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Abstract. In this paper, n-degree continuous finite element method with interpolated coef-
ficients for nonlinear initial value problem of ordinary differential equation is introduced and
analyzed. An optimal superconvergence u − uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto
points in each element respectively is proved. Finally the theoretical results are tested by a
numerical example.
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1 Introduction

Consider the initial value problem of nonlinear ordinary differential equation

u′ = f(t, u), t ∈ I = [0, T ], u(0) = u0, (1)

where f(t, u) is a sufficiently smooth function.
Let Jh be a partition of I such that Jh : 0 = t0 < t1 < · · · < tN = T . Set element Ij = [tj−1, tj ],

midpoint t̄j = (tj + tj−1)/2 and half-step hj = (tj − tj−1)/2, h = max(hj), j = 1, · · · , N . Assume
that Jh is quasi-uniform, i.e., there is a C > 0 such that h ≤ Chj . Define for the partition Jh

the finite element space

Sh = {u ∈ C(I) : u|Ij
∈ Pn(Ij), j = 1, · · · , N}
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where Pn(Ij) denotes the space of all univariable polynomials of degree ≤ n in Ij .
On the element Ij , an n-degree polynomial has n + 1 parameters. The value of the left

endpoint is known on the element Ij for initial value problems, so the finite element on this
element has n degrees of freedom. Classical continuous finite element solution ūh of (1) can be
expressed as ūh =

∑

ϕα(t)ūh(tα) ∈ Sh satisfying

∫

Ij

(ū′h − f(t, ūh))vdt = 0, v ∈ Pn−1, ūh(0) = u0. (2)

For the sake of simplicity, we now define n-degree continuous finite element with interpolated
coefficients, uh ∈ Sh, by

∫

Ij

(u′h − Ihf(t, uh))vdt = 0, v ∈ Pn−1, uh(0) = u0, (3)

where Ih denotes the Lagrangian interpolating operator on (n+ 1)-order Lobatto points and uh

and Ihf(t, uh) satisfy

uh =
∑

ϕα(t)uh(tα) ∈ Sh,

Ihf(t, uh) =
∑

ϕα(t)f(tα, uh(tα)) ∈ Sh,

where ϕα(t) are basis functions in element Ij . Note that the exact solution of (1) satisfies, for
smooth function v,

∫

Ij

(u′ − f(t, u))vdt = 0, (4)

and hence, subtracting (4) from (3) gives

∫

Ij

(e′ − f(t, u) + Ihf(t, uh))vdt = 0, v ∈ Pn−1, e(0) = 0 (5)

where e = u− uh.
For continuous finite elements, Chen [1] and Pan et al. [2] proved superconvergence for linear

case f(t, u) = au + b by a new element orthogonality analysis. In virtue of a simple argument
Yang et al. [3] obtained superconvergence of classical finite element for nonlinear problems. The
finite element method with interpolated coefficients is an economic and graceful method. This
method was introduced and analyzed for semilinear parabolic problems in Zlamal et al. [4]. Later
Larsson et al. [5] studied the semidiscrete linear triangular finite element uh and obtained the
following error estimate

‖(uh − u)(t)‖L2(Ω) = O(h), for 0 ≤ t ≤ T.

Chen et al. [6] derived almost optimal order of convergence

‖(uh − u)(t)‖L2(Ω) = O(h2 lnh), for 0 ≤ t ≤ T,

on piecewise uniform triangular meshes by using superconvergence techniques. Recently, Xiong
et al. [7] studied superconvergence of triangular quadratic finite elements for semilinear ellip-
tic problems. By the compendious argument we shall study superconvergence of continuous
finite element with interpolated coefficients for the initial value problems of nonlinear ordinary
differential equation (1). Finally, the theoretical results are tested by a numerical example.
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For our analysis, we introduce [1] Legendre’s polynomials in the interval E = [−1, 1]

l0 = 1, l1 = s, l2 =
1

2
(3s2 − 1), l3 =

1

2
(5s3 − 3s), · · · , ln =

1

2nn!
∂n

s (s2 − 1)n, · · · , (6)

where the inner product (li, lj) = 0 if i 6= j, otherwise (li, lj) = 2
2j+1 , l(±1) = (±1)j . The

polynomial ln(s) has n distinct roots (n order Gauss points) in (−1, 1). Integrating ln gives
another family of polynomials

