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Abstract. We propose an artificial boundary method for solving the deterministic
Kardar-Parisi-Zhang equation in one-, two- and three dimensional unbounded domains.
The exact artificial boundary conditions are obtained on the artificial boundaries. Then
the original problems are reduced to equivalent problems in bounded domains. A fi-
nite difference method is applied to solve the reduced problems, and some numerical
examples are provided to show the effectiveness of the method.
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1 Introduction

Surface growth is a class of important problems arising from many practical applica-
tions [22], such as molecular beam epitaxy, bacterial growth, fluid flow in porous media
or evolution of fire fronts, etc. During the recent two decades, many models based on
stochastic partial differential equations have been developed to simulate the mechanism
of surface growth. Among these, one of the most well known models is the one introduced
by Kardar, Parisi and Zhang (KPZ) [18],

ut = ν∆u+ λ|∇u|2 + η, (1.1)

where u = u(x, t) represents the height of surface growth at d−dimensional position x
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and time t, ν and λ are the parameters of diffusion and nonlinear terms, respectively. The
last term of the equation (1.1), η = η(x, t), is a Gaussian white noise which is produced
by a stochastic force.

The KPZ equation is the first continuum partial differential equation to model the
dynamics of surface growth. Based on it numerous studies have been carried out by many
authors. Among them a relevant problem is to study the dynamics of the KPZ equation
without noise term, which describes the relaxation of an initially rough surface to a flat
one.

In this paper, we study the initial boundary value problem of the deterministic KPZ
equations with a source term in unbounded domains,

ut = ∆u+ |∇u|2 + f(x, t), in R
d × (0, T ] (1.2)

u(x, 0) = u0(x), x ∈ R
d, (1.3)

u→ 0, when |x| → +∞, (1.4)

where d = 1, 2, or 3, and the initial value u0(x) and the source term f(x, t) vanish outside
a d-dimensional ball Bd

0 = {x : |x| ≤ R}, namely,

supp{f(x, t)} ⊂ Bd
0 × [0, T ], supp{u0(x)} ⊂ Bd

0 . (1.5)

For the numerical solution of problem (1.2)-(1.4), we need to introduce artificial boundaries
to make the domain finite, to find the artificial boundary conditions, and to reduce the
original problem to an equivalent problem on a bounded domain. The so-called artificial
boundary method has been the most efficient method for the numerical solution of PDEs
in an unbounded domain, including applications to wave equations [3, 8, 9, 19], elliptic
equations [4,11,12,25] and, most relevant to the current work, the parabolic equations [7,
13,14,21,24], etc. In general, the basic assumption of the artificial boundary method is that
the equation is linear. Consequently, certain analytic forms of the boundary conditions on
the artificial boundaries can be obtained. Usually, the artificial boundary method cannot
be applied directly to nonlinear problems. However, for some problems, if the equation
can be linearized outside the artificial boundaries, then it is possible to find the boundary
conditions on the artificial boundaries [5, 10,15].

The artificial boundary method of the KPZ equation is an extension of the existing
method for linear parabolic equations. Because the source term f(x, t) is compact, the
KPZ equation (1.2) can be transformed into a linear parabolic equation in the exterior
domain where the artificial boundary condition can be derived. After transforming it
back into the original variable, we can solve the problem on the finite domain. In the
one-dimensional case, we have used this idea to solve the Burgers equation in unbounded
domains [16].

Many numerical methods have been used for solving the stochastic KPZ equation (1.1)
in bounded domains, such as finite difference methods and their improved versions [1,20],
pseudospectral methods [6] etc. For the deterministic equation, an effective method is
the second order Crank-Nicolson scheme. The stability and convergence for the artificial
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boundary method for the parabolic equation are proposed in Wu and Sun [24]. It is
also unconditionally stable for the KPZ equation which is demonstrated in our numerical
examples. The deterministic KPZ equation (1.2) is often referred to as a simplest model
equation of the viscous Hamilton-Jacobi equation which has attracted much interest in
recent years (see [2, 26]).

The organization of this paper is as follows. In Section 2, we present exact and ap-
proximating artificial boundary conditions of the KPZ equation in one-, two- and three-
dimensional spaces. In Section 3, finite difference discretizations are discussed. Some
numerical results will be presented in the final section.

