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Abstract. In this paper, we present solutions for the one-dimensional coupled nonlin-
ear Schrödinger (CNLS) equations by the Constrained Interpolation Profile - Basis Set
(CIP-BS) method. This method uses a simple polynomial basis set, by which physi-
cal quantities are approximated with their values and derivatives associated with grid
points. Nonlinear operations on functions are carried out in the framework of differ-
ential algebra. Then, by introducing scalar products and requiring the residue to be
orthogonal to the basis, the linear and nonlinear partial differential equations are re-
duced to ordinary differential equations for values and spatial derivatives. The method
gives stable, less diffusive, and accurate results for the CNLS equations.

Key words: The CIP-BS method; basis set; differential algebra; the Galerkin method; the coupled
nonlinear Schrödinger equation.

1 Introduction

In 1965, the numerical experiment of Zabusky and Kruskal [1] initiated the development
of the concept of the soliton and inverse scattering theory. Since then, many numerical
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methods have been proposed to elucidate complicated processes by accurately solving the
nonlinear partial differential equations (PDEs). The methods belong essentially to one of
two classes: spectral methods and grid methods. The main difference between these two
methods comes from the methodology in treating the spatial derivatives. With a spectral
method the solution is approximated by some finite linear combination of differentiable
basis functions, each one of which satisfies the boundary conditions. The derivatives in a
spectral method do not suffer from numerical inaccuracies. With a grid method, such as
the finite element method or the finite difference method, the derivatives are approximated
by some differences. It is often difficult to approximate the derivatives with sufficient
accuracy, because the derivatives are estimated by using only the values of the function
on a compact set of grid points. In general, spectral methods give accurate solutions with
a minimum number of discretization points, only if appropriate problem specific basis
functions are applicable. However, a finite difference method is typically more flexible and
easier to implement than a spectral method for systems with complex boundary conditions.
By considering the merits and demerits of each method, it is believed that the method in
which the solution is expanded by a finite number of local differentiable basis functions is
to be preferred.

As far as incorporating only the values at grid points, it seems difficult to improve
grid methods which exemplify the spectral method’s accuracy. Recently, a new numerical
method, the CIP-Basis Set (CIP-BS) method [2–4], has been proposed by generalizing the
concept of the Constrained Interpolation Profile (CIP) method [5, 6] from the viewpoint
of the basis set. The idea of the CIP method is that not only values but also their first
derivatives are treated as independent variables associated with the grid points, and the in-
formation lost inside the grid cell is retrieved by a Hermite type interpolation function [7].
The CIP method has been successfully applied to various complex linear and nonlinear
hydrodynamic problems, covering both compressible and incompressible flow [8], such as
shock wave generation, laser-induced evaporation, and elastic-plastic flow. However, the
methods using matrix operations are advantageous in investigating the characteristics of
the system, and a number of numerical methods for large, sparse systems developed for
the finite difference method or the finite element method can be adopted. With this view,
the CIP-BS method has introduced a polynomial basis set, by which physical quantities
are approximated with their values and derivatives associated with grid points. The gov-
erning equations are discretized into matrix form equations requiring the residuals to be
orthogonal to the basis functions via the same principle as the Galerkin method. The
CIP-BS method, in which the local polynomial basis functions corresponding to the val-
ues and spatial derivatives at each grid point belong to the complete set and the class CK ,
is called the CIP-BSK method. Numerical results in the solution of the linear Schrödinger
equation have demonstrated that accurate solutions are obtained by the method and that
the use of a higher order basis set is essential in increasing accuracy.

The purpose of this paper is to show that the CIP-BS method can be extended for
nonlinear operations on functions in the framework of differential algebra, and can be a
universal solver of nonlinear PDEs by exemplifying the solutions of the one-dimensional
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coupled nonlinear Schrödinger (CNLS) equations for the collision of two solitary waves:

i∂tu + ∂2
xu + (|u|2 + β|v|2)u = 0, (1.1a)

i∂tv + ∂2
xv + (|v|2 + β|u|2)v = 0, (1.1b)

where u and v are complex functions, and β is a coupling constant. Since the CNLS equa-
tions describe the propagation of light waves in a nonlinear birefringent optical fiber, they
have been studied intensively over 30 years to realize the idea of using optical solitons as
information bits in high-speed telecommunication systems. Moreover, collision of solitary
waves is a common phenomena in science and engineering. They have diverse applications
in many areas of physics, including nonlinear optics, hydrodynamics, and plasma physics.

