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Abstract. Optical wave-guiding structures that are non-uniform in the propagation
direction are fundamental building blocks of integrated optical circuits. Numerical
simulation of lightwaves propagating in these structures is an essential tool to engineers
designing photonic components. In this paper, we review recent developments in the
most widely used simulation methods for frequency domain propagation problems.
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1 Introduction

Optical waveguides [1–3] are structures that guide the propagation of light. They are
fundamental building blocks of optical communications systems [4] and integrated optical
circuits [5]. For a straight waveguide which is invariant along the waveguide axis (denoted
by z in this paper), the basic issue is to analyze the mode structures at a fixed frequency.
A propagating mode of a straight waveguide is a special solution of the Maxwell’s equa-
tions that depends on z as eiβz and decays to zero as the transverse variables (x and y)
tend to infinity. For a lossless medium, the propagation constant β is real. The problem
of computing the modes is an eigenvalue problem where β2 is the eigenvalue. An optical
waveguide is typically an open structure, that is, its cross section is the entire xy-plane.
As a result, a general wave field in a straight waveguide contains not only the propagat-
ing modes, but also a continuum (represented as an integral) of the radiation and the
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evanescent modes. A general three-dimensional optical waveguide may also have complex
modes [6, 7]. The propagation constants of these modes are complex and their mode pro-
files decay to zero at infinity. Analytic solutions of waveguides modes are only available
in a few simple cases. Numerical methods [8–10] are needed for computing the modes of
most practical waveguides.

Optical waveguides (or general wave-guiding structures) that are non-uniform in z are
important for integrated optics [5]. For example, a bent waveguide is used to turn the
propagation direction, an S-bend is used to introduce a lateral displacement, a Y -branch
is used to split one waveguide into two, a taper is needed to connect two waveguides
of different sizes, waveguide gratings are introduced for various purposes such as filters
and reflectors. To simulate the lightwave propagation in these z-varying wave-guiding
structures, accurate and efficient numerical or analytic methods are needed. The problem
is more difficult since the z-variable is no longer separated, except when the structure
is a bent waveguide with a constant bending curvature. In that case, the variable z
can be defined along the bend and be separated again. For a general z-varying wave-
guiding structure, the frequency domain propagation problem is a boundary value problem.
Assuming that the structure is z-invariant for z < 0 and z > a, we can impose boundary
conditions at z = 0 and z = a. The length of the structure a is usually much larger than
the typical wavelength. In some cases, a may be a few millimeters, but the free space
wavelength λ0 is on the order of a micrometer. Since a certain number of grid points
(or basis functions) are needed for each wavelength, standard numerical methods that
discretize the whole wave-guiding structure are prohibitively expensive.

Fortunately, a number of special features are available for typical optical waveguides.
Some efficient numerical and analytical methods have been developed to take advantage of
these features. Firstly, although the cross section of an open optical waveguide is the entire
xy-plane, the size of the waveguide core is on the order of λ0 and it is much smaller than
a. Using the powerful perfectly matched layer (PML) [11, 12] technique, the transverse
plane can be truncated to a relatively small region. Therefore, the propagation problem is
formulated in a domain with just one direction (i.e. z) having a particularly large length.
This special geometric feature gives rise to marching methods that reformulate (exactly
or approximately) the original boundary value problem as initial value problems in z.
Exact reformulations are developed for pairs of operators and they will be referred to as
the operator marching methods (OMM). Secondly, many structures such as waveguide
tapers, bent waveguides, S-bends and even Y -branches change with z slowly (i.e. there is
little variation on the scale of a wavelength in the z direction). For these slowly varying
waveguides, the beam propagation method (BPM) is widely used. These are marching
methods based on approximate one-way models. Thirdly, many z-varying wave-guiding
structures such as waveguide gratings, are made of piecewise z-invariant segments. The
bidirectional beam propagation methods (BiBPM) are designed to take advantages of this
feature. The mode matching method (MMM) is also widely used for piecewise z-invariant
structures. Both BiBPM and MMM are aimed at solving the full boundary value problem
while reducing unnecessary computation in each z-invariant segment. Each of these two
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methods have two variants depending on whether or not they are used together with
an operator marching method. In the following, we present these methods after a brief
introduction to the basic equations in Section 2.

2 Basic equations

For time-harmonic lightwaves propagating in a wave-guiding structure composed of linear
isotropic dielectric materials, the governing equations are the frequency domain Maxwell’s
equations:

∇× E = iωµ0H (2.1)

∇× H = −iωǫE (2.2)

∇ · (ǫE) = 0 (2.3)

∇ · H = 0, (2.4)

where ω is the angular frequency, the time dependence is e−iωt, µ0 (a constant) is the
magnetic permeability, ǫ is the permittivity of the medium. Furthermore, ǫ = ǫ0n

2, where
ǫ0 is the permittivity of vacuum, n = n(x, y, z) is the refractive index function. After
eliminating the z-components of the electric and magnetic fields, we obtain a system of
equations for the transverse components of the electric and magnetic fields:

−iωǫ0
∂Et

∂z
= AHt, −iωµ0

∂Ht

∂z
= BEt, (2.5)

where

Et =

[

Ex

Ey

]

, Ht =

[

Hy

−Hx

]

,

Ex, Ey, Hx and Hy are the x- and y-components of E and H, A and B are matrix operators
given by

A = k2
0I +

[

∂x(n−2∂x·) ∂x(n−2∂y·)
∂y(n

−2∂x·) ∂y(n
−2∂y·)

]

, B = k2
0n

2I +

[

∂2
y −∂2

yx

−∂2
xy ∂2

x

]

, (2.6)

and k0 = ω
√

µ0ǫ0 is the free-space wavenumber. Formally, we can write down separate
equations for the electric or magnetic transverse components using the inverses of A and
B. We have

A ∂

∂z

(

A−1 ∂Et

∂z

)

+ LEt = 0 (2.7)

B ∂

∂z

(

B−1∂Ht

∂z

)

+ MHt = 0, (2.8)

where L and M are operators defined as

L =
1

k2
0

AB, M =
1

k2
0

BA.
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After some simplifications, we have

L
[

f
g

]

=

[

k2
0n

2f + ∂2
yf − ∂2

xyg + ∂x[n−2∂x(n2f)] + ∂x[n−2∂y(n
2g)]

k2
0n

2g + ∂2
xg − ∂2

yxf + ∂y[n
−2∂y(n

2g)] + ∂y[n
−2∂x(n2f)]

]

, (2.9)

M
[

f
g

]

=

[

k2
0n

2f + ∂2
yf − ∂2

yxg + n2∂x(n−2∂xf) + n2∂x(n−2∂yg)

k2
0n

2g + ∂2
xg − ∂2

xyf + n2∂y(n
−2∂xf) + n2∂y(n

−2∂yg)

]

, (2.10)

for any given functions f and g.
In a z-invariant section of the structure, the refractive index function n and the oper-

ators A and B are independent of z, equations (2.7) and (2.8) are reduced to

∂2Et

∂z2
+ LEt = 0, (2.11)

∂2Ht

∂z2
+ MHt = 0, (2.12)

and the wave fields can be decomposed. For example, the transverse electric field can be
written as

Et = E+
t + E−

t ,

where E+
t represents waves propagating in the increasing z direction or evanescent waves

that decay in the increasing z direction. With a suitable definition of the square root
operator

√
L, we have

∂zE
+
t = i

√
LE+

t , ∂zE
−
t = −i

√
LE−

t .

The square root of L is a linear operator and it can be defined based on the spectral
decomposition [68–70] of the operator L. Let Φ and λ satisfy LΦ = λΦ, then

√
LΦ = βΦ,

where β =
√

λ is chosen to have Im(β) ≥ 0 and Re(β) ≥ 0 if Im(β) = 0. This ensures
that Φeiβz either decays exponentially as z increases or propagates in the increasing z
direction.

We consider a structure that is z-invariant for z < 0 and z > a. Let n = n0(x, y) and
n = n∞(x, y) for z < 0 and z > a, respectively. The operator L corresponding to these
two cases are denoted by L0 and L∞ respectively. For z < 0, we assume that an incident

wave E
(i)
t is given and we look for the reflected wave E

(r)
t . Since E

(i)
t and E

(r)
t correspond

to E+
t and E−

t respectively, we have the following boundary condition:

∂zEt + i
√

L0Et = 2i
√

L0E
(i)
t , z = 0 − . (2.13)

For z > a, we assume that there exist only outgoing waves and evanescent waves that
decay to zero as z → ∞. This gives rise to the following condition:

∂zEt = i
√

L∞ Et, z = a + . (2.14)

The boundary conditions for Ht are similar.
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For the 2-D cases, we have a refractive index n that is independent of y. Under the
assumption that E and H are also independent of y, the Maxwell’s equations can be
reduced to scalar Helmholtz equations. We have

∂2
zEy + ∂2

xEy + k2
0n

2(x, z)Ey = 0 (2.15)

for the transverse electric (TE) polarization and

∂z(n
−2∂zHy) + ∂x(n−2∂xHy) + k2

0Hy = 0 (2.16)

for the transverse magnetic (TM) polarization. Boundary conditions at z = 0− and
z = a+ can be similarly posed using square root operators.

3 Operator marching method

For waveguide problems, it is possible to reformulate the boundary value problems of
the frequency-domain Maxwell’s equations (or Helmholtz equations for the 2-D cases)
described in the previous section as “initial” value problems for pairs of operators. These
initial value problems are solved by marching in the z direction. For this reason, we name
this class of methods the operator marching method (OMM). One advantage of the OMM
is that its required computer memory is independent of the total length of the non-uniform
part of the waveguide, i.e., a. Compared with other methods that solves the boundary
value problem directly, the required computer memory of an OMM is much smaller.

