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Abstract. In this paper, we present a model for grown-in point defects inside indium
antimonide crystals grown by the Czochralski (CZ) technique. Our model is similar to
the ones used for silicon crystal, which includes the Fickian diffusion and a recombina-
tion mechanism. This type of models is used for the first time to analyze grown-in point
defects in indium antimonide crystals. The temperature solution and the advance of the
melt-crystal interface, which determines the time-dependent domain of the model, are
based on a recently derived perturbation model. We propose a finite difference method
which takes into account the moving interface. We study the effect of thermal flux on
the point defect patterns during and at the end of the growth process. Our results show
that the concentration of excessive point defects is positively correlated to the heat flux
in the system.

Key words: Crystal growth; Czochralski technique; point defects; recombination; thermal flux;
finite difference method.

1 Introduction

Indium antimonide (InSb), a compound semiconductor which is useful as an infrared
detector and filter, has attracted considerable attention over the last several years. Due to
thermal fluctuation and/or presence of impurities during the crystal growth process, the
structure of the crystal posses various imperfections, known as defects. Among various
types of defect, the basic ones are the point defects (interstitial, vacancy, interstitialcy).

Most of the previous work on point defects has been done for silicon crystals. Taking
convective flux, diffusive flux and recombination of interstitials and vacancies into account,
Voronkov [21,22] proposed a model of micro-defect formation in silicon and authors in [8,
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13–15] followed the similar models. While many researchers [4,5,11,12,18] have improved
the model by adding the reduced heat transfer effects, Sinno et al. [17] have further
added the effect of nucleation of excess vacancies or excess interstitials. While the general
principle is similar for different types of crystals, material properties may have an impact
on the formation and dynamics of point defects.

In this paper we extend the Voronkov model [22] to indium antimonide crystal grown by
the CZ technique. The main objective of the paper is to compute the distribution of point
defects and their supersaturation values by solving the model equations numerically. We
will exam the effect of controlling parameters such as the heat fluxes at the gas/crystal and
melt/crystal interfaces on the point defects distribution. The rest of the paper proceeds
as follows. We present our basic model for two types of point defects in Section 2. A
numerical method for solving the model equations is proposed in Section 3. Numerical
results for the basic model are given in Section 4 and we finish the paper by a short
discussion in Section 5. A generalization of the basic model is given in the Appendix.

2 Basic model

To simplify the computation, we neglect the impurity atoms and interstitialcy defects.
Furthermore, we consider only neutral species of point defects and neglect charged species
and focus on the distribution of two types of point defects, namely interstitial and vacancy.
Taking convective flux, diffusive flux as a Fickian diffusion and recombination reaction
between interstitial and vacancy into account, mathematical model governing the point
defects is of the reaction-diffusion type, written as

∂CI

∂t
= ∇ · (DI∇CI − ~fpCI) − RIV (CICV − Ce

IC
e
V ), (2.1)

∂CV

∂t
= ∇ · (DV ∇CV − ~fpCV ) − RIV (CICV − Ce

IC
e
V ), (2.2)

where CI and CV are volume concentrations of interstitial and vacancy point defects,
respectively. RIV is the temperature dependent reaction rate, which determines how fast
the recombination is taking place. It can be expressed as a function of the mobility of
point defects and a free energy activation barrier as

RIV = 4πar(DI(T ) + DV (T ))e
−

∆GIV
kBT ,

where ar is an effective capture radius, kB , the Boltzmann’s constant and ∆GIV , the free
energy barrier against recombination of interstitial and vacancy. Ce

j , j = I, V are the
equilibria of Cj for a given temperature T, given by the formula

Ce
j = C0

j e
−

Ejf
kB

�
1

T
− 1

T0

�
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where C0
j is the value at reference temperature T0, the melting temperature and Ejf , the

formation energy of j-type defect. The diffusion coefficient Dj(T ) is given by the formula

Dj(T ) = D0
j e

−
Ej

kBT

where D0
j is the pre-exponential constant and Ej, the activation energy for diffusion of

the j-type point defect.
Now, the coordinate system is fixed at the top of the crystal. Then ~fp is the interface

speed due to growth and we have fixed our coordinate on the moving melt-solid interface.
Assuming that the growth direction is in the z−direction, the one-dimensional model
equation can be rewritten as

