FDTD scheme. In
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Figure 5: Difference between numerical and theoretical reflection coefficient (θ = 0) versus the theoretical
reflection coefficient for different values of N for both the FDTD and mixed FEM methods (left), and for
different values of the polynomial grading m for σ in the FEM method (right).

Fig. 5 (right), we plot the difference of the numerical and theoretical reflection coefficients
for the mixed FEM scheme against the theoretical reflection coefficient R0 for m∈{1,2,3,4}
with θ = 0 and N = 20. This figure demonstrates the strong influence of the power m of
the polynomial grading for σ on the reflection coefficient.

As indicated in (6.3), σ is a piecewise constant function of x with jumps at x = lh,
l = 0,1,2,··· , where h is the mesh step size. Thus, σl is constant on the interval (lh,(l+
1)h). To generate Figs. 3, 4 and 5 we have used σl defined by (3.4) and (3.5) at (l+1/2)h
as the constant value in (lh,(l+1)h) (sl+1/2 in Fig. 6). In Fig. 6 we plot the difference
in the numerical and theoretical reflection coefficients against the theoretical reflection
coefficients for different definitions of σl using θ=0 and N=20, The graph corresponding
to s0 uses σl defined at the left endpoint i.e., lh, as the constant value in (lh,(l+1)h).
Similarly, the graphs related to sl+1/2 and sl correspond to using σl defined at (l+1/2)h
and lh, respectively, as the constant value of σl in the interval (lh,(l+1)h). As can be seen,
the different choices have an effect on the numerical reflection coefficient.

7 Absorption of a pulse on the boundaries of a computational

domain

The numerical experiment described in this section evaluates the performance of the
UPML when a pulse strikes the boundaries of a computational domain. We measure
the amount of reflection that an outward propagating pulse produces as it moves from
free space to a boundary surrounded by absorbing PMLs.
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Figure 6: Difference between numerical and theoretical reflection coefficient (θ = 0) versus the theoretical
reflection coefficient with N =20 for different definitions of σl in the FEM method.

We choose our domain Ω to be the square [0,12]×[0,12], with a source located at
the center (6,6) of the square. The domain is surrounded by absorbing layers on all
four boundaries. We discretize the problem with a rectangular grid composed of 90×90
square elements of step size h = 2/15 and the time step is ∆t = 0.04/c (chosen to satisfy
the stability condition [6]). The source is taken to be the function [10]

f (x,y,t)= f1(x,y) f2(t),

where

f2(t)=

{

−2π2 f 2
0 (t−t0)e−π2 f 2

0 (t−t0)
2
, if t≤2t0,

0, if t≥2t0.
(7.1)

In the above, f0 =
c

20h
is the central frequency and t0 = 1/ f0. The function f1(x,y) is

defined as
f1(x,y)=e−7

√
(x−6)2+(y−6)2

. (7.2)

We obtain a reference solution by using the mixed FEM for the TM mode of Maxwell’s
equations on a larger domain ΩR containing 360×360 square elements, and the same
mesh step size and time step. The domain ΩR is terminated using PEC conditions on its
boundary. We have used the polynomial grading (3.4) for σ with the optimal value of
σmax as given in (3.5) with m=3.5.

The L2 norm of the error due to numerical reflections, which arise due to the finite
PML terminated by PEC conditions, is obtained by subtracting at each time step the field
E at any grid point inside Ω, from the field E at the corresponding point in ΩR, taking the
square of this difference and summing such differences over all grid points in Ω. We do
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Figure 7: Comparison of the L2 error for the UPML with a mixed finite element scheme and the split field PML
with the FDTD scheme on a 90×90 cells grid (top) and for a 180×180 cells grid (bottom). We note that
as the grid is refined and/or as the number of PML cells is increased the error in the mixed FEM and FDTD
schemes is about the same.

the above for three PML’s containing 4, 8 and 16 cells. A comparison is presented with
respect to the split field PML (SF) of Berenger discretized by the FDTD method, using
the same test problem. The reference solution for the split-field case is constructed in a
similar way. Fig. 7 shows the L2 error between the two reference solutions (Reference
Error) for the FDTD and the mixed FEM, and the L2 error of the two schemes for 4, 8 and
16 cell PMLs each. From Fig. 7 (top), we can see that the reference error (discretization
error) dominates for about 250 time steps. After this, as the wave exits the computational
domain, the reflection error due to the PEC backed PML takes over. We have used 20
nodes/wavelength (i.e., N =20) in our calculations. As can be seen, for a 16 cell PML the
reflection error is lower than the reference error. Fig. 7 (bottom) shows the L2 error be-
tween the two reference solutions (reference error) of the split-field and the mixed FEM,
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Figure 8: Propagation of the wave front. A top view of the solution is plotted at different time steps. The
magnitude of the solution is the same for all time steps.

and the L2 error of the two schemes for 4, 8 and 16 cell PMLs, for a refined discretization.
In this case, h = 1/15 and ∆t = 0.02/c. From Fig. 7 (bottom) we can see that a four cell
PML provides a good absorbing layer.

In Fig. 8, we plot the propagation of a pulse on a 180×180 cells domain backed by
an eight cell PML obtained using the mixed FEM. The wave front completely disappears
from the domain, as seen in the subplot corresponding to 320 time steps. All subplots are
plotted at the same magnitude.

8 Conclusion

In this paper, we have presented and analyzed a mixed finite element scheme for the
numerical solution of the 2D TM mode of the uniaxial PML. We have derived the nu-
merical reflection coefficient for the UPML discretized by the mixed FEM and compared
the results with the FDTD method. Based on our analysis, we can conclude that the
proposed scheme has absorbing properties that are comparable to those of PML models
discretized using FDTD. The extension of the mixed FEM to 3D is straightforward and
uses a combination of Nédélec’s elements and Nédélec-Raviart-Thomas elements for the
discretization of the electric and magnetic fields, respectively.

As in the case of the FDTD method, we also find here that the choice of the PML
conductivity affects the numerical reflection errors. Thus, a more rigorous analysis is
needed to determine the optimal choice of the polynomial approximation to the PML
conductivity that will minimize the numerical reflection errors that are generated using
the mixed FEM.
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