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Abstract. The transverse construction of optical modes in the wiggler is calculated and
the numerical simulations of the free-electron laser hole-coupled resonator are carried
out. These 3D-simulations include optical amplitude distributions, modes evolvement
of optical field and the influence of hole-radius on the distributing of modes. The nu-
merical simulations confirm that the fraction of the even-order modes increase in the
start-up stage and then decreases in the exponential gain stage. Moreover, it is found
that the fundamental mode is dominant in the saturate stage. Based on this observa-
tion, we estimate the optical output coupling by using the the fundamental mode. It is
found that the numerical results and the first-order estimate are in good agreement for
a range of the hole size.
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1 Introduction

Output hole has important impact on the structure of transverse optical modes. It also
introduces many difficulties in calculating the optical loss and output coupling. The earlier
theory [1, 2] studied the characters of transverse optical modes to the cold-cavity case
using the Fox-Li procedure [3]. In general, the results are in good agreement with the
experimental ones for gas laser and chemistry laser due to the fact that the corresponding
medium is uniform in the intercavity. However, for free electron laser (FEL) system, the
radius of the electron beam is very slim, and the gain and the optical guiding from electron
beam make the loaded and unloaded cavity cases very different. For example, Pantell et
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al. [4] and Xie and Kim [5] observed that many modes can coexist in the cold-cavity of
FEL, but this is not true in the loaded FEL cavity case. Krishnagopal et al. [6] and
Faatz et al. [7] carried out 2D-simulations to the FEL hole-coupled resonator considering
the influence of the electron beam. The profiles of the optical modes were simulated
in [8]. The three-dimensional (3D) simulations of a waveguide FEL oscillator was done
by Shu et al. [9]. Recently, some new optical resonators of FEL have been developed, see,
e.g., [10, 11]. For short Rayleigh length FEL resonator, Blau et al. [12] investigated the
problem of the optical mode distortion. From the point of view of modes, the research of
the interaction of optical and electron beam is useful in understanding the rule of FEL
hole-coupled resonator and for adjusting the hole-size in the experiments.

In this work, we will study the transverse optical modes of the FEL hole-coupled
resonator by using our FEL oscillator codes (3-DOSIFEL) [13, 14]. To our knowledge,
there have been very few detailed 3D simulations in this direction. The paper is organized
as follows. Firstly the optical modes are estimated by some series expansion methods.
Then the transverse construction of optical modes in the wiggler is calculated for the
FEL hole-coupled resonator with the consideration of the gain and optical guiding effects.
These 3D-simulations include amplitude distributions and modes evolvement of optical
fields, and the distributing of modes in the entrance and on the mirrors as a function of
the hole-radius. The transverse construction of the optical field will be determined by the
gain and optical guide of the electron beam, and the diffraction and the hole coupling
output. The numerical simulations confirm that the proportion of the high-order modes
will increase in the start-up stage then decrease in the exponential gain stage. Moreover,
the fundamental mode is dominant in the saturate stage. Based on these facts, the estimate
for the optical output coupling is obtained by using approximations for the fundamental
modes.

2 The estimate of the optical modes

The transverse spread of optical modes can be expressed as

Es(x, y, z) =

∞
∑

m,n=0

Amn(z)gmn(x, y, z). (2.1)

For ordinary FEL system, the stable cavity consists of two concave mirrors. The transverse
modes gmn are composed of the i products of Hermite-Gaussian modes in the x-direction
and y-direction [15].

Consider the interaction between electron beam and optical beam. It can be obtained
from the resonant condition that

d

dt

[

(kw + kz) z − ωt − (m + n + 1) tan−1 (z/zr)
]

= 0, (2.2)
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where dz/dt = βzc and ω = 2πνmn. It can be deduced that at z = 0

vmn =
εmnβzc

λw(1 − βz)
=

2εmnβzcγ
2
z

λw

, εmn = (m + n + 1)
1

kwzr

. (2.3)

The electron-beam and wiggler parameters used are listed in Table 1. The frequency of
mode can be calculated from the formula (2.3):

v0,0 = 124.41c, v0,1 = 123.66c, v0,2 = 122.91c,

v1,2 = 122.16c, v2,2 = 121.41c, v2,3 = 120.66c.
(2.4)

The corresponding comparative ratios of the high order mode and the fundamental mode
calculated from the formula (vm,n − v0,0) /v0,0 are 0, −0.6%, −1.2%, −1.8%, −2.41% and
−3.02%, respectively. Here the gain breadth of the FEL is 1/2Nu which is about 1%.
Therefore only very few modes can be excited. If the electron beam is injected without
misalignment, then the overlapping factor between the odd-order modes and the electron
beams will be zero due to the asymmetry of the Hermite polynomials. Consequently,
the odd-order modes cannot be simulated. The primary modes can be simulated are the
fundamental modes and the even-order modes.