∂CI

∂t
=

∂

∂z

(

DI
∂CI

∂z

)

− RIV (CICV − Ce
I Ce

V ), (2.3)

∂CV

∂t
=

∂

∂z

(

DV
∂CV

∂z

)

− RIV (CICV − Ce
I Ce

V ), (2.4)

for 0 ≤ z ≤ S(t) where S(t) is the position of melt/crystal interface.
At the interface (z = S(t)) defects are formed and their values are assumed to be

the equilibria values. At the top (z = 0) we assume that the flux of the defects are zero.
Therefore, to solve the one-dimensional model equations, we apply the following boundary
conditions:

[interface] z = S(t) : Cj = C0
j ,

[top] z = 0 :
∂Cj

∂z
= 0.

(2.5)

Higher-dimensional models can be constructed similarly. In this paper, we consider
a perfectly cylindrical axi-symmetric crystal. As in the one-dimensional case, the two-
dimensional model equations are

∂CI

∂t
=

∂

∂z

(

DI
∂CI

∂z

)

+
1

r

∂

∂r

(

rDI
∂CI

∂r

)

− RIV (CICV − Ce
IC

e
V ), (2.6)

∂CV

∂t
=

∂

∂z

(

DV
∂CV

∂z

)

+
1

r

∂

∂r

(

rDV
∂CV

∂r

)

− RIV (CICV − Ce
IC

e
V ), (2.7)

for 0 ≤ r ≤ R where R is the radius of the cylindrical crystal.
Imposing no flux condition at the lateral surface in contact with gas (r = R) and

symmetric condition at the center of the crystal (r = 0), we get the following boundary
conditions in the case of axi-symmetric cylindrical crystal:

[interface] z = S(t) : Cj = C0
j ,

[top] z = 0 :
∂Cj

∂z
= 0,

[center] r = 0 :
∂Cj

∂r
= 0,

[lateral surface] r = R :
∂Cj

∂r
= 0.

(2.8)
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The diffusion coefficient Dj , the equilibrium concentration Ce
j and the rate of recom-

bination reaction RIV are all functions of temperature. So, the temperature distribution
inside the crystal plays a major role in the distribution of point defects. The dynamics of
the temperature profile T inside the crystal is governed by the heat equation

ρscs
∂T

∂t
= ks∇2T, (2.9)

where ρs, cs and ks are the density, specific heat capacity and the thermal conductivity of
the crystal, respectively. The temperature at the crystal-melt interface boundary is fixed
as the melting temperature T0 and Newton’s cooling law is applied at other boundaries i.e.
at the lateral surface and at the top of the crystal. Therefore, for solving equation (2.9),
following boundary conditions can be used:

[interface] : T = T0,

[lateral surface] : −ks
∂T

∂~n
= hgs(T − Tg),

[top] : ks
∂T

∂z
= hch(T − Tch),

(2.10)

where ~n, Tg, hgs and hch are outward unit normal vector, ambient gas temperature, crystal-
gas heat transfer coefficient and seed-chuck heat transfer coefficient respectively. The
interface position z = S(r, t) of the growing crystal, which determines the domain of the
point-defects model equations, can be obtained by the help of the Stefan condition

ρsL
∂S

∂t
= ks

∂T

∂~n

∣

∣

∣

∣

z→S−

− ql, (2.11)

where L and ql are the latent heat and the heat flux from the melt, respectively.
We normalize the concentration with respect to C0

I and let

u =
CI

C0
I

, v =
CV

C0
I

, t̂ = t∗t, with t∗ = 4πC0
I D0

Ie
−

EI+∆GIV
kBT0 .