2 Artificial boundary conditions

Denote by Γ = ∂Bd
0 the artificial boundary and Ωe = R

d \Bd
0 by the exterior domain. In

order to obtain boundary conditions on the artificial boundary Γ, we consider firstly the
restriction of u on the exterior domain Ωe. It follows from the condition (1.5) that the
problem (1.2)-(1.4) satisfies

ut = ∆u+ |∇u|2, in Ωe × (0, T ] (2.1)

u(x, 0) = 0, x ∈ Ωe, (2.2)

u→ 0, when |x| → +∞. (2.3)

If we assume that the boundary condition u(x, t)|Γ is given, the above is a well-posed
problem. By the Cole-Hopf transformation v = eu − 1, the problem (2.1)-(2.3) can be
transformed into a linear problem [23],

vt = ∆v, in Ωe × (0, T ] (2.4)

v(x, 0) = 0, x ∈ Ωe, (2.5)

v → 0, when |x| → +∞, (2.6)

which can be solved together with the corresponding boundary condition on Γ.

In the one-dimensional case d = 1, the exterior domain Ωe consists of two semi-infinite
parts Ωl = {x : x < −R} and Ωr = {x : x > R}. Consider the problem (2.4)-(2.6) on the
right part Ωr. It can be verified that the solution v(x, t) is

v(x, t) =
x−R

2
√
π

∫ t

0
v(R, τ)

e−(x−R)2/4(t−τ)

(t− τ)3/2
dτ. (2.7)

From the formula (2.7), a relationship between ∂v
∂x and ∂v

∂t was obtained by Han and
Huang [13], namely,

∂v(R, t)

∂x
= − 1√

π

∫ t

0

∂v(R, τ)

∂τ

1√
t− τ

dτ. (2.8)
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A similar relationship can also be obtained on the left boundary x = −R,
∂v(−R, t)

∂x
=

1√
π

∫ t

0

∂v(−R, τ)
∂τ

1√
t− τ

dτ. (2.9)

When transforming them back into the original variable, we obtain the nonlinear artificial
boundary conditions of the one dimensional KPZ equation

∂u(R, t)

∂x
= − 1√

π

∫ t

0

∂u(R, τ)

∂τ

eu(R,τ)−u(R,t)

√
t− τ

dτ, (2.10)

∂u(−R, t)
∂x

=
1√
π

∫ t

0

∂u(−R, τ)
∂τ

eu(−R,τ)−u(−R,t)

√
t− τ

dτ. (2.11)

2.1 The two-dimensional KPZ equation

We now concentrate on the two-dimensional case d = 2. Let D be a bounded domain in B2
0

and Ωi = B2
0 \ D̄ the computational domain. We consider the following initial boundary

value problem in the bounded domain Ωi with the polar coordinates:

ut = urr + u2
r +

1

r
ur +

1

r2
(uθθ + u2

θ) + f(r, θ, t), in Ωi × (0, T ], (2.12)

u|∂D = g(r, θ, t), in ∂Ω × (0, T ], (2.13)

u(r, θ, 0) = u0(r, θ, 0), in Ωi, (2.14)

u|Γ = u(R, θ, t), (2.15)

where the artificial boundary condition Γ = {(r, θ) : r = R, 0 ≤ θ < 2π} is a circle
and u(R, θ, t) is unknown. In order to obtain the artificial condition on Γ, consider the
restriction of the solution on the unbounded domain Ωe, in which the KPZ equation can
be transformed into a parabolic equation [23] by the Cole-Hopf transformation v = eu−1,

vt = vrr +
1

r
vr +

1

r2
vθθ (2.16)

v(r, θ, 0) = 0, (2.17)

v → 0, when r → +∞, (2.18)

v|Γ = v(R, θ, t). (2.19)

To solve this problem, we look for the solution of the form

v(r, θ, t) = v0(r, t) +

∞
∑

m=1

αm(r, t) cosmθ + βm(r, t) sinmθ. (2.20)

Substituting the above form into (2.16), we obtain

∂v0
∂t

− ∂2v0
∂r2

− 1

r

∂v0
∂r

+

∞
∑

m=1

[(

∂αm
∂t

− ∂2αm
∂r2

− 1

r

∂αm
∂r

+
m2

r2

)

cosmθ

+

(

∂βm
∂t

− ∂2βm
∂r2

− 1

r

∂βm
∂r

+
m2

r2

)

sinmθ

]

= 0.