The paper is organized as follows: In Section 2, we briefly review the CIP-BS method,
adding extensions to adapt the method to nonlinear PDEs. In Section 3, the discretized
equations are explicitly described for the CNLS equations. In Section 4, the efficiency and
accuracy of the CIP-BS method are demonstrated through the numerical results for the
interaction of solitons. The fact that the boundary conditions are imposed in a simple
manner with one-to-one correspondence to the analytical one is also shown. Concluding
remarks are given in Section 5.

2 Numerical method

Since the CIP-BS method is new and not widely known, we first summarize the method,
adding extensions for applying it to nonlinear PDEs.

We need a basis set where it is easy to define values and derivatives of an arbitrary
function, f(x), at the grid points. Therefore, we assume that the functions in the one-
dimensional domain R1 can be approximated by the CIP-basis set of degree K method
(CIP-BSK), where K refers to the order of the derivatives we retain in the calculation,
through the expression

f(x) =

N
∑

i=1

K
∑

k=0

f
(k)
i φk,i(x), (2.1)

where f
(k)
i is the k-th coefficient at the grid point xi, the summation with respect to the

index i is taken over all grid points, and the basis functions, φk,i(x), on the local support
[xi−1, xi+1] are expressed in the form

φk,i(x) = θi−1,i(x)φk,i−(x) + θi,i+1(x)φk,i+(x), (2.2)

where θi,i+1(x) = θ(x− xi)− θ(x− xi+1), with θ(x) denoting the Heaviside step function,
and φk,i−(x), φk,i+(x) are polynomials of degree (2K +1) determined from the constraints:

Dl
xφk,i±(xi) =

{

1 for l = k

0 for l = 0, 1, · · · , k − 1, k + 1, · · · , K
(2.3)
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Dl
xφk,i±(xi±1) = 0 for l = 0, 1, · · · , K, (2.4)

where Dx = ∂x is the derivative operator in x, and D0
x = 1. From these conditions,

φk,i−(x) and φk,i+(x) take the form (c0 + c1x + · · · + cKxK)(x − xi±1)
K+1, where ci are

constants determined from the (K + 1) constraints of Eq.(2.3).
The first derivative of the basis function is expressed as

Dxφk,i(x) = θi−1,iDxφk,i−(x) + θi,i+1Dxφk,i+(x). (2.5)

Here, we have used the fact that φk,i±(x)δ(x − xi±1) = 0 due to the relation xδ(x) = 0,
and φk,i−(xi) = φk,i+(xi), where δ(x) is the Dirac delta function. Similarly, we can obtain
the l-th order derivatives of φk,i(x) for l ≤ K + 1 as

Dl
xφk,i(x) = θi−1,iD

l
xφk,i−(x) + θi,i+1D

l
xφk,i+(x). (2.6)

Although the basis functions are constructed by using the distribution function θ(x), the
functions represented in the CIP-BSK method belong to the class CK . Therefore, it
is easily found that the k-th spatial derivative of f(x) at the grid point xi equals the

coefficient f
(k)
i , i.e.,

Dk
xf(x)|x=xi

= f
(k)
i . (2.7)

We can say that the basis set belongs to a complete set in the sense that the expansion
(2.1) could represent the exact solution with any degree of accuracy in the limit N → ∞
or K → ∞. If f(x) = 0 in Eq.(2.1), we can deduce that all the coefficients f

(k)
i are zero,

and that the basis functions are linearly independent. Then the function f(x) can also be

represented by this basis set as f = (f1, f2, · · · , fN ), where fi = (f
(0)
i , f

(1)
i , · · · , f

(K)
i ).