Dropping the hat we get the resulting equations for u and v as follows:

∂u

∂t
= D∗

I

∂

∂z

(

DI
∂u

∂z

)

− RIV (uv − ueve) (2.12)

∂v

∂t
= D∗

v

∂

∂z

(

Dv
∂v

∂z

)

− RIV (uv − ueve), (2.13)

where

D∗
I =

1

4πC0
I e

−
∆GIV
kBT0

, D∗
V =

D0
V D∗

I

D0
I

,

DI(T ) = e
−

EI
kB

�
1
T
− 1

T0

�
, DV (T ) = e

− 1
kB

�
EV
T

−
EI
T0

�
,
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RIV (T ) = are
−

∆GIV
kB

�
1
T
− 1

T0

�(
e
−

EI
kB

�
1
T
− 1

T0

�
+

D0
V

D0
I

e
− 1

kB

�
EV
T

−
EI
T0

�)
,

ue =
Ce

I

C0
I

, ve =
Ce

V

C0
I

.

Similarly, the two-dimensional equations for u and v are

∂u

∂t
= D∗

I

∂

∂z

(

DI
∂u

∂z

)

+
D∗

I

r

∂

∂r

(

rDI
∂u

∂r

)

− RIV (uv − ueve), (2.14)

∂v

∂t
= D∗

v

∂

∂z

(

Dv
∂v

∂z

)

+
D∗

V

r

∂

∂r

(

rDV
∂v

∂r

)

− RIV (uv − ueve). (2.15)

In order to compute the distribution of the point defects, we have to solve the coupled
system of point defects model equations as well as the temperature equation. Since an
approximate solution is available for temperature, for simplicity, we will use the temper-
ature solution obtained in [1], which is reproduced below. For the one-dimensional case,
we have

T (z, t) = Tg + (T0 − Tg)Θ0(ẑ, t̂), (2.16)

with

Θ0(ẑ, t̂) =

√
2 cosh

√
2ẑ + δ sinh

√
2ẑ + δΘch sinh

√
2(S0(t̂) − ẑ)√

2 cosh
√

2S0(t̂) + δ sinh
√

2S0(t̂)
, (2.17)

dS0(t̂)

dt̂
=

√
2

√
2 sinh

√
2S0(t̂) + δ cosh

√
2S0(t̂) − δΘch√

2 cosh
√

2S0(t̂) + δ sinh
√

2S0(t̂)
− γ, (2.18)

where S0(0) =
√

ǫ
R Zseed, S0(t̂) =

√
ǫ

R S(t), ẑ =
√

ǫ
R z, ǫ =

hgsR
ks

, γ = qlR
ǫ1/2ks(T0−Tg)

, δ =

ǫ1/2hch/hgs, t̂ =
ksǫ(T0−Tg)

LR2ρs
t. The values δ = 0 and Θch = 0 correspond to the insulated

chuck and the cold chuck, respectively. Here, Zseed denotes the length of the seed crystal.

Similarly, for the two-dimensional model, the temperature distribution inside the cylin-
drical crystal has been given in [1] as

T (r, z, t) = Tg + (T0 − Tg)

((

1 − ǫr̂2

2

)

Θ0(ẑ, t̂) + ǫΘ0
1(ẑ, t̂)

)

, (2.19)

Θ0
1(ẑ, t̂) =

1

4
√

2

cosh
√

2ẑ

cosh
√

2S0

(S0 tanh
√

2S0 − ẑ tanh
√

2ẑ − 8S0
1 tanh

√
2S0), (2.20)

with

S(r, t) =
R√
ǫ
(S0(t̂) + ǫS1(r̂, t̂)), (2.21)
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where r̂ = r
R , S1(r̂, t̂) and S0

1 := S1(r, t̂)|r=0 are given by the following differential equa-
tions:

dS0
1

dt̂
=

(

dΘ0
1

dẑ
+ 2S0

1Θ0

)
∣

∣

∣

∣

ẑ=S0(t̂)

, S0
1(0) = 0, (2.22)

dS1

dt̂
=

[

dΘ0
1

dẑ
+ 2S1Θ0 +

r̂2

2

(

−dΘ0

dẑ
+

Θ2
0

dΘ0/dẑ

)]
∣

∣

∣

∣

ẑ=S0(t̂)

, S1(r̂, 0) = 0. (2.23)