(2.21)
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The equation holds only when the coefficients of the series are equal to zero, which yields
the following one-dimensional problems:

∂v0
∂t

− ∂2v0
∂r2

− 1

r

∂v0
∂r

= 0, (2.22)

∂αm
∂t

− ∂2αm
∂r2

− 1

r

∂αm
∂r

+
m2

r2
= 0, m ≥ 1, (2.23)

∂βm
∂t

− ∂2βm
∂r2

− 1

r

∂βm
∂r

+
m2

r2
= 0, m ≥ 1. (2.24)

After solving the above equations together with the corresponding initial and boundary
conditions, we obtain a relationship between v, vt and vr on Γ [14],

∂v(R, θ, t)

∂r
= − 1

2R
√
π3

∫ t

0

∫ 2π

0

∂v(R,φ, τ)

∂τ
dφ
H0(t− τ)√

t− τ
dτ

− 1

R
√
π3

∫ t

0

∞
∑

m=1

∫ 2π

0

∂v(R,φ, τ)

∂τ
cosm(φ− θ)dφ

Hm(t− τ)√
t− τ

dτ

− 1

Rπ

∞
∑

m=1

m

∫ 2π

0
v(R,φ, t) cosm(φ, θ)dφ, (2.25)

with

Hm(t) =
4
√
t√
π3

∫

∞

0

e−µ
2t

J2
m(µR) + Y 2

m(µR)

dµ

µ
, (2.26)

where Jm(·) and Ym(·) are the Bessel functions of the first and second kinds of order m,
respectively.

Taking the first M terms of the summation and transforming it back into the original
variable, we obtain an approximate artificial boundary condition on Γ,

eu(R,θ,t) ∂u(R, θ, t)

∂r
≈ − 1

2R
√
π3

∫ t

0

∫ 2π

0

∂eu(R,φ,τ)

∂τ
dφ
H0(t− τ)√

t− τ
dτ

− 1

R
√
π3

∫ t

0

M
∑

m=1

∫ 2π

0

∂eu(R,φ,τ)

∂τ
cosm(φ− θ)dφ

Hm(t− τ)√
t− τ

dτ

− 1

Rπ

M
∑

m=1

m

∫ 2π

0
(eu(R,φ,t) − 1) cosm(φ, θ)dφ. (2.27)

For brevity, we write the approximating condition as

∂u(R, θ, t)

∂r
= KM (u, ut). (2.28)
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It is obvious that when M → +∞, the boundary condition is exact. With this boundary
condition, the original problem is reduced to an initial boundary value problem in the
bounded domain Ωi:

ut = urr + u2
r +

1

r
ur +

1

r2
(uθθ + u2

θ) + f(r, θ, t), in Ωi × (0, T ] (2.29)

u|∂D = g(r, θ, t), in ∂Ω × (0, T ] (2.30)

u(r, θ, 0) = u0(r, θ, 0), in Ωi, (2.31)

∂u(R, θ, t)

∂r
= KM (u, ut), on Γ. (2.32)

2.2 The three-dimensional KPZ equation

Under the spherical coordinates the KPZ equation in three dimensions is given by

ut = u2
r + urr +

2

r
ur +

1

r2
(u2
θ + uθθ + cot θuθ)

+
1

r2 sin2 θ
(u2
φ + uφφ) + f(r, θ, φ, t). (2.33)

In the exterior domain Ωe = {(r, θ, φ) : r > R, θ ∈ [0, π], φ ∈ [0, 2π]}, where the initial
value u(r, θ, φ, 0) and the source term f(r, θ, φ, t) vanish, the KPZ equation can also be
transformed into a parabolic equation [23] by the Cole-Hopf transformation v = eu − 1:

vt = vrr +
2

r
vr +

r2

sin θ

∂

∂θ
(sin θvθ) +

1

r2 sin2 θ
vφφ. (2.34)

The idea to obtain the artificial boundary condition is similar to that of the two-dimensional
case. For the parabolic equation (2.34), the 3D problem can be solved using the Fourier
series expansion. Let P lm(·)(m = 1, · · · , l = 1, · · · ,m) be the associate Legendre functions
in spherical coordinates. Then

Pm(cos γ) = P 0
m(cos ξ)P 0

m(cos θ)

+2

m
∑

l=1

(m− l)!