The formulation based on a pair of scattering operators has been known for many years.
For simplicity, we consider the 2-D Helmholtz equation (2.15) for the TE polarization and
denote Ey by u in the following. As in Section 2, we assume that the structure is z-
invariant for z < 0 and z > a, and there are only outgoing or exponentially decaying
waves for z > a. First, we consider the case where the wave-guiding structure is piecewise
uniform in z. We have

0 = z0 < z1 < ... < zm = a, (3.1)

such that n(x, z) = nj(x) for zj−1 < z < zj . This is valid even for j = 0 and j = m,
if we define z−1 = −∞, zm+1 = ∞ and nm+1 = n∞. In the segment (zj−1, zj), we can
decompose the wave field as u = u+ + u−, such that

∂u+

∂z
= iΛju

+,
∂u−

∂z
= −iΛju

−, (3.2)

for
Λj =

√

∂2
x + k2

0n
2
j(x). (3.3)

For any z which is not a longitudinal discontinuity, i.e., z 6= zj for j = 0, 1, ...,m, we can
define the reflection operator R(z) and transmission operator T (z) by

R(z)u+(x, z) = u−(x, z), T (z)u+(x, z) = u+(x, a+). (3.4)
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At a discontinuity zj, the operators R and T are discontinuous there. The outgoing wave
condition for z > a gives rise to R(a+) = 0, and it is obvious that T (a+) = I where I is
the identity operator. These two operators can be easily solved from z = a+ to z = 0− in
a sequence of steps. To pass through the discontinuity zj , i.e., from zj+ to zj−, we have
the following formulas

C = Λ−1
j Λj+1[I − R(zj+)][I + R(zj+)]−1, (3.5)

R(zj−) = (I + C)−1(I − C), (3.6)

T (zj−) = T (zj+)[I + R(zj+)]−1[I + R(zj−)]. (3.7)

To march through a z-independent segment from zj− to zj−1+, we have

Pj = exp(i(zj − zj−1)Λj), (3.8)

R(zj−1+) = PjR(zj−)Pj, (3.9)

T (zj−1+) = T (zj−)Pj . (3.10)

In a different version, we define z0, z1, ..., zm at continuous points of the refractive index
function. For each zj , we further assume that there is a small neighborhood in which the
refractive index n is z-independent. This allows us to have a wave field decomposition
and define the operators T and R in the neighborhood of zj . On the other hand, n is
allowed to vary with z away from these small neighborhoods. Given the two operators
at zj, we can calculate these two operators at zj−1 by making use of the four scattering
operators r± and t± of the segment. For the segment (zj−1, zj), an incident wave at zj−1,
say v, gives rise to a reflected wave at zj−1 and a transmitted wave at zj and they are
r+v and t+v, respectively. Similarly, an incident wave w at z = zj (coming from z = +∞)
gives rise to the reflected wave r−w at zj and transmitted wave t−w at zj−1. Then, the
operators R and T at zj−1 are given by

R(zj−1) = [I − t−R(zj)r
−]−1[r+ + t−R(zj)t

+], (3.11)

T (zj−1) = T (zj)[t
+ + r−R(zj−1)]. (3.12)

The continuous formulation of the scattering operators was developed by Fishman [13]
based on the wave field decomposition

u = u+ + u−,
∂u

∂z
= iΛ(z)[u+ − u−], (3.13)

and the same definitions of R and T as before. It was found that u+ and u− satisfy the
following system:

∂

∂z

[

u+

u−

]

=

[

iΛ(z) − α(z) α(z)
α(z) −iΛ(z) − α(z)

] [

u+

u−

]

, (3.14)
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where α(z) = Λ−1(z)Λ′(z)/2, and R and T satisfy

dR

dz
= α(z) − [iΛ(z) + α(z)] R − R [iΛ(z) − α(z)] − Rα(z)R, (3.15)

dT

dz
= −T [iΛ(z) − α(z)(I − R(z))] . (3.16)

A different operator marching scheme is based on the Dirichlet-to-Neumann (DtN)
map Q and the Fundamental Solution (FS) operator Y [14]. These two operators are
defined at a fixed z by

Q(z)u(·, z) = ∂zu(·, z), Y (z)u(·, z) = u(·, a), (3.17)

for all solutions of the Helmholtz equation (2.15) (with u = Ey) satisfying the outgoing
wave condition for z > a. Therefore, we have

Q(a) = i
√

∂2
x + k2

0n
2(x, a+), Y (a) = I. (3.18)

For a piecewise z-invariant structure described earlier, we have the following marching
formulas from zj to zj−1 [15]:

Λj =
√

∂2
x + k2

0n
2
j(x), Pj = exp(i(zj − zj−1)Λj), (3.19)

C = [iΛj + Q(zj)]
−1[iΛj − Q(zj)], D = PjCPj , (3.20)

Q(zj−1) = iΛj(I − D)(I + D)−1, Y (zj−1) = Y (zj)(I + C)Pj(I + D)−1. (3.21)

In a more general setting, we may allow the refractive index n to vary with z for
zj−1 < z < zj. In that case, we can find the marching formulas using a solution operator
for this segment. If the Helmholtz equation has a unique solution in z ∈ (zj−1, zj) for
any given Dirichlet boundary conditions at z = zj−1 and z = zj , then we can find the
Dirichlet-to-Neumann map M of this segment, such that

M

[

u(x, zj−1)
u(x, zj)

]

=

[

∂zu(x, zj−1)
∂zu(x, zj)

]

.