3 Solution methodology

We solve the one-dimensional as well as the two-dimensional equations by a numerical
method. To solve these systems of partial differential equations, we use the finite dif-
ference method. As the boundary is moving (i.e. the crystal is growing) the size of the
domain is increasing with time. So, we have to update the domain at each time-step
by using the ordinary differential equation (2.18) in the one-dimensional case, and equa-
tions (2.18) and (2.23) in the two-dimensional case. The interface position in the one- and
the two-dimensional case is given by the relation S(t) = (R/

√
ǫ)S0(t̂) and equation (2.21)

respectively. This will determine the temperature profile too. Therefore, while solving
the system, we are not only solving for the concentration density of point defects but also
solving for the temperature distribution. Since the rate of the advance of the interface is
not constant, if we expect to keep uniform spatial step-size, we might end up getting grid
points different from those in the previous time-step. The value of these new grid points
can be calculated by using some interpolation techniques. However, we are not following
this technique here. We will work with a non-uniform spatial step-size. Keeping the pre-
vious grids as they are, we add the boundary point (interface) of the previous time-step
as a new grid point and the present interface position is taken as a new boundary. But
in this method, we have to be careful to choose the time-step because the time-step will
determine the added spatial step-size. In fact, the time-step should be chosen sufficiently
small so that the length of the advance of the interface is comparable with the existing
spatial step-size. Once the spatial step-size, say ∆z, of the initial seed crystal is decided,
the approximate time-step can be calculated by using the following relation:

∆t ≈ LRρst
∗∆zΥ

ks
√

ǫ(T0 − Tg)[2 sinh (
√

2ǫZseed/R) +
√

2δ cosh (
√

2ǫZseed/R) −
√

2δΘch − γΥ]
,

(3.1)
where

Υ =
√

2 cosh (
√

2ǫZseed/R) + δ sinh (
√

2ǫZseed/R).

This estimate of approximate time-step also works for the two-dimensional model. At the
boundaries in which Neumann’s boundary conditions are given, we determine numerically
the boundary values by using Taylor expansion with the given boundary conditions.
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3.1 One-dimensional case

We propose the following numerical scheme for solving the one-dimensional equations (2.12)
and (2.13).

Let the temporal step-size be ∆t, chosen sufficiently small. Let 0 = z0 < z1 < ...... <
zN = S(N∆t) be a partition of [0, S(t)] = [0, S(N∆t)] at the N th time-step and ul, vl, l =
1, 2, ..., N −1 be approximations to u, v respectively at the grid point zl. On a non-uniform
mesh grid, we use the discretization

∂

∂z

(

DI
∂u

∂z

)
∣

∣

∣

∣

zl

=
2

zl+1 − zl−1

(

DI(T (zl+ 1
2

))
ul+1 − ul

zl+1 − zl
− DI(T (zl− 1

2

))
ul − ul−1

zl − zl−1

)

.

The diffusion term in the v-equation is treated in the same way.

We use the implicit method of discretization for the diffusion term and the non-linear
source term will be handled explicitely. After making the approximate solutions ul and vl

satisfy equations (2.12) and (2.13), we obtain the following scheme:

−Al,u
l−1u

n+1
l−1 + Al,u

l un+1
l − Al,u

l+1u
n+1
l+1 = un

l − ∆tαn
l

−Al,v
l−1v

n+1
l−1 + Al,v

l vn+1
l − Al,v

l+1v
n+1
l+1 = vn

l − ∆tαn
l ,

l = 1, 2, ...N − 1, (3.2)

where

Al,j
l−1 =

2∆tD∗
JDJ(T (zl− 1

2

))

(zl+1 − zl−1)(zl − zl−1)
,

Al,j
l = 1 +

2∆tD∗
J

zl+1 − zl−1

(

DJ(T (zl+ 1
2

))

zl+1 − zl
+

DJ(T (zl− 1
2

))

zl − zl−1

)

,

Al,j
l+1 =

2∆tD∗
JDJ(T (zl+ 1

2

))

(zl+1 − zl−1)(zl+1 − zl)
,

αn
l = RIV (T (zl))(u

n
l vn

l − ue(T (zl))v
e(T (zl))),

j = u, v for corresponding J = I,V, respectively.