(m+ l)!
P lm(cos ξ)P lm(cos θ) cosm(ψ − φ), (2.35)

where Pm(·) is the Legendre polynomial of degree m, and γ, ξ and θ satisfy cos γ =
cos ξ cos θ+sin ξ sin θ cos(ψ−φ). The relationship between v, vt and vr on Γ = {(r, θ, φ)|r =
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R} was found by Han and Yin [17],

∂v(R, θ, φ, t)

∂r

= − 1

4πR

∫

S
v(R, ξ, ψ, t)dSξ,ψ − 1

4π3/2

∫ t

0

∫

S

∂v(R, ξ, ψ, τ)

∂τ
dSξ,ψ

1√
t− τ

dτ

−
∞
∑

m=1

[

(m+ 1)(2m + 1)

4πR

∫

S
v(R, ξ, ψ, t)Pm(cos γ)dSξ,ψ

+
2m+ 1

4
√
π3

∫ t

0

∫

S

∂v(R, ξ, ψ, τ)

∂τ
Pm(cos γ)dSξ,ψ

Hm+ 1
2
(t− τ)

√
t− τ

dτ

]

(2.36)

with

Hm+ 1
2
(t) =

4
√
t√

π3R

∫

∞

0

e−µ
2t

J2
m+ 1

2

(µR) + Y 2
m+ 1

2

(µR)

dµ

µ
.

Taking the first M terms of the summation and transforming back into the original vari-
ables, we obtain the approximate artificial boundary condition on Γ for the KPZ equation
in 3D,

eu(R,θ,φ,t) ∂u(R, θ, φ, t)

∂r

= − 1

4πR

∫

S
(eu(R,ξ,ψ,t) − 1)dSξ,ψ − 1

4π3/2

∫ t

0

∫

S

∂eu(R,ξ,ψ,τ)

∂τ
dSξ,ψ

1√
t− τ

dτ

−
M
∑

m=1

[

(m+ 1)(2m + 1)

4πR

∫

S
(eu(R,ξ,ψ,t) − 1)Pm(cos γ)dSξ,ψ

+
2m+ 1

4
√
π3

∫ t

0

∫

S

∂eu(R,ξ,ψ,τ)

∂τ
Pm(cos γ)dSξ,ψ

Hm+ 1
2
(t− τ)

√
t− τ

dτ

]

. (2.37)

Again for brevity, we write the approximating condition as

∂u(R, θ, φ, t)

∂r
= KM (u, ut).

3 Numerical approximation

We consider the numerical approximation of the reduced problem in the two-dimensional
case. In the computational region [a,R] × [0, 2π], let ∆r = (R − a)/I and ∆θ = 2π/J be
the spatial mesh size in r and θ, respectively, and let ∆t = T

N be the time step, where I, J
and N are positive integers. Let the grid points and temporal mesh points be

ri = a+ i∆r, θj = j∆θ, tn = n∆t,
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and denote the approximation of u(ri, θj , tn) by unij .
For the approximation of the KPZ equation, we use the second-order implicit Crank-

Nicolson scheme,

un+1
ij − unij

∆t

=
u
n+ 1

2
i+1,j − 2u

n+ 1
2

i,j + u
n+ 1

2
i−1,j

∆r2
+

(un+1
i+1,j − un+1

i−1,j)
2 + (uni+1,j − uni−1,j)

2

8∆r2

+
u
n+ 1

2
i+1,j − u

n+ 1
2

i−1,j

ri∆r
+
u
n+ 1

2
i,j+1 − 2u

n+ 1
2

i,j + u
n+ 1

2
i,j−1

r2i∆θ
2

+
(un+1
i,j+1 − un+1

i,j−1)
2 + (uni,j+1 − uni,j−1)

2

8r2i∆θ
2

+ f(ri, θj , tn+1/2), (3.1)

with initial and boundary conditions

u0
ij = u0(ri, θj, 0), un0,j = g(a, θj , tn), uni,0 = uni,J , (3.2)

where

u
n+ 1

2
ij =

1

2
(un+1
ij + unij).