3 The numerical simulations

The simulations are based on the 3-D FEL oscillator code (3-DOSIFEL) [13, 14] which
is developed in our institute in 1995. The function of the code is similar to that of the
3-DFELEX code in LANL. The dependability of the code has been done in [14]. In this
work, the code is modified to simulate the construction of the optical modes.

3.1 Basic equations and initial conditions

The 3-D FEL equations are composed of the electronic motion equations and the optical
field equations. The electron and optical coupling equations can be obtained following
the single-particle theory of FEL, see, e.g., [16–21]. We assume that the x-direction is
perpendicular to the magnetic field, and the y-direction is parallel to the magnetic field.

The electronic energy and phase equations. The electronic energy and phase equa-
tions are given by

dγ

dz
= −

∑

n

ωFuaw |a|
2cγβz

sin (θ + φ) , (3.1)

dθ

dz
= kw + k − ω

c
− ω

cβz(1 + βz)γ2

{

1 +
1

2
a2

w +
1

2
|a|2 − Fuaw|a| × cos(θ + φ) + γ2β2

⊥β

}

,

(3.2)

where aw = eAw/(mc2), a = |a|eiφ, u = ωa2
w/(8cγ2kw), Fu = J0(u) − J1(u), kw = 2π/λw,

ω = 2πc/λs, λw is the period of wiggler, λs the optical wavelength, c the velocity of light
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Table 1: The parameters of CAEP FIR FEL.

Electron beam Wiggler

Energy (MeV) 6.5 Period (cm) 3.0
Peak current (A) 5 Peak field strength (kG) 3.0
Micro bunch (ps) 20 Number of periods 50
Emittance (πmm mrad) 1.5 Optical

Energy spread (%) 0.5 Wavelength (µm) 110
Beam duct Cavity length (m) 2.536
Length (m) 1.5m Mirror curvature (m) 1.768

in vacuum, θ and φ are the phase of electron and optical field, respectively, e and m the
electron charge and mass, respectively, and γ and β⊥β the energy and betatron velocity
of the electron, respectively.

The equations for the betatron motion. The equations for the betatron motion of
an electron are

d2x

dz2
= −k2

βxx,
d2y

dz2
= −k2

βyy, (3.3)

where k2
βx = (awkx/γ)2 and k2

βy = (awky/γ)2.

The optical field equations. The optical field equation with the source is:

(

∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)

as = − 4πe

mc3

I

∆S

〈

Fuawx
e−iθ

γβz

〉

, (3.4)

where <> represents the average over electrons, and I is the current of electron beam. The
optical field equation without the sources describes the optical beam transmits without the
interaction with the electron beam. In fact, we can solve the problem by setting the right
of equation (3.4) to be zero. But the radius of the optical beam on the mirror is larger
than that in the middle of the wiggler. It is necessary to add more griddings and take
longer siumlation time to ensure the correctness of the simulation results. Therefore, for
simplicity and efficiency we use the variation radius of the optical beam to make unitary
coordinate. In other woirds, the breadths of the gridding in the middle and the end of the
resonator are the same in the new coordinate system. The optical field equation without
the sources can be expressed as [14,19]

∂2Ec

∂x̄2
+

∂2Ec

∂ȳ2
± 2i

∂2Ec

∂z̄2
+ [2 − (x̄2 + ȳ2)]Ec = 0, (3.5)

where x̄ =
√

2x/wz, ȳ =
√

2y/wz and z̄ = z. The ’+’ and ’−’ signs denote the
transmission direction of the optical beam. Then the optical field E is given by E =
E0Ec exp

[(

x̄2 + ȳ2
)

/2
]

, where E0 is the solution of the Gaussian fundamental mode.
Thus, the 3-DOSIFEL code is compiled using above equations. In the end of wiggler, the
value of the optical field is transformed from the (x,y,z) coordinate system to the (x̄,ȳ,z̄)
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coordinate system. Then in the entrance of wiggler of the next pass, the contradictory
transform is set to be the (x,y,z) coordinate system. On the mirror, the initial value is
decided by the condition of reflection. After many optical passes, the optical power will
saturate and the simulation is ended.