3.2 Two-dimensional case

Similarly, we propose the following numerical scheme for solving the two-dimensional equa-
tions (2.14) and (2.15).

We keep the temporal step-size and the partition along the z-direction (growth di-
rection) the same as those in the one-dimensional case. We set ∆r = R

Nr
as the spatial

step-size in the radial direction. Let ul,m, vl,m; l = 1, 2, ..., N − 1;m = 1, 2, ..., Nr − 1 be
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approximations to u, v, respectively at the grid point (zl, rm = m∆r). The approximate
solutions are made to satisfy the equations (2.14) and (2.15) at each grid point. This
produces the following scheme:

−Alm,u
l−1,mun+1

l−1,m− Alm,u
l,m−1u

n+1
l,m−1+ Alm,u

l,m un+1
l,m − Alm,u

l,m+1u
n+1
l,m+1− Alm,u

l+1,mun+1
l+1,m = un

l,m − αn
l,m,

−Alm,v
l−1,mvn+1

l−1,m− Alm,v
l,m−1v

n+1
l,m−1+ Alm,v

l,m vn+1
l,m − Alm,v

l,m+1v
n+1
l,m+1− Alm,v

l+1,mvn+1
l+1,m = vn

l,m − αn
l,m,

l = 1, 2, ..., N − 1;m = 1, 2, ..., Nr − 1, (3.3)

where

Alm,j
l−1,m =

2∆tD∗
JDJ(T (zl− 1

2

, rm))

(zl+1 − zl−1)(zl − zl−1)
,

Alm,j
l,m−1 =

∆tD∗
Jrm− 1

2

DJ(T (zl, rm− 1
2

))

rm∆r2
,

Alm,j
l,m = 1 + ∆tD∗

J

[

2

zl+1 − zl−1

(

DJ(T (zl+ 1
2

, rm))

zl+1 − zl
+

DJ(T (zl− 1
2

, rm))

zl − zl−1

)

+
1

rm∆r2

(

rm+ 1
2

DJ(T (zl, rm+ 1
2

)) + rm− 1
2

DJ(T (zl, rm− 1
2

))
)

]

,

Alm,j
l,m+1 =

∆tD∗
Jrm+ 1

2

DJ(T (zl, rm+ 1
2

))

rm∆r2
,

Alm,j
l+1,m =

2∆tD∗
JDJ(T (zl+ 1

2

, rm))

(zl+1 − zl−1)(zl+1 − zl)
,

αn
l,m = ∆tRIV (T (zl, rm))(un

l,mvn
l,m − ue(T (zl, rm))ve(T (zl, rm))),

j = u, v for corresponsing J = I,V, respectively.

For each time step, the interface position is determined by solving equation (2.18)
in the one-dimensional case and equations (2.18) and (2.23) in the two-dimensional case
using Euler’s method. In the case of the two-dimensional scheme, the system of equations
is solved by the Jacobi iteration method. The use of the Jacobi iteration method makes
this scheme suitable also for parallel computation. A brief overview of the computation
is outlined in Table 1. The values of the parameters used during calculation are given in
Table 2 and Table 3. The free energy barrier for recombination is taken as the difference
between the formation energies of corresponding interstitial and vacancy.

4 Results and discussion

4.1 One-dimensional case

In our simulation, we first fix the spatial step-size of the initial seed crystal as ∆z = 0.0023.
Using equation (3.1), we obtain the approximate time-step size as ∆t = 4.35 for γ = 0.
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Table 1: Outline of the numerical algorithm.

Initial variables
1. Set a partition of initial crystal (seed) (which can be taken as uniform mesh).
2. Determine ∆t sufficiently small so that added spatial step-size is comparable with

the existing step-size. (Use equation (3.1) to get the approximate value of the
time-step.)

3. Advance the interface by solving equation (2.18) in 1-dimensional case and equa-
tions (2.18) and (2.23) in 2-dimensional case.

4. Update the partition by adding previous boundary (interface) point as an interior
grid and new interface position as a boundary.