If the operator M is partitioned as 2 × 2 blocks, we can easily derive the following

Q(zj−1) = M11 + M12[Q(zj) − M22]
−1M21, (3.22)

Y (zj−1) = Y (zj)[Q(zj) − M22]
−1M21. (3.23)

The continuous formulation based on the DtN and FS operators was developed in [14].
We have the following differential equations for Q and Y :

dQ

dz
= −Q2 − [∂2

x + k2
0n

2(x, z)], (3.24)

dY

dz
= −Y Q. (3.25)
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The operators Q and Y may fail to exist at some particular values of z. In that case, we
can use the Neumann-to-Dirichlet map or the more general Robin-to-Dirichlet (RtD) map
J . For a constant α, the RtD map is defined by

J

(

∂u

∂z
− αu

)

= u

for all solutions of the Helmholtz equation satisfying the outgoing wave condition for z > a.
Similar to the operator Y , we need the operator W given by

W

(

∂u

∂z
− αu

)

= u|z=a.

The marching formulas for J and W can be similarly derived. There are also simple
formulas that switches between (Q,Y ) and (J,W ).

In a practical implementation, the operators must be represented by matrices. If we
discretize the transverse operators by a finite difference or a finite element method, we
obtain matrix approximations of the operators. However, these matrices tend to be very
large. On the other hand, it is often much more efficient when the operator marching
schemes are used with a local eigenfunction expansion.

4 Local eigenfunction expansion

One of the most widely used methods for modeling optical waveguides is the mode match-
ing method [16–18]. The method is particularly suitable for 2-D piecewise z-invariant
wave-guiding structures. Consider the TE case and the piecewise uniform structure de-
fined in Section 3. For zj−1 < z < zj , the wave field can be decomposed as forward and
backward components and expanded in the eigenfunctions of the transverse operator, i.e.,
∂2

x +k2
0n

2
j(x), with unknown coefficients. The method completely avoids a discretization of

z in the interval (zj−1, zj). A set of equations for the coefficients in all z-invariant segments
can be established by the continuities of u and uz (again for (2.15)) and the boundary
conditions at z = 0− and z = a+. For a continuously z-varying structure, a discretization
in z is necessary. If z0, z1, ..., zm are the discretization points, we can approximate the
refractive index in each segment by its midpoint value:

n(x, z) ≈ n

(

x,
zj−1 + zj

2

)

= nj(x), zj−1 < z < zj . (4.1)

For a slowly varying waveguide, n varies with z slowly, the grid size in z can be relatively
large.

For open waveguides where the transverse variables are unbounded, the PML tech-
nique has been applied to the mode matching method [20]. When the transverse variable
x is terminated by a PML [19, 20], the set of eigenfunctions of the transverse operator is
discrete. A number of methods are available to compute the eigenmodes in the presence of
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a PML [21–26]. If the wave-guiding structure has a large length in the propagation direc-
tion (i.e. a large a), the operator marching techniques are useful. Earlier mode matching
methods [17,18] for optical waveguides are developed based on the “transfer matrix” op-
erator and they suffer from numerical instability. Stable mode matching schemes can be
developed in connection with a scattering operator [19] or a DtN-FS formalism [14, 15].

Consider a z-invariant segment zj−1 < z < zj , let {φ(j)
k , k = 1, 2, ...} be the eigenfunctions

of the transverse operator modified by the PML, we can expand the function R(z)φ
(j)
k ,

where R(z) is the reflection operator, as

R(z)φ
(j)
k =

∞
∑

l=1

rlk φ
(j)
l .

The matrix (rlk) can be truncated and used to represent the operator R. For the trans-
mission operator, we have

T (z)φ
(j)
k =

∞
∑

l=1

tlk φ
(m+1)
l ,

where φ
(m+1)
l (k = 1, 2, ...) are the eigenfunctions of the transverse operator for z > a.

Matrix representations of Q and Y are similarly defined.

The mode matching method is particularly advantageous for 2-D waveguides with a
piecewise constant refractive index profile. In that case, the eigenfunctions have piecewise
analytic formulas while the eigenvalues can be solved from a single nonlinear equation.
Unfortunately, for 3-D waveguides without rotation symmetry, analytic solutions are not
available. A large number of modes are often needed in the mode expansion method, but
computing the eigenmodes in each segment becomes a prohibitive task. Nevertheless, the
mode matching method can still be useful if many of the segments are identical.