The initial conditions. In simulations, the distribution functions of the transverse
position, velocity, and the energy of the electron are assumed to be Gaussian. The corre-
sponding initial values of the sample electrons are given by Monte Carlo method and the
initial phases are loaded according to the ’quiet start’ scheme to eliminate the numerical
noise. The energy spread means FWHM and the emittance means RMS. The emittance
in the y-direction is the same as that in the x-direction, and the initial size of the electron
beam is chosen to obtain a circular cross-section at the center of the wiggler [19]. The
initial distribution of the optical field is given by the fundamental mode.

3.2 Optical mode analysis

In the FEL gain course, the mode proportion in the intercavity optical power is different.
Here, we will extract the optical power in the course of simulation and calculate the
proportion of each mode. It follows from (2.1) that

∫

ȳ

∫

x̄

Es(x̄, ȳ, z)g∗lqdx̄dȳ =

∫

ȳ

∫

x̄

∑

m

∑

n

Amngmng∗lqdx̄dȳ. (3.6)

The coefficients Amn is obtained by using the orthogonal properties of the Hermite func-
tions,

Amn =
w2

2m+nπm!n!

∫

ȳ

∫

x̄

Es(x̄, ȳ, z)g∗mn(x̄, ȳ, z)dx̄dȳ. (3.7)

The optical field of the mn-order mode Emn is given by

Emn(x̄, ȳ, z) =
w2

2m+nπm!n!
gmn

∫

ȳ

∫

x̄

Es(x̄, ȳ, z)g∗mn(x̄, ȳ, z)dx̄dȳ. (3.8)

The intercavity optical power Ps is

Ps = C

∫

x̄

∫

ȳ

|Es(x̄, ȳ, z)|2dx̄dȳ, (3.9)

where C is constant, and the optical power of the mn-order mode Pmn is

Pmn = C

∫

x̄

∫

ȳ

|Emn(x̄, ȳ, z)|2dx̄dȳ. (3.10)

Their ratio fmn is given by

fmn =
Pmn

Ps

=

∫

x̄

∫

ȳ
|Emn(x̄, ȳ, z)|2dx̄dȳ

∫

x̄

∫

ȳ
|Es(x̄, ȳ, z)|2dx̄dȳ

. (3.11)

Using (3.11) we can obtain the values of fmn and then know the mode evolvements.
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Figure 1: Plots of the amplitude of the optical field in the x and y plane. (a) the entrance of the wiggler,
pass=1; (b) the exit of wiggler, pass=20; (c) the output mirror, pass=20; and (d) the output mirror after the
saturation.

3.3 The simulation results

In Fig. 1, the amplitude of the optical field in the x and y plane are plotted at different
stages and different positions of the optical resonator. Fig. 1(a) shows the distribution
of the initial optical field given by the fundamental mode. With the development of the
optical field, the distribution becomes spinous as shown in Figs. 1(b) and 1(c). It can be
seen from Fig. 1(c) that the peak value is higher in the center of the optical field due
to the gain. It is also observed that the radius of the optical field becomes larger in the
mirror due to the diffraction and the high-order modes increase. Fig. 1(d) is the plot of
the amplitude of the optical field on the output mirror after the saturation. By comparing
Figs. 1(c) and 1(d), it is seen clearly that the radius is smaller due to the decreasing of
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Figure 2: The evolvement curves of fundamental
mode as a function of optical pass in the exit of
wiggler.
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Figure 3: The evolvement curves of even-order
modes (f02 and f20) as a function of optical pass
in the exit of wiggler.

the high-order modes.
The mode evolvement in optical field is also simulated, and the results are shown in

Figs. 2 and 3. It is seen from 2 that the fundamental mode decreases in the start-up
stage, increases in the gain stage, and stabilizes (about 98%) in the saturated stage. Fig.
3 presents the evolvement curves of two even-order modes, f02 and f20, as a function of
optical pass in the exit of wiggler. For larger pass, the high-order modes will be decreasing
due to their smaller gain and larger loss, as shown in Fig. 3. It is concluded that the
fundamental mode is dominant in the saturate stage.