5. Solve the system of equations (3.2) in 1-dimensional case and (3.3) in 2-
dimensional case.

6. STOP if the crystal has reached the desired length; otherwise go to step 3.

Table 2: Parameter values for InSb Crystal (Source: [7]).

Item Symbol Value

Equilibrium concentration at melting point (m−3)

Interstitial C0
I 1.12 × 1020

Vacancy C0
V 1.2 × 1020

Pre-exponential factor for diffusion (m2/s)

Interstitial D0
I 1.76 × 109

Vacancy D0
V 1 × 108

Formation energy (eV)

Interstitial EIf 3.2

Vacancy EV f 1.76

Activation energy for diffusion (eV)

Interstitial EI 4.3

Vacancy EV 3.2

Free energy barrier against recombination(eV)

Interstitial + Vacancy GIV 1.44

Effective capture radius for recombination (m)

Interstitial + Vacancy ar 10−12

These values of ∆z and ∆t provide a set of non-uniform grids with spatial step-sizes
lying between 0.0003 and 0.0025. Even though ∆t is large compared to ∆z, our numerical
method remains stable here because the conditions ∆t < (∆z2/2D∗

I ) and ∆t < (∆z2/2D∗
V )

easily hold due to the small value of D∗
I and D∗

V .



520 Vaidya, Huang and Liang / Commun. Comput. Phys., 1 (2006), pp. 511-527

Table 3: Additional parameter values for InSb Crystal (Source: [1]).

Item Symbol Value

Melt temperature T0 798 K
Pulling speed fp 6.944 × 10−6 m/s
Mean crystal radius Rm 0.045 m
Final crystal length Z 0.30 − 0.34 m
Ambient gas temperature Tg 600 K
Solidus temperature Ts 798.4 K
Density ρs 5.64 × 103 kg/m3

Thermal conductivity ks 4.57 W/m K
Heat capacity ρscs 1.5 × 106 J/m3 K
Latent heat of fusion L 2.3 × 105 J/kg
Crystal-Gas heat transfer coefficient hgs 1 − 4 W/m2 K
Boltzman’s constant k 1.38 × 10−23JK−1

4.1.1 Point defects concentration

Since the terms in the model are temperature-dependent, in the distribution of point
defects inside the crystal, the distribution and variation of temperature inside the crystal
play the most important role. In fact, the length of the crystal continues to increase as
time passes. The length of the crystal reached during growth at different times is shown in
Fig. 1(a). The length calculated here is for 28 hours of growth, which corresponds to 956.7
scaled time in the simulation. This length depends upon the value of γ and the value of
hgs used. Increasing the value of γ decreases the length of the crystal whereas increasing
the value of hgs increases the length of the crystal in a particular duration of growth. The
case shown here is for γ = 0, hgs=3 W/m2K and R = 0.045m. At the end of 28 hours, the
growth of this condition will result in a crystal of length 30.11 cm. On average, it grows
by 10.75 mm/hr, which is slower than the normally adopted value in practice.

Temperature is time- as well as space-dependent. The temperature distribution inside
the crystal reached at different lengths at different times during the growth has been
presented in Fig. 1(b). The temperature at the interface is always the melting temperature.
At the beginning the temperature remains nearly the same because the crystal length is
very small, which is the length of the seed. Finally there is a rapid drop of the temperature
from the interface to the top.

The concentration of point defects obtained here is not the actual concentration of
point defects that remained in the crystal wafer. In fact, after the crystal is grown to
the desired length, the crystal is cooled to room temperature without growing. So, the
distribution of defects obtained here is the initial stage of the defects for rapid cooling by
turning the heater off. The dynamics during the cooling in which there is no growth has
to be represented by a different temperature field.
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Figure 1: (a) Length of the crystal reached at different instant during 28 hours growth with γ = 0 and hgs = 3
W/m2K. (b) Temperature distribution inside the crystal of different lengths reached at different instants during
growth.