On the artificial boundary Γ, we follow the method proposed in Han and Huang [14] to
discretize the integrals,

∫

Dn

∂eu(R,φ,τ)

∂τ
dφ
H0(tn − τ)

tn − τ
dτ

=

n
∑

l=0

J−1
∑

s=0

∆θ

∆t
(eu

l+1
I,s − eu

l
I,s)

∫ tl+1

tl

H0(tn+1 − τ)√
tn+1 − τ

dτ, (3.3)

∫

Dn

∂eu(R,φ,τ)

∂τ
cosm(φ− θj)dφ

Hm(tn − τ)

tn − τ
dτ

=
1

m2∆θ∆t

n
∑

l=0

J−1
∑

s=0

(eu
l+1
I,s − eu

l
I,s)

[

2 cosm(θs − θj) − cosm(θs+1 − θj)

− cosm(θs−1 − θj)
]

∫ tl+1

tl

Hm(tn+1 − τ)√
tn+1 − τ

dτ, (3.4)

where Dn = [0, 2π] × [0, tn+1]; and

∫ 2π

0
(eu(R,φ,tn+1) − 1) cosm(φ− θj)dφ =

1

m2∆θ

J−1
∑

s=0

(eu
n+1
I,s − 1)

×
[

2 cosm(θs − θj) − cosm(θs+1 − θj) − cosm(θs−1 − θj)
]

. (3.5)
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Since the above system is implicit, we must use an iterative method to solve it numerically.
Here a simple iteration method is used in our numerical experiments. At each iteration
step, we approximate the nonlinear term of (3.1) by

(un+1
i+1,j − un+1

i−1,j)
2 = (un+1

i+1,j − un+1
i−1,j)

(k)(un+1
i+1,j − un+1

i−1,j)
(k+1),

(un+1
i,j+1 − un+1

i,j−1)
2 = (un+1

i,j+1 − un+1
i,j−1)

(k)(un+1
i,j+1 − un+1

i,j−1)
(k+1),

where the superscript k denotes the k-th iteration for solving the nonlinear difference
equations at each time step. The initial iteration is chosen as (un+1

ij )(0) = unij .
Furthermore, in order to improve the convergence speed, we approximate the kernels

of (3.3) and (3.4) in the region [tn, tn+1] as follows:

eu
n+1
I,s − eu

n
I,s =

[

(un+1
I,s )(k+1) − unI,s

] 1

2

(

e(u
n+1
I,s

)(k)

+ eu
n
I,s

)

. (3.6)

Moreover, eu
n+1
I,s in (3.5) is approximated by the k-th iteration value. Finally, a related

problem is the computation of the integral

∫ tl+1

tl

Hm(τ)√
τ

dτ =
4√
π3

∫

∞

0

∫ tl+1

tl
e−µ

2τdτ

J2
m(µR) + Y 2

m(µR)

dµ

µ
.

The integral kernel decays slowly which reduces the computational efficiency. Fortunately,
this integral is independent of the variable u. Therefore, we can make some tables before
starting the numerical computations.

4 Numerical examples

To show the effectiveness of the new approach using artificial boundaries, we present some
two-dimensional numerical examples in this section.

Example 4.1. Consider the following initial boundary value problem in the domain in
the exterior of a circle:

ut = urr + u2
r +

1

r
ur +

1

r2
(uθθ + u2

θ), for r > a (4.1)

u(a, θ, t) = g(θ, t), (4.2)

u(r, θ, 0) = 0, (4.3)

with a = 2 and

g(θ, t) = log

[

1

t
exp

(

−(a cos θ − x0)
2 + (a sin θ − y0)

2

4t

)

+ 1

]

,

where (x0, y0) = (0.5, 0.5). The exact solution of the problem is

u(r, θ, t) = log

[

1

t
exp

(

−(r cos θ − x0)
2 + (r sin θ − y0)

2

4t

)

+ 1

]

.

We introduce the artificial boundary Γ = {(r, θ) : r = R, 0 ≤ θ < 2π} with R = 3.
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Table 1: Example 4.1: L1 errors and orders of accuracy.

M I × J Error Order M I × J Error Order

0 4 × 24 1.82e-2 – 3 4 × 24 2.15e-3 –

8 × 48 1.72e-2 0.08 8 × 48 1.07e-3 1.00

12 × 72 1.68e-2 0.06 12 × 72 5.86e-4 1.48

16 × 96 1.67e-2 0.06 16 × 96 4.40e-4 1.00

1 4 × 24 6.76e-3 – 4 4 × 24 2.15e-3 –

8 × 48 6.31e-3 0.10 8 × 48 9.24e-4 1.22

12 × 72 5.94e-3 0.15 12 × 72 3.85e-4 2.16

16 × 96 5.86e-3 0.05 16 × 96 2.11e-4 2.09

2 4 × 24 2.89e-3 – 5 4 × 24 2.15e-3 –

8 × 48 2.16e-3 0.42 8 × 48 9.21e-4 1.22

12 × 72 1.73e-3 0.55 12 × 72 3.76e-4 2.21

16 × 96 1.61e-3 0.25 16 × 96 1.97e-4 2.25

r
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1
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(a) (b) (c)

Figure 1: Errors at T for Example 4.1, with I = 16: (a) N = 2, with 15 contours from −3.85 × 10−3 to
4.04 × 10−3; (b) N = 3, with 15 contours from −2.82 × 10−4 to 5.74 × 10−4; (c) N = 4, with 15 contours
from −2.21 × 10−4 to 1.89 × 10−4.