The influence of the hole-radius on the distributing of modes is simulated in the en-
trance and on the mirrors. The results are shown in Tables 2-4. They are the distributing
of modes in the entrance and on the mirrors as a function of the hole-radius r. It can be
seen from Tables 2 and 3 that the loss of fundamental mode will increase with respect to
the hole-radius. When the hole-radius is 0.3cm, the proportion of the fundamental mode
will alter from 96.8% to 81% after the reflection on the output mirror. Because of the
asymmetry of the Hermite functions the odd-order modes cannot be stimulated. The pro-
portions of the even-order modes will increase with the increasing hole-radius as shown in
Table 2. When the hole-radius is 0.3cm, the proportion of fundamental mode is 81% after
being reflected, and becomes 93.6% in the entrance of the wiggler due to the large loss of
the high-order modes in the course of transmission, and then becomes 96.8% due to the
higher gain as shown in Tables 4 and 2. The transverse construction of the optical field
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Table 2: The transverse mode constructions of incident light on the output mirror.

r/cm f00 /% f01 /% f10 /% f02 /% f20 /% f22 /% f04 /% f40 /%
0.06 98.6 1.78E-6 1.81E-5 0.0175 0.0219 3.15E-3 0.080 0.060
0.09 98.7 1.76E-6 2.41E-5 0.0199 0.0227 2.91E-3 0.062 0.048
0.12 98.3 1.78E-6 2.70E-5 0.0221 0.0224 2.29E-3 0.043 0.035
0.18 98.0 2.50E-6 7.33E-5 0.0272 0.0189 8.25E-4 0.011 0.015
0.21 97.7 3.20E-6 8.61E-5 0.0336 0.0169 9.58E-4 0.0018 0.011
0.24 97.5 3.83E-6 1.25E-4 0.0447 0.0161 2.09E-3 0.0012 0.090
0.27 97.0 4.84E-6 1.52E-4 0.0624 0.0176 4.14E-3 0.015 0.013
0.30 96.8 7.14E-6 1.74E-4 0.0987 0.0270 6.31E-3 0.048 0.026

Table 3: The transverse mode construction of reflective light on the output mirror.

r/cm f00 /% f01 /% f10 /% f02 /% f20 /% f22 /% f04 /% f40 /%
0.06 97.9 9.96E-7 1.67E-5 0.010 0.0072 0.0049 0.11 0.13
0.09 97.1 1.31E-6 2.37E-5 0.0048 0.0044 0.015 0.17 0.18
0.12 95.5 1.83E-6 2.84E-5 0.014 0.017 0.034 0.25 0.27
0.18 91.8 2.39E-6 8.09E-5 0.12 0.13 0.12 0.56 0.58
0.21 89.3 3.19E-6 9.44E-5 0.23 0.25 0.19 0.83 0.83
0.24 86.8 4.38E-6 1.46E-4 0.40 0.43 0.28 1.2 1.1
0.27 83.9 6.18E-6 1.86E-4 0.67 0.68 0.40 1.6 1.5
0.30 81.2 7.88E-6 2.26E-4 1.1 1.0 0.55 2.2 1.9

Table 4: The transverse construction of optical modes in the entrance of wiggler.

r/cm f00 /% f01 /% f10 /% f02 /% f20 /% f22 /% f04 /% f40 /%
0.06 98.4 1.86E-6 2.01E-5 0.072 0.079 0.0033 0.102 0.104
0.09 98.4 2.73E-6 2.92E-5 0.10 0.11 0.0067 0.105 0.104
0.12 97.8 4.01E-6 3.81E-5 0.15 0.15 0.013 0.107 0.104
0.18 97.0 5.09E-6 1.01E-4 0.31 0.31 0.046 0.123 0.112
0.21 96.3 6.61E-6 1.16E-4 0.45 0.44 0.078 0.140 0.122
0.24 95.6 8.84E-6 1.82E-4 0.62 0.61 0.12 0.154 0.129
0.27 94.4 1.18E-5 2.32E-4 0.86 0.84 0.18 0.172 0.138
0.30 93.6 1.31E-5 2.89E-4 1.2 1.2 0.26 0.202 0.155

is determined by the gain and optical guide of the electron beam, the diffraction and the
hole coupling output. In general, the fundamental mode is dominant in the intracavity.
By considering the output coupling and loss, it is suggested that the suitable range of the
hole-radius is 0.06-0.1cm. In this range, the proportion of the fundamental mode is above
97% in the whole intracavity.

4 The calculation of the output coupling

It is suggested from the above numerical simulations that the fundamental mode is the
main mode after its competition with other modes. Therefore, it is reasonable to use the
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Figure 4: The comparison between simulative and estimative curves of optical output coupling as a function of
the hole size.

fundamental mode to estimate the output coupling and other optical cavity characters.
Here, the estimate of the optical output coupling is calculated using the approximation
for the fundamental mode. The magnitude of unitary optical field can be expressed by

Ēmn =

√

2

π

1

w

(

1

2m+nm!n!