Let us define addition and multiplication of the functions as follows:

f(x) + g(x) ⇔ f + g = (f1 + g1, f2 + g2, · · · , fN + gN ) (2.8)

cf(x) ⇔ cf = (cf1, cf2, · · · , cfN ) (2.9)

f(x)g(x) ⇔ f · g = (f1 · g1, f2 · g2, · · · , fN · gN ), (2.10)

where c is a scalar value. Addition and scalar multiplication for fi are

fi + gi = (f
(0)
i + g

(0)
i , f

(1)
i + g

(1)
i , · · · , f

(K)
i + g

(K)
i ) (2.11)

cfi = (cf
(0)
i , cf

(1)
i , · · · , cf

(K)
i ) (2.12)

and multiplication is given by

fi · gi = (h
(0)
i , h

(1)
i , · · · , h

(K)
i ), (2.13)

where h
(j)
i =

∑j
l=0

j!
l!(j−l)!f

(l)
i g

(j−l)
i . The identity of addition and multiplication are (0, 0, · · · )

and (1, 0, · · · ), respectively. Eqs.(2.11) - (2.13) are the same as the definition for differential
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algebra KD1, (see ref. [9]). Therefore, the nonlinear operation on a function f(x), e.g.,
f−1(x),

√

f(x), sin(f(x)), or exp(f(x)), can be represented by the basis set using the
representation of f(x). For example,

f−1(x) =





1

f
(0)
i

,− f
(1)
i

f
(0)
i

2 ,
2f

(1)
i

2
− f

(0)
i f

(2)
i

f
(0)
i

3





when K = 2 and f
(0)
i 6= 0. It is worth noting that, although the operation Dn

x maps KD1

into K−nD1 in the differential algebra, we represent Dn
x as a matrix by introducing the

scalar product of the basis function φk,i(x) and φk
′
,i
′ (x) in the domain R as (see [2]):

< φk,i|φk
′
,i
′ >≡

∫

R

φk,i(x)φk
′
,i
′ (x)dx. (2.14)

Time evolution PDEs ∂f(x, t)/∂t = L̂[f(x, t)], where L̂ is a linear or nonlinear operator
involving spatial derivatives only, are reduced to ordinary differential equations by the
scalar product. Applying < φk,i|• >, (k = 0, 1, 2, · · · , K, i = 0, 1, 2, · · · , N), to the left-
hand side of the equation, we obtain

S
df

dt
= L[f ], (2.15)

where S is a positive-definite matrix with the elements Ski,k
′
i
′ =< φk,i|φk

′
,i
′ >, and L

is a linear or nonlinear operator on f . It is noted that, if the value of f
(kb)
ib

is specified
as the boundary condition, the equation corresponding to the < φkb,ib | is not included
in Eq.(2.15). Since Ski,k

′
i
′ is non-zero only for i

′

= i − 1, i, i + 1, S is a band diagonal
matrix with bandwidth 3(K +1). A term Dn1

x f(x, t)Dn2
x f(x, t) · · ·Dnm

x f(x, t) in L[f(x, t)]
is transformed to

L
(0n1n2···nm)
ki,k1i1,··· ,kmim

f
(k1)
i1

f
(k2)
i2

· · · f (km)
im

, (2.16)

where
L

(0n1n2···nm)
ki,k1i1,··· ,kmim

≡< φk,i|Dn1
x φk1i1 · · ·Dnm

x φkmim >,

and the summations for k1, k2, · · · are taken on 0, 1, · · · , K, and those for i1, i2, · · · on the
grid points. Hereafter, if a subscript appears twice in a term, this summation is assumed.
For example, if L contains a nonlinear term f∂f/∂x, the element of the corresponding

matrix is L
(001)
ki,k1i1,k2i2

=< φk,i|φk1i1Dxφk2i2 >. The elements of the matrix representation
of the operator L are non-zero only for il = i−1, i, i+1, are symmetric for the interchange
of the index klil and kl

′ il′ when nl = nl
′ , and can be analytically calculated. The rank of

the differential operator must satisfy one of the following conditions:

(1) nl ≤ K for l = 1, 2, · · · , m;