5 One-way models

One-way models are widely used for modeling wave propagation in slowly varying wave-
guides. They are derived as approximations to the original governing equations and they
involve only first order derivatives in the propagation direction z and can be efficiently
solved as “initial value problems” by marching forward in z. For underwater acoustics,
the first one-way model was introduced by Tappert [27] in the 70’s. At about the same
time, a similar model was introduced by Feit and Fleck [28] for optical waveguides. A more
accurate one-way model was introduced later by Clarebout [29] for geophysical applications
and Greene [30] for underwater acoustics. These one-way models for field propagation are
actually closely related to the one-way operator introduced by Engquist and Majda [31,32]
for terminating unbounded domains. The higher order one-way models based on the
diagonal Padé approximants of the square root operator were developed by Zhang [33]
and Bamberger et al [34]. They were applied to underwater acoustics by Collins [35] and
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to optics by Hadley [36]. For historical reasons, the one-way modeling techniques are called
Parabolic Equation (PE) method and Beam Propagation Method (BPM) in acoustics and
optics, respectively.

We consider the Helmholtz equation (2.15) for the TE polarization. If the waveguide is
z-invariant, we have a decomposition u = u++u−, where u = Ey. The forward component
u+ satisfy ∂zu

+ = iΛu+ exactly, where Λ =
√

∂2
x + k2

0n
2 is the square root operator. For

a slowly varying waveguide, n = n(x, z) changes with z slowly. If we are interested in
waves that propagate in the positive z direction, we approximate the original Helmholtz
equation (2.15) by the following ideal one-way model:

∂zu = iΛu. (5.1)

The above is often called the one-way Helmholtz equation. Since n depends on z, so does
the operator Λ. Compared with the original Helmholtz equation (2.15), the ideal one-way
equation (5.1) is easier to solve, because it gives rise to an “initial value problem” in z.
This is true, especially when the square root operator is properly approximated.

For the transverse magnetic polarization, the ideal one-way model can also be written
as (5.1), if we let

u = Hy, Λ =
√

n2∂x(n−2∂x·) + k2
0n

2. (5.2)

For 3-D waveguides, we can use the transverse components of the electric or magnetic
fields. If the transverse components of E are used, we have the one-way equation (5.1)
with

u = Et, Λ =
√
L, (5.3)

where L is given in (2.9). Similarly, if we use the transverse magnetic components, we
need to define

u = Ht, Λ =
√
M, (5.4)

for M given in (2.10). One-way models based on (5.1) and (5.3) or (5.4) give rise to the
full-vectorial beam propagation methods [50].

For practical numerical implementations, it is expensive to evaluate Λ rigorously using
its definition by the spectral decomposition. Instead, we use various approximations.
Consider the 2-D TE case again, we introduce a reference refractive index n∗, such that

∂2
x + k2

0n
2(x, z) = k2

0n
2
∗(1 + X), X =

1

k2
0n

2
∗
∂2

x +
n2

n2
∗
− 1. (5.5)

Therefore, Λ = k0n∗
√

1 + X. If can let u = veik0n∗z, then

∂v

∂z
= ik0n∗(

√
1 + X − 1) v. (5.6)

The simplest approximation is
√

1 + X − 1 ≈ X

2
. (5.7)
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This is the paraxial approximation which gives rise to the early one-way models [27, 28].
More accurate one-way models are derived from the [p/p] Padé approximants:

√
1 + X − 1 ≈

p
∑

l=1

alX

1 + blX
, (5.8)

where p is a positive integer and al, bl are given explicitly as follows:

al =
2

2p + 1
sin2 θl, bl = cos2 θl for θl =

lπ

2p + 1
. (5.9)

The case p = 1 was first proposed by Claerbout [29]. The general case corresponds to the
higher order one-way models developed in [33–36].

While we can insert (5.8) into (5.1) and try to solve the resulting equation by operator-
splitting and Crank-Nicolson’s method, Collins [37] realized that it is more efficient to
approximate the one-way propagator directly. Consider the step from z0 to z1 = z0 + ∆z
(of course, the other steps are similar), we can formally solve (5.6) by

v1 = P v0, P = P (X) = eis(
√

1+X−1) for s = k0n∗∆z, (5.10)

where P (X) is the one-way propagator (exponential of the square root operator) and X
is evaluated at z = z1/2 = z0 + ∆z/2. Collins’ idea is to approximate P (X) directly by a
rational function of X. For example, if we have

P (X) ≈ c0 +

p
∑

l=1

cl

X + dl
(5.11)

(the coefficients depend on s and an integer p), then

v1 = c0v0 +

p
∑

l=1

clwl, (5.12)

where wl can be solved from

(X + dl)wl = v0. (5.13)

For 2-D waveguides (both TE and TM cases), solving wl from (5.13) is extremely simple.
Since the operator X involves derivatives only in x, its discretization leads to a simple
banded matrix. For the full-vectorial BPM, X is a 2 × 2 operator matrix involving par-
tial derivatives in both x and y and it becomes expensive to solve wl from (5.13). One
possibility is to use the iterative ADI (alternating direction implicit) method developed
in [53]. On the other hand, the full-vectorial paraxial model can be efficiently solved with
a non-iterative ADI scheme [51,52]. For this reason, the paraxial full vector BPM is still
widely used.
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In a z-invariant waveguide, the evanescent waves (corresponding to eigenvalues of X
that are less than −1) should decay as z increases. However, in the paraxial approxi-
mation (5.7) or a diagonal Padé approximation of