At the beginning the crystal is thin. So, almost all of its portion is in touch with
the very hot melt, where most of the defects are assumed to form. So, we have taken
the initial distribution inside the thin crystal as the uniform highest value equal to C0

j ,
j = I, V . Fig. 2 shows the distribution of point defects inside the crystal at the different
times during growth. During the very first time interval, the crystal being thin and
hot, the point defects, which are formed at the interface, do not get sufficient time to
undergo diffusion and recombination. This results in high and uniform concentration
inside the thin crystal of initial stage. As the time increases, the crystal length becomes
longer. This causes a larger variation of point defects concentration inside the crystal. The
concentration decreases from the interface to the top at each of the time instants (9 hours,
18 hours and final). Moreover, at the top of the crystal, the slope of the curves tends to
zero at every instant due to no-flux boundary condition. However, away from the top, the
slope decreases as the crystal becomes longer and longer, showing that the concentration
of defects falls quickly from the interface to the top at the early hours of growth and
slowly at the late hours. Therefore, the middle part of the final crystal can be expected to
have approximately uniform defects. We notice that the value at the top remains almost
the same at 18 hours and 28 hours. While the top portion of the crystal asymptotically
approaches steady state, the interface portion remains approximately steady state with
the highest defect-concentration due to formation of the defects. It can be seen in Fig 3.
The major change inside a point of the crystal takes place until it reaches a certain
distance from the interface, after which it becomes almost steady-state. A rapid drop of
the concentration near the interface can be interpreted as the effect of recombination. As
the recombination becomes more effective at the higher temperatures, it causes a quick
reduction of concentration near the interface.
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Figure 2: Distribution of (a) interstitial (b) vacancy inside the crystal of different lengths reached at different
times during growth.
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Figure 3: Change of concentration of interstitial and vacancy with respect to time near the interface and the
top.

Actually, how many times the concentrations are bigger than their equilibrium values
determines how serious the defects are. These values are called the supersaturation of
defects. According to Tiller [19], the supersaturation value can determine the size of
the dislocation loops formed due to the supersaturation of vacancy and the size of the
extrinsic stacking fault loops formed due to the supersaturation of interstitial. Therefore,
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Figure 4: The concentrations of interstitial and vacancy normalized with their equilibrium value distributed
inside the crystal at the different times 0 hours, 9 hours, 18 hours and 28 hours.

an analysis of the supersaturation of point defects is important for the study of the defect
formation. The supersaturations of interstitial and vacancy obtained inside the crystal at
the different times (0 hours, 9 hours, 18 hours and 28 hours) during the growth are shown
in Fig. 4. Figure shows that the supersaturation of interstitial defects is higher than that
of vacancy defects even though the actual value of interstitial concentration is less. For a
short crystal, the supersaturation value is small but as the length of the crystal increases
the supersaturation value increases which increases the possibility of the formation of
more dislocation loops. As mentioned earlier the top of the crystal is almost the steady
state, where the supersaturation of interstitial defects is much more higher than that of
vacancy defects. So, the top will most probably contain more interstitial type loops than
vacancy-type loops.

4.1.2 Effect of the thermal fluxes

In our model together with the temperature equation, γ represents the non-dimensional
heat flux from the melt and hgs represents the crystal-gas heat transfer coefficient. We
present a brief analysis of the dependence of point defects concentration upon the values
of γ and hgs. As the length of the crystal grown depends upon these values, in both cases,
programs are run for different times for the different values of γ and for the different
values of hgs so that the final length of the crystal is 30 cm. Fig. 5 (a) and Fig. 5 (b)
show the interstitial concentration distribution and the vacancy concentration distribution
respectively at the end of the growth for the different values of γ. The values of γ chosen
are -0.15, -0.1, 0, 0.1, 0.15. For each value of γ the value of hgs is fixed as 3 W/m2K. As
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Figure 5: The concentration distribution of (a) interstitial (b) vacancy for the values of γ =
−0.15,−0.1, 0, 0.1, 0.15 in the final crystal of length 30 cm.

the value of γ increases, the concentration decreases. Therefore, the higher the value of
γ, the better the crystal grows. In practice, the value of γ can be controlled by adjusting
the growth condition such as heater temperature, crucible shape etc. However, the value
of γ can be increased only upto a certain limit otherwise the crystal will not grow.