(2) the maximum of nl is K + 1, and the other nl are less than K;

(3) the maximum of nl is K + 2, and the other nl are less than K − 1.
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Otherwise, terms like θ(x)δ(x)
′

, which cannot be regularized, would appear. This dis-
cretization procedure is equivalent to the one in the Galerkin method in which the residual
∂
∂t

f(x, t) − L[f(x, t)] is required to be orthogonal to the basis functions φk,i(x).
Finally, we briefly describe how the multi-dimensional basis set is constructed. We

need a basis set such that the multi-dimensional function expressed by

f(x) =
N
∑

i=1

K
∑

k=0

f
(k)
i

φk,i(x), (2.17)

which satisfies ∂k

∂xk f(x)|x=xi
= f

(k)
i

, where x = (x1, x2, · · · , xv), i = (i1, i2, · · · , iv), N =
(N1, N2, · · · , Nv), k = (k1, k2, · · · , kv), and v is the dimension of the space. It is easily
verified that the functions

φk,i(x) = φk1,i1(x1)φk2,i2(x2) · · ·φkv ,iv(xv) (2.18)

satisfy the requirements when Eqs.(2.2) and (2.3) are taken into account. Then, the multi-
dimensional PDEs are discretized with the above mentioned procedure, if the integration
range in the scalar product is extended to the multi-dimensional domain, Rv.

3 The discretized CNLS equations

The discretized CNLS equations are obtained by multiplying < φk,i| on the left-hand side
to Eq.(1.1):

iSki,k
′
i
′

du
(k

′

)

i
′

dt
= −L

(02)
ki,k1i1

u
(k1)
i1

− L
(000)
ki,k1i1,k2i2

(|u|2(k1)
i1

+ β|v|2(k1)
i1

)u
(k2)
i2

,

iSki,k
′
i
′

dv
(k

′

)

i
′

dt
= −L

(02)
ki,k1i1

v
(k1)
i1

− L
(000)
ki,k1i1,k2i2

(|v|2(k1)
i1

+ β|u|2(k1)
i1

)v
(k2)
i2

, (3.1)

where the representations for |u|2 and |v|2 are obtained from those for u, v by applying
differential algebra. The difference between the two expressions (|u(x)|2 and |u|2(x)) is
O(∆x2K+2), because the values and derivatives up to Kth order of both functions coincide
at each grid point. Although it seems straightforward and accurate to discretize the term

|u|2v as L
(0000)
ki,k1i1,k2i2,k3i3

u
(k1)
i1

u
(k2)
i2

v
(k3)
i3

, where the overline denotes the complex conjugate,

we have used simplified expressions L
(000)
ki,k1i1,k2i2

|u|2(k1)
i1

v
(k2)
i2

to reduce the complexity of the
code and the computational time.

The local norm Nu,Nv, momentum J , and energy E are conserved when integrated
over x, i.e.,

d

dt
Nu =

d

dt

∫

R

Nudx = 0,
d

dt
Nv =

d

dt

∫

R

Nvdx = 0,

d

dt
J =

d

dt

∫

R

J dx = 0,
d

dt
E =

d

dt

∫

R

Edx = 0,



267 Utsumi, Aoki, Koga and Yamagiwa / Commun. Comput. Phys., 1 (2006), pp. 261-275

where

Nu = |u|2,Nv = |v|2,

J = Ju + Jv = − i

2
(u∂xu − u∂xu) − i

2
(v∂xv − v∂xv),

E = Eu + Ev + EI =
1

2
|u|4 − ∂xu∂xu +

1

2
|v|4 − ∂xv∂xv + β|u|2|v|2.