√
1 + X , the evanescent waves will be

incorrectly propagated. Since the coefficients in (5.9) are real,
√

1 + µ, for µ < −1, will be
approximated by a real number using (5.8). For slowly varying waveguides, the evanes-
cent waves are not very important, but they should certainly be damped. This issue, first
realized by Wetton and Brooke [38], becomes more serious for one-way modeling using
the elastic wave equations [38] and the full vector Maxwell’s equations [50]. For example,
the operators L and M are not self-adjoint and there may be pairs of complex conjugate
eigenvalues [6]. Using the paraxial or the diagonal Padé approximants, one of the com-
plex eigenvalues will always increase exponentially in z and this leads to instability. To
damp the evanescent waves, we can develop complex coefficient rational approximants of√

1 + X . A rotating branch-cut procedure was developed in [39], but it does not always
give rise to stable one-way models. A modified Padé procedure that gives rise to truly
stable one-way models was developed in [40].

For the propagator-based one-way models (5.11), (5.12), (5.13), we also have the dif-
ficulty with the evanescent waves. If we use a diagonal Padé approximant of P (X), the
evanescent waves will again be incorrectly propagated. For elastic wave equations and
the full-vectorial Maxwell’s equations, the complex modes give rise to instabilities. Since
the propagator-based one-way models are more efficient, it is important to develop sta-
ble rational approximants of P that are accurate for the forward propagating waves, but
can also suppress the evanescent waves and complex modes. Yevick [41] developed some
approximants of P (X) in connection with the approximants of

√
1 + X in [39] and [40].

In [42], it is shown that we can use the [(p − 1)/p] Padé approximants of P (X). To avoid
too much damping (especially when p is small), it was proposed in [43] to use a rational
approximation that connects the [(p − 1)/p] and [p/p] Padé approximants. Similar to the
θ-method (for the heat equation) which combines the backward Euler method with the
Crank-Nicolson method, a parameter θ is introduced for connecting the two rational ap-
proximants of P (X). More precisely, let Rp−1,p and Rp,p be the [(p− 1)/p] and [p/p] Padé

approximants of P = eis(
√

1+X−1) given by

Rp,p(X) =
Fp(X)

Gp(X)
, Rp−1,p(X) =

Sp−1(X)

Tp(X)
, (5.14)

where Sp−1 is a polynomial of degree p−1, Fp, Gp and Tp are polynomials of degree p. We
assume that the four polynomials are scaled such that they all equal 1 at X = 0. Then,
we approximate P (X) by the following rational function of X:

Rp(X; θ) =
(1 − θ)Sp−1(X) + θFp(X)

(1 − θ)Tp(X) + θGp(X)
. (5.15)

For practical use, we re-write Rp(X; θ) as the right hand side of (5.11) with suitable
coefficients.
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Notice that the one-way Helmholtz equation (5.1) is only an approximation of the
Helmholtz equation (2.15) when n varies with z slowly. It is desirable to develop one-way
models that are more accurate than (5.1), but are still easy to solve. To understand the
limitation of (5.1), we consider the simplest 1-D model. Let the exact equation be the 1-D
Helmholtz equation

d2u

dz2
+ k2

0n
2(z)u = 0, (5.16)

then, the one-way Helmholtz equation corresponds to the following first order ODE:

du

dz
= ik0n(z)u. (5.17)

The exact solution of the above is

u(z) = u(0)eik0

R z
0

n(ξ)dξ .

For Eq. (5.16), we do not have a general expression for its solutions, but a WKB analysis
gives rise to the following approximate solution:

u(z) ≈ u(0)

√

n(0)

n(z)
eik0

R z
0

n(ξ)dξ.

Notice that

|u(z)| ≈ |u(0)|
√

n(0)

n(z)
.

This is very different from the solution of (5.17) which satisfies |u(z)| = |u(0)|.
To improve the accuracy of BPM, two different approaches can be used. The first is

to use the so-called energy-conserving improvement [44–47]. The idea is to solve

φ = 4

√

∂2
x + k2

0n
2(x, z) u

assuming that φ satisfies the one-way Helmholtz equation

∂zφ = iΛφ.

In terms of the original function u, we have

∂zu =

(

iΛ − Λ−1/2 d
√

Λ

dz

)

u. (5.18)

Another approach is to use the single scatter approximation. The original idea of single
scatter approximation was introduced for 1-D Helmholtz equation by Bremmer in the 50’s.
It has been used in a discrete form by some authors to improve the BPM. A continuous
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version of the single scatter approximation has been developed [48,49]. This implies that
we solve u from

∂zu =

[

iΛ(z) − 1

2
Λ−1(z)Λ′(z)

]

u. (5.19)

Although it does not look very simple, this equation can be discretized with a suitable
operator rational approximation. The improved one-way models are also available for the
TM case. Unfortunately, they are not available for full-vectorial cases.