)
1

2

Hm

(√
2x

w

)

Hn

(√
2y

w

)

exp

(

−x2 + y2

w2
+ iθmn

)

. (4.1)

The ratio of the output coupling ηh using the fundamental mode is given by

ηh =

∫ ∫

Σh

Ē00 · Ē∗

00dxdy = 1 − exp
(

−2r2/w2
)

, (4.2)

where Σh and r are the area and the radius of output hole, resepctively, and w is the
optical radius in the output mirror.

According to the parameters in Table 1, the size of w is 0.9929cm. The comparative
results between the estimate (4.2) and the simulation are shown in Fig. 4, from which
it can be seen that the full numerical and first-order approximation results agree well.
When the hole-radius is less than 1.5mm, the numerical result is just slightly larger than
the estimative one. When the hole-radius becomes larger, the full numerical result is less
than the the result (4.2) due to the involvement of more high-order modes.

5 Conclusions

The transverse construction of the optical modes in the wiggler is simulated to the FEL
hole-coupled resonator. The results show that the proportion of the even-order modes
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increases in the start-up stage and then decreases in the exponential gain stage due to
the fact of less gain and more loss. It also demsintared that the fundamental mode is
dominant in the saturate stage. By simulating the influence of the hole-radius on the
transverse construction of the optical modes, it is found that the larger the hole-radius is,
the higher the proportion of the even-order modes will be. In general, the fundamental
mode is dominant in the intracavity. By considering the output coupling and loss, it is
suggested that the suitable range of the hole-radius is 0.06-0.1cm to CAEP FIR FEL.
Based on these facts, the estimate of the optical output coupling is approximated by using
the fundamental mode. The full numerical results and the estimate agree well for small
values of the hole-radius.

References

[1] G.T. Mcnice, V.E. Derr, IEEE J. Quantum Elect. 5 (1969) 569.
[2] J.M. Moran, IEEE J. Quantum Elect. 6 (1970) 93.
[3] A.G. Fox, T. Li, Bell Sys. Tech. J., 40 (1961) 453.
[4] R.H. Pantell, J.Feinstein, A.H. Ho, Nucl. Instrum. Meth. A296 (1990) 638.
[5] M. Xie, K.J. Kim, Nucl. Instrum. Meth. A 304 (1991) 792.
[6] S. Krishnagopal, M. Xie, K.J. Kim, A. Sessler, Nucl. Instrum. Meth. A318 (1992) 661.
[7] B. Faatz, W.B. Best, P.W. van Amersfoort, D. Oepts, Nucl. Instrum. Meth. A318 (1992) 665.
[8] R. Prazeres, M. Billardon, Nucl. Instrum. Meth A 318 (1992) 889.
[9] X.J. Shu, Y.Z. Wang, Y.Q. Jiang, Z.C. Zhang, W. Ding, Nucl. Instrum. Meth. A407 (1998)

76.
[10] E. Minehara, M. Sawamura, R. Nagai, N. Kikuzawa, M. Sugimoto, R. Hajima, T. Shizuma,

T. Yamauchi, N. Nishimori, Nucl. Instrum. Meth. A445 (2000) 183.
[11] E.A. Antokin, R.R. Akberdin, V.S. Arbuzov, M.A. Bokov, V.P. Bolotin, D.B. Burenkov, et

al., Nucl. Instrum. Meth. A528 (2004) 15.
[12] J. Blau, B.W. Williams, S.P. Niles, R.P. Mansfield, FEL2004, Proceedings of the 26th Inter-

national FEL Conference, Trieste, Italy, 2004, p. 78.
[13] Z. Wong, Y. Shi, High Power Laser Particle Beams 6(1) (1994) 65, in Chinese.
[14] T. Wang, Y. Wang, Z. Zhang, J. Yao, High Power Laser Particle Beams 7(1) (1995) 25, in

Chinese.
[15] D. Marcuse, Light Transmission Optics, Van Nostrand, Princeton N. J., 1973.
[16] B.D. Mcvey, Nucl. Instrum. Meth. A 250 (1986) 449.
[17] N.M. Kroll, P.L. Morton, M. N. Rosenbluth, IEEE J. Quantum Elect. 17 (1981) 1436.
[18] E.T. Scharieman J. Appl. Phys. 56(6) (1985) 2154.
[19] J.W. Strohbehn, Top. Appl. Phys. 25 (1978) 295.
[20] Z. Zhang, T. Wang, Y. Wang, J. Yao, Z. Yang, High Power Laser Particle Beams 3(2) (1991)

217, in Chinese.
[21] X. Shu, Y. Wang, Nucl. Instrum. Meth. A 483 (2002) 205.