The discretized expressions for the global norm Nu, Nv, momentum J , and energy E are
written as:

Nu = L
(00)
k1i1,k2i2

u
(k1)
i1

u
(k2)
i2

, Nv = L
(00)
k1i1,k2i2

v
(k1)
i1

v
(k2)
i2

,

J = − i

2
L

(01)
k1i1,k2i2

[(u
(k1)
i1

u
(k2)
i2

− u
(k1)
i1

u
(k2)
i2

) + (v
(k1)
i1

v
(k2)
i2

− v
(k1)
i1

v
(k2)
i2

)],

E =
1

2
L

(00)
k1i1,k2i2

(|u|2(k1)
i1

|u|2(k2)
i2

+ |v|2(k1)
i1

|v|2(k2)
i2

) − L
(11)
k1i1,k2i2

(u
(k1)
i1

u
(k2)
i2

+ v
(k1)
i1

v
(k2)
i2

)

+βL
(00)
k1i1,k2i2

|u|2(k1)
i1

|v|2(k2)
i2

,

where L
(11)
ki,k1i1

=< Dxφk,i|Dxφk1i1 >.

We emphasize that the above discretized CNLS equations can also be derived with the

Lagrangian formalism regarding u
(k)
i , u

(k)
i , v

(k)
i , v

(k)
i as independent variables. By substi-

tuting the expansions (2.1) for u, v into the Lagrangian

L(t) =

∫

R

[

i

2
(u∂tu − u∂tu) + ∂xu∂xu − 1

2
|u|4

+
i

2
(v∂tv − v∂tv) + ∂xv∂xv − 1

2
|v|4 − β|u|2|v|2

]

dx, (3.2)

the Euler equations yield

iSki,k
′
i
′

du
(k

′

)

i
′

dt
= −L

(02)
ki,k1i1

u
(k1)
i1

− L
(0000)
ki,k1i1,k2i2,k3i3

(u
(k1)
i1

u
(k2)
i2

+ βv
(k1)
i1

v
(k2)
i2

)u
(k3)
i3

,

iSki,k
′
i
′

dv
(k

′

)

i
′

dt
= −L

(02)
ki,k1i1

v
(k1)
i1

− L
(0000)
ki,k1i1,k2i2,k3i3

(v
(k1)
i1

v
(k2)
i2

+ βu
(k1)
i1

u
(k2)
i2

)v
(k3)
i3

, (3.3)

and their complex conjugate equations. Here, we have used the symmetry property of L.
After making above mentioned approximations, we obtain Eq.(3.1). In this derivation,
the discretized Lagrangian is a function of the amplitudes of the modes q(t) and ˙q(t) (q =

u
(k)
i , u

(k)
i , v

(k)
i , v

(k)
i ). The dynamics can be discussed in the same manner as in ordinary

mechanics.
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Figure 1: The solutions of the CNLS equations for the interaction of two solitons with β = 0, v0 = 1.0, and
d0 = 25. The surface plots show the amplitude of the solitons. The line plot shows the absolute errors of
the global norm, momentum, and energy, where the first calculated values are taken as a reference, Nu(0) =
4.8, Nv(0) = 4.0, J(0) = 0.2, and E(0) = 3.0873.

4 Numerical results

We consider the CNLS equations (1.1) with the initial conditions [12,13]

u(x, 0) =
√

2r1sech(r1x − ξ1)e
iv1x,

v(x, 0) =
√

2r2sech(r2x − ξ2)e
iv2x.

In our calculations, we take r1 = 1.2, r2 = 1, ξ1 = −ξ2 = d0/2, and v1 = −v2 = −v0/4 > 0
such that the two solitons with different amplitudes approach with the velocity v0 and
collide at x ≈ d0(

1
r2

− 1
r1

)/4 ≈ 0 after t ≈ 1
2( 1

r1
+ 1

r2
)d0/v0 ≈ d0/v0. In the computer

program, a uniform grid is used and the matrix elements of S and L are calculated ana-
lytically. Since in many cases, the discretized equations (2.15) are stiff, the implicit solver
with general sparse Jacobian matrices developed by Hindmarsh [10] (dlsodis routine) is
used to time marching the discretized equations by requiring an overall tolerance level of
ε = 10−10.
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Figure 2: The solutions of the CNLS equation for the interaction of two solitons with β = 1, v0 = 1.0, and
d0 = 25. The surface plots show the amplitude of the solitons. The line plot shows the absolute errors of
the global norm, momentum, and energy, where the first calculated values are taken as a reference, Nu(0) =
4.8, Nv(0) = 4.0, J(0) = 0.2, and E(0) = 3.0873.