It has been assumed that the heat transfer coefficient, hgs, incorporates both convective
and radiative heat transfer. We did observation of the final distribution of both interstitial
and vacancy by taking different values of hgs. The values of hgs chosen are 1, 2, 3 and 4
W/m2K. For each value of hgs the value of γ is fixed as 0. Fig 6 (a) and Fig 6 (b) show the
interstitial concentration distribution and vacancy concentration distribution respectively
for the values 1, 2, 3 and 4 W/m2K of hgs. Near the interface, the concentration has
negligible effect of hgs. But away from the interface, the value of concentration increases
with increase in the value of hgs. Therefore, the better crystals can be obtained by
adjusting the lower value of hgs. This fact is consistent with Bohun et al. [1] that one
should try to reduce the heat flux via the lateral surface when a crystal of larger radius is
grown. According to them, the heat flux through the side surface is an important factor
for reducing the overall thermal stress inside the crystal.

4.2 Two-dimensional case

In the following section, we will present a brief analysis of the two-dimensional model. In
this case, we take the value of hgs = 3 W/m2K, γ = 0 and the radius of the crystal R = 3
cm. The initial spatial step-size and temporal step-size are 0.0023 and 3.4 respectively. In
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Figure 6: The concentration distribution of (a) interstitial (b) vacancy for the values of hgs = 1, 2, 3, 4W/m2K
in the final crystal of length 30 cm.
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Figure 7: The point defect distribution inside the final crystal of length 30 cm.

the simulation, a crystal is grown for 20 hours (which corresponds to 683.4 scaled time)
producing a crystal of 30 cm length. Here the crystal has grown faster than the previous
case because of the smaller value of R.

Fig. 7 shows the distribution of point defects inside the final crystal of length 30 cm and
radius 3 cm grown for 20 hours. Large variations of the concentration of both vacancy and
interstitial occur in the axial direction. The variation along the radial direction is small.
We can clearly see that the vacancy is the dominant defect everywhere inside the crystal.
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5 Conclusion

We have presented a computational model for the distribution of point defects inside
indium antimonide crystal grown by the CZ-technique. We found that the major change
inside a point of the crystal takes place while it is within a certain height from the interface
(i.e. up to a certain temperature), after that it becomes an almost steady-state. The
middle portion of the final crystal contains approximately uniform defects. Even though
the vacancy concentration is higher than the interstitial concentration, the supersaturation
value of the interstitial is higher than that of the vacancy, showing that the top of the
final crystal most probably contains the interstitial type loops than the vacancy type loops.
Based on our results, a better crystal can be grown by increasing the heat flux from the
melt or/and by decreasing the lateral heat transfer coefficient. The radial variation of
defects concentration is negligible compared to their axial variation.

The basic model can be extended to include more types of defects. A brief discussion
of such a generalization is given in the Appendix.

Appendix: A model with more defects types

The basic model presented in this paper can be extended to include more defects types,
which is outlined here. Indium antimonide, being a compound semiconductor, can posses
two types of vacancy, namely indium vacancy and antimony vacancy; and two types of
interstitial, namely indium interstitial and antimony interstitial. We neglect the impurity
atom, interstitialcy defects and charged species. Therefore, we propose the model which
governs the dynamics of four types of point defects, namely indium interstitial, antimony
interstitial, indium vacancy and antimony vacancy.

As there are two types of interstitials and two types of vacancies, there are four pos-
sible ways of recombination. Taking the recombination into account along with all those
considered in early sections of this paper, we will have model equations as follows:

∂Cj

∂t
= ∇ · (Dj∇Cj − ~fpCj) −

∑

m

Rjm(CjCm − Ce
j C

e
m), (A.1)

where Cj = volume concentrations of j = Ii (indium interstitial), Is (antimony interstitial),
Vi (indium vacancy), Vs (antimony vacancy). Here, m = Vi, Vs if j = Ii or Is and m = Ii,
Is if j = Vi or Vs. Formula for reaction rate Rjm of recombination between j-type of
interstitial (or vacancy) and m-type of vacancy (or interstitial) is similar to the previous
case. Detail analysis of this model can be found in [20].
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