6 Bidirectional beam propagation method

Optical wave-guiding structures that are piecewise uniform in z are important, because
they correspond to actual fabricated photonic devices, such as waveguide gratings. Due
to the discontinuity of the refractive index function at multiple values of z, reflections
are important for these structures and the traditional BPM one-way models that ignore
reflections are not suitable. The mode matching method [17–19] is a good choice for such a
structure, but the bidirectional beam propagation method (BiBPM) is often more efficient.

Let us first consider a single waveguide discontinuity at z = 0 for TE polarized waves.
Such a discontinuity can be the end facet of an optical waveguide or the junction between
two different waveguides. We assume n(x, z) = n0(x) for z < 0 and n(x, z) = n1(x) for
z > 0. If the mode matching method is used, the eigenmodes of the transverse operator
(modified with a PML) must be calculated. On the other hand, BiBPM applies rational
approximation techniques developed for traditional BPM in an iterative scheme for solving
the reflection and transmission at the discontinuity. If an incident wave u(i) is given for
z < 0, the reflected wave and the transmitted wave satisfy

(Λ0 + Λ1)u
(r)|z=0− = (Λ0 − Λ1)u

(i)|z=0−, (6.1)

(Λ0 + Λ1)u
(t)|z=0+ = 2Λ0u

(i)|z=0−. (6.2)

When x is discretized, say by N points, the transverse operator ∂2
x +k2

0n
2
j is approximated

by a sparse matrix, but the square root operator Λj can only be approximated by a
dense matrix. With an eigenvalue decomposition of the transverse operator, a matrix
approximation of the square root operator Λj can actually be written down, but the
computation is expensive, since the required number of operations is O(N3). A much
more efficient approach is to use rational approximations for the square root operator as
in the beam propagation method. For a reference refractive index n∗, we write Λj as
Λj = k0n∗

√

1 + Xj for an operator Xj , then approximate
√

1 + Xj by a rational function
of Xj. This leads to

Λj ≈ Sj = k0n∗a0

p
∏

k=1

1 + ckXj

1 + bkXj
.

The coefficients a0, bk, ck above depend on the degree p and other parameters. Therefore,
the equation for u(r)|z=0− can be approximated by

(S0 + S1)u
(r) = (S0 − S1)u

(i). (6.3)
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Since Xj is approximated by a sparse matrix, the action of Sj or S−1
j on a given function

of x can be efficiently evaluated. A number of iterative schemes are developed in [54], [55]
and [56]. To speed up the convergence, we can multiply (6.3) by S−1

0 or S−1
1 or S−1

1/2,

then use a Krylov subspace iterative method [57]. Here, S1/2 is a rational approximant of
√

∂2
x + k2

0n
2
1/2 for n2

1/2 = (n2
0 + n2

1)/2.

Consider a piecewise z-invariant structure given by 0 = z0 < z1 < ... < zm = a,
where zj is a longitudinal discontinuity of the refractive index function. The BiBPMs
are designed to take advantage of the z-independence in each segment by using operator
rational approximations as in the traditional BPM. BiBPMs are first proposed based on the
transfer matrix operator [58, 59], but these methods are numerically unstable, unless the
evanescent modes are intentionally treated incorrectly. However, the evanescent modes are
excited at the longitudinal discontinuities and a correct modeling of these modes is essential
to the accuracy of the simulation results. A stable BiBPM [60, 61] was developed based
on the scattering operators. The idea is to use rational approximants of the square root
operators Λj and Λj+1 to speed up the computation of operator C in (3.5), and similarly, to
use a rational approximant of one-way propagator Pj in (3.8) to speed up the calculations
of R(zj−1+) and T (zj−1+) in (3.9) and (3.10). Stable rational approximants for the
square root operator and the one-way propagator that suppress the evanescent modes can
be used. Although the method still requires manipulations of matrices representing the
scattering operators, it is much more efficient than a direct method that computes the
square root operator and the one-way propagator by an eigenvalue decomposition of the
transverse operator. Compared with the mode matching method, the scattering operator
BiBPM is highly competitive. Another BiBPM [62] was developed based on iteratively
solving a linear system for wave field components at the longitudinal discontinuities. At
a discontinuity zj , we have four unknown functions u+(·, zj+), u+(·, zj−), u−(·, zj+) and
u−(·, zj−). It turns out that we can eliminate two of them and setup a system for u+(·, zj−)
and u−(·, zj+) at all longitudinal discontinuities. The coefficient matrix is sparse and its
non-zero entries are related to the square root operators Λj and the one-way propagator
Pj , but these operators need not be explicitly formed. If a Krylov subspace method is
used to solve this system, we only need to find the multiplication of the coefficient matrix
with a given vector in each iteration. This can be reduced to the actions of Pj and
(Λj + Λj+1)

−1 on given functions. The action of Pj can be efficiently evaluated by its
rational approximant. The action of (Λj + Λj+1)

−1 is closely related to the scattering
problem at a single waveguide discontinuity and it can also be efficiently evaluated using
the iterative method described earlier in this section. This iterative BiBPM can be very
efficient if the structure does not vary too much between different segments. Unfortunately,
the method may fail to converge if the refractive index profiles of segments are very
different.