Figure 3: The relative errors of the global energy at t = 50 versus the grid interval for the solution of the CNLS
equations for the interaction of two solitons with β = 1, v0 = 1.0, and d0 = 25. The analytical value is taken
as a reference. The orders of the CIP-BS method used are as indicated.
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Figure 4: The solutions of the CNLS equations for the interaction of two solitons with β = 2/3, v0 = 0.32
and, d0 = 12.5. The surface plots show the amplitude of the solitons. The line plot shows the absolute
errors of the global norm, momentum, and energy, where the first calculated values are taken as a reference
Nu(0) = 4.8, Nv(0) = 4.0, J(0) = 0.064, and E(0) = 3.581.

Figs. 1 and 2 show the results for β = 0, v0 = 1.0, d0 = 25 and β = 1, v0 = 1.0, d0 =
25, respectively. Since the CNLS equations for β = 0 reduce to two independent NLS
equations, and for β = 1 to the Manakov equation, the behaviors of the solitons are
completely known from exact inverse scattering solutions [14]. The computations are
carried out over the range −30 ≤ x ≤ 30, 0 ≤ t ≤ 50 with a time step ∆t = 0.01 and a
space interval ∆x = 0.3 by the CIP-BS1 method. From Fig. 1, we can see the two solitons
move independently as expected by the analytic solution [12],

√
2risech(rix − 2rivit −

ξi)e
i(v1x+(r2

i
−v2

i
)t) for i = 1, 2. From Fig. 2, we can observe that the solitons collide at

t ≈ 23 and retain their identity after nonlinear interactions with the other soliton. The
errors of the global norm Nu, Nv, momentum J , and energy E are also shown in this figure.
Although it seems that the errors of the momentum and energy increase during strong
interaction, it is only due to the lack of approximation accuracy for monitoring variables,
i.e. the error is reduced soon after the interaction ended. The conservation property of
the energy by the CIP-BS method is well compared with those in [13], in which the multi-
symplectic method is used. The relative errors of the global energy versus ∆x and K, for
the case β = 1, v0 = 1.0, d0 = 25 and at the end of computation, are plotted in Fig. 3.
From this figure, we can recognize the CIP-BS0, CIP-BS1 and CIP-BS2 methods have
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Figure 5: The solutions of the CNLS equations for the interaction of two solitons with β = 0.3, v0 = 0.4,
and d0 = 12.5. The surface plots show the amplitude of the solitons. The line plot shows the absolute
errors of the global norm, momentum, and energy, where the first calculated values are taken as a reference
Nu(0) = 4.8, Nv(0) = 4.0, J(0) = 0.08, and E(0) = 3.549.

roughly 2nd, 4th and 6th order, i.e. order 2K +2, accuracy despite nonlinear interactions.
Although in this paper we only show numerical results calculated by the CIP-BS1 method,
the solutions are quickly improved by increasing the number of grid points, N , and/or the
order of the method, K.

Fig. 4 shows the results for the interaction of two solitons with β = 2/3, v0 = 0.32, d0 =
12.5. The computation is done for −70 ≤ x ≤ 70 (−30 ≤ x ≤ 30 is shown in the figure),
0 ≤ t ≤ 50 with a time step ∆t = 0.01 and a space interval ∆x = 0.2 by the CIP-BS1

method. The computational errors of the global momentum and energy increase during
interaction, and do not decrease. This is in contrary to the β = 1 case. We can say that
the global norms are conserved well due to their small errors. For β = 2/3, the CNLS
equations represent real single-mode birefringent fibers, where u and v represent the two-
linear polarizations. Much theoretical and numerical work has been performed [12,15–17]
for the use of solitons as information bits in optical communication systems proposed by
Hasegawa [18]. From Fig. 4 we observe that the collision takes place at t ≈ 26. This is
earlier than the expected time t ≈ 36, because the two solitons collide with sharp angle
and substantial interaction begins at t ≈ 10. The right-moving soliton, which has larger
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Figure 6: The solutions of the CNLS equations for the interaction of two solitons with β = 3, v0 = 1.6, and
d0 = 25. The surface plots show the amplitude of the solitons. The line plot shows the absolute errors of
the global norm, momentum, and energy, where the first calculated values are taken as a reference Nu(0) =
4.8, Nv(0) = 4.0, J(0) = 0.32, and E(0) = 2.229.