Taking ∆r = 1
I , ∆θ = 2π

6I , ∆t = ∆r, and T = 1, we show the numerical errors and
orders of accuracy in Table 1 with different truncation order M . Here the L1-error E1 is
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defined by

E1 =
1

(I + 1)(J + 1)(N + 1)

N
∑

n=0

I
∑

i=0

J
∑

j=0

|u(ri, θj , tn) − unij|.

We can see that the numerical errors decrease fast with increasing values of the truncation
order M . When M ≥ 4, the order of convergence is close to 2. Fig. 1 shows the spatial
distribution of errors at t = T for M = 2, 3 and 4, respectively.

Example 4.2. To see the relation between the numerical errors and the truncation order
M more clearly, we consider the same problem as in Example 4.1 with different interior
boundary condition,

g(θ, t) = (1 − e−
3
2
t) cosωθ.

Here ω represents the frequency of the oscillation. The artificial boundary is also intro-
duced on Γ = {(r, θ) : r = R, 0 ≤ θ < 2π} with R = 3. In all numerical experiments, we
take ∆r = 1

I , ∆θ = 2πω
6I , ∆t = ∆r, and T = 1. So for different frequencies and the same

I, the grid point distribution in one wavelength is the same.

We obtain relative errors by comparing the solutions obtained with R = 3 and R = 8
with the same mesh size. The error is computed on the artificial boundary Γ (i.e. R = 3)
at time t = T . We show the results with I = 8 and the frequency modes ω = 1, 2 and 3 in
Figs. 2-4, respectively. It is observed that the solution converges very fast as M increases.
It is also observed that larger values of M are needed when the frequency ω becomes
larger.

Example 4.3. In this example, we consider the KPZ equation with a source term in the
domain outside of a circle,

ut = urr + u2
r +

1

r
ur +

1

r2
(uθθ + u2

θ) + f(r, θ, t), for r > a (4.4)

u(a, θ, t) = (1 − e−t) sin
πt

4
, (4.5)

u(r, θ, 0) = 0, (4.6)

with a = 2 and the source term

f(r, θ, t) = e−5(r−4)2 sin(
πt

4
) sin θ,

which decays rapidly in r. We introduce the artificial boundary on Γ = {(r, θ) : r = R, 0 ≤
θ < 2π} with R = 6. Outside of Γ, the source term is almost zero; thus we can use the
artificial boundary method to solve this problem in a bounded domain {(r, θ)|r < R}.

In out computations, we take ∆r = 4
I , ∆θ = 2π

J , ∆t = ∆r, and T = 8. Figs. 5 and
6 show the solution for different gird sizes at time t = 4 and 8 using the approximating
boundary condition with M = 4. We can see that the artificial boundary method can
solve this problem very well. In particular, almost no reflecting waves are produced near
the artificial boundary.
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Figure 2: Example 4.2: Numerical errors on the artificial boundary, with ω = 1.
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Figure 3: Example 4.2: Numerical errors on the artificial boundary, with ω = 2.
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Figure 4: Example 4.2: Numerical errors on the artificial boundary, with ω = 3.
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Figure 5: Example 4.3: u values at t = 4, with 20 contour lines ranging from −0.04 to 0.54.
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Figure 6: Example 4.3: u values at t = 8, with 20 contours lines ranging from −0.28 to 0.19.

5 Conclusion

In this paper, the artificial boundary method is applied to the nonlinear Kardar-Parisi-
Zhang equation in one-, two- and three-dimensional unbounded domains. With the Cole-
Hopf transformation, we are able to obtain the boundary conditions on the artificial
boundaries. These boundary conditions are in nonlinear forms. The original problems
are reduced to equivalent problems in bounded domains. This procedure is similar to the
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artificial boundary method for linear problems. Numerical examples demonstrate that this
reduction is very effective, and high accuracy can be obtained by using relatively small
computational domains.
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