More efforts are needed for 3-D wave-guiding structures with longitudinal discontinu-
ities. Even for a single waveguide discontinuity, an efficient and rigorous 3-D full-vectorial
treatment is not available.
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7 Higher order operator marching methods

As we have seen in Section 3, it is possible to reformulate the propagation problem in
waveguides as initial value problems for a pair of operators. Marching formulas for the
scattering operators R and T , or the DtN map Q and FS operator Y are given in Section
3. In this section, we present some higher order marching formulas for slowly varying
waveguides.

For structures such as a taper, a Y-branch, a S-bend and waveguide couplers, the
refractive index varies with z continuously (at least in part of the structure). In this case,
it is necessary to approximate the z-varying structure by a piecewise z-invariant structure.
In the segment from zj to zj+1 = zj + ∆z, the refractive index profile n(x, z) is usually
replaced by its profile at the midpoint. That is, n(x, z) ≈ nj+1/2(x) = n(x, zj+1/2), where
zj+1/2 = zj + ∆z/2. This introduces a second order error in the solution. Therefore, it
is necessary to use a relatively small ∆z to maintain the overall accuracy of the solution.
Notice that the second order error of the piecewise z-invariant approximation is very
different from the error in a second order finite difference (or finite element) method for
solving the Helmholtz equation directly. In the latter case, the error exists even when
the structure is actually z-invariant. A number of fourth order (in z) methods have been
developed based on the DtN and FS formalism. These fourth order methods have a similar
advantage as the second order piecewise uniform approximation, namely, the errors are
small when the variation in z is weak.

Consider the Helmholtz equation for the TE polarization, it can be written as a first
order system

∂

∂z

[

u
∂zu

]

= A(z)

[

u
∂zu

]

, A(z) =

[

0 1
−∂2

x − k2
0n

2(x, z) 0

]

, (7.1)

where u = Ey is the y-component of the electric field. Although the above system is
unstable if it is solved as an initial value problem in z, we can use it to derive relationships
between the Q and Y operators at zj and zj−1, and then propagate the operators from
z = a+ to z = 0−. In fact, the second order marching formulas (3.19-3.21) are related to
the following second order mid-point exponential method for (7.1):

[

u
∂zu

]

z=zj

= e∆z Aj−1/2

[

u
∂zu

]

z=zj−1

, (7.2)

where Aj−1/2 = A(zj−1/2). Now, instead of (7.2), we can use other higher order exponential
methods [63]. The fourth order operator marching scheme developed in [15] was derived
from the following fourth order exponential method:

[

u
∂zu

]

z=zj

= Q−1PQ

[

u
∂zu

]

z=zj−1

, P = e
∆z Aj−1/2+∆z3

24
A′′

j−1/2 , Q = e
−∆z2

12
A′

j−1/2 , (7.3)



1072 Y. Y. Lu / Commun. Comput. Phys., 1 (2006), pp. 1056-1075

where A′
j−1/2 = A′(zj−1/2), etc. The derivatives A′ and A′′ can also be avoided [64].

Another possibility is to use an approximate Magnus method [65]. The operator marching
method in [66] was derived from the following fourth order Magnus method [67]:

[

u
∂zu

]

z=zj

= eΩj

[

u
∂zu

]

z=zj−1

,

Ωj =
∆z

2
(Aj,1 + Aj,2) +

√
3∆z2

12
(Aj,2Aj,1 − Aj,1Aj,2),

(7.4)

where

Aj,k = A(zj−1 + ck∆z) for k = 1, 2 and c1 =
1

2
−

√
3

6
, c2 =

1

2
+

√
3

6
.

In [15] and [66], the fourth order operator marching methods are implemented with a local
eigenfunction expansion and they give more accurate solutions with very little computing
overhead. These methods are suitable for continuously z-varying waveguides.

8 Concluding remarks

For modeling and simulation of lightwaves propagating in optical wave-guiding structures,
we have identified three key ideas. The first is to reformulate the boundary value problem
(of the frequency domain propagation problem) as initial value problems for a pair of
operators and march these operators along the waveguide axis. The second is to approxi-
mate the square root operator or the exponential of the square root operator by rational
functions of the transverse differential operator for efficient propagation of one-way wave
field components. The third idea is to use a local eigenfunction expansion for writing
down the wave fields in each z-invariant segments. These ideas give rise to some powerful
methods for simulating waves propagating in slowly varying waveguides and piecewise z-
invariant structures. However, much work is still needed for 3-D wave-guiding structures.
In the 3-D case, the wide-angle full-vectorial BPM is relatively inefficient and improved
one-way models have not been developed yet. For a 3-D waveguide discontinuity, an ef-
ficient full-vectorial treatment is still lacking and the mode matching method becomes
much too expensive. Since 3-D waveguides are the fundamental building blocks of inte-
grated photonic circuits, it is clearly important to develop more efficient simulation tools
for lightwave propagation in these structures.
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