momentum and energy, is reflected back by the collision and the amplitude becomes even
larger. On the other hand, the left-moving soliton is reflected after collision, but becomes
even smaller transferring its energy to the larger one. The evolution of the solitons depicted
in Fig. 4 reproduces well the reflection scenario analyzed by the perturbation theory [12].

Figs. 5 and 6 show the results for the interaction of two solitons with β = 0.3, v0 =
0.4, d0 = 12.5, and β = 3, v0 = 1.6, d0 = 25, respectively. The computation is done for
−70 ≤ x ≤ 70 (−30 ≤ x ≤ 30 is shown in the figure) with a time step ∆t = 0.01 and a
space interval ∆x = 0.2 by the CIP-BS1 method. The computational errors of the global
momentum and energy increase from the beginning of the interaction, however, the global
norms retain its accuracy well. The collision for β not close to 1 transcends analytical
or perturbative treatments. However, interesting nonlinear phenomena like fusion and
creation of a new vector soliton are expected for β values far away from 1. In Fig. 5 we
can observe the fusion of two solitons colliding with small β and slow velocity. From Fig. 6
we can see that a new vector soliton is created after the collision of the two solitons with
large β and moderate velocity which is chosen to attain an appropriate interaction time.
Our results confirm previous research [12,13] with high numerical accuracy.
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Figure 7: The bouncing of the two interacting solitons with β = 1, v0 = 1.4, and d0 = 25. The line plots show
the time evolution of the global momentum and the absolute errors of the global norm and energy, where the
first calculated values are taken as a reference Nu(0) = 4.8, Nv(0) = 4.0, and E(0) = 2.559.
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In the above simulations (for β = 0, 1, 2/3, 0.3, 3), we have taken a spatial range large
enough such that small fractions of the scattered wave with high energy do not reach
the computational boundaries within the temporal range. In other words, the method
to implement boundary conditions is not considered, i.e., u(k), v(k) at the boundary are
regarded as state variables and time evolved. As a final illustration, we show how the
reflecting boundary conditions are incorporated. Fig. 7 demonstrates the bouncing of two
interacting solitons against walls with β = 1, v0 = 1.4 and d0 = 25. The computation is
done for 0 ≤ t ≤ 160, −20 ≤ x ≤ 20 with a time step ∆t = 0.01 and a space interval
∆x = 0.2 by the CIP-BS1 method. The boundary conditions Ju(x1) = Jv(x1) = 0 and

Ju(xN ) = Jv(xN ) = 0 are realized by setting u
(1)
1 = v

(1)
1 = 0 and u

(1)
N = v

(1)
N = 0,

respectively. From Fig. 7, we observe the global momentum changes its sign at t ≈ 40, 90
and 150 as expected, and the global norm and energy are calculated accurately.

5 Conclusions

We have generalized the CIP-BS method by introducing matrix representations and clar-
ifying the relation with differential algebra to adapt it to nonlinear partial differential
equations. The linear and nonlinear partial differential equations are reduced to ordinary
differential equations for values and spatial derivatives at the grid points. It is success-
fully applied to the one-dimensional coupled nonlinear Schrödinger equation. It has been
proved that the method gives stable, low diffusion, and accurate results. Since the method
does not depend on the structure of the specific properties of the governing equations, e.g.,
the conservative quantities or the symplectic structure, we can expect that perturbative
effects to the CNLS equations or other nonlinear systems are simulated properly. Further-
more, since the matrices, S and L, are sparse and sufficient to be calculated only at the
beginning of the simulation, the method is computationally efficient.

We believe the CIP-BS method is applicable for the study of the dynamics of a broad
spectrum of complex physical and engineering problems.
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