M0 = 1,M1 = s,M2 =
1

2
(s2 − 1),M3 =

1

2
(s3 − s), · · · ,Mn+1 =

1

2nn!
∂n−1

s (s2 − 1)n · · · , (7)

which has the quasiorthogonal property: (Mi,Mj) 6= 0 if i−j = 0 or ±2, otherwise (Mi,Mj) = 0.
Obviously Mj(±1) = 0 for j ≥ 2. Mn+1(s) has n+1 distinct roots ((n+1) order Lobatto points):
−1 = z1 < z2 < · · · < zn+1 = 1 in E. Denotes set of (n+ 1)-order Lobatto points in all elements
in Partition Jh by

Z0 = {tji = t̄j + hjzi, j = 1, 2, · · · , N, i = 1, 2, · · · , n+ 1}.

Here and below, denote Sobolev space and its norm by W k,p(I) and ‖u‖k,p,I , respectively. If
p = 2, simply use Hk(I) and ‖u‖k,I .

Our main result about continuous finite element with interpolated coefficients for nonlinear
initial value problem of ordinary differential equation is the following.

Theorem 1.1. Assume that the partition of the interval I = [0, T ] is quasiuniform and let

uh ∈ Sh be n-degree continuous finite element solution with interpolated coefficients for Eq. (1).
Then, at z ∈ Z0, there is superconvergence estimate

(u − uh)(z) = O(hn+2), n ≥ 2. (8)

Remark 1.1. By using the classical finite element methods (CFEM), one can solve nonlinear
problems absolutely. To solve discrete system with Newton method, one needs to compute its
tangent matrix. However, the tangent matrix dependents on every iterative value. As a result,
one has to calculate this tangent matrix many times, which is very time consuming. The finite
element methods with interpolated coefficients (ICFEM) is to directly substitute the interpolation
Ihf(uh) for f(uh). Therefore, its tangent matrix can simply be calculated. The computational
cost of ICFEM is greatly decreased and thus it is a high effective algorithm. Theorem 1.1
indicates that ICFEM for nonlinear ordinary differential equations has same superconvergence
as that of CFEM, which is still valid for the case that the nonlinear term contains variable t.

2 Proof of Theorem 1.1

In order to show superconvergence of finite element with interpolated coefficients for nonlinear
problems, we construct an auxiliary linear projection, ũh ∈ Sh of u, such that

{
∫

Ij
((u′ − ũ′h) − fu(t, u)(u− ũh)) vdt = 0, v ∈ Pn−1,

ũh(0) = u0.
(9)

Recalling the result of continuous finite element for linear problems of ordinary differential equa-
tions [1], we obtain the following superconvergence estimate.
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Lemma 2.1. Let uI and ũh be the interpolation of exact solution u of (1) and auxiliary linear

projection defined by (9), respectively. Then at z ∈ Z0

(u− ũh)(z) = O(hn+2), n ≥ 2. (10)

Moreover, the following uniform estimate holds

‖uI − ũh‖ = O(hn+1), n ≥ 2. (11)

Proof of Theorem 1.1 Subtracting (9) from (5), we get

∫

Ij

[(ũ′h − u′h) − (f(t, u) − Ihf(t, uh)) − fu(t, u)(ũh − u)]vdt = 0. (12)

Denote by wI and uI the Lagrangian interpolation of w and u with respect to the variable t,
respectively, and let θ = ũh − uh, ρ = uI − uh, w(t) = f(t, u(t)). Rewrite (12) as following

∫

Ij

(θ′ − fu(t, u)θ)vdt

=

∫

Ij

(w − wI + Ih(f(t, u) − f(t, uh)) − fu(t, u)(u− uh))vdt. (13)

By Taylor’s expansion on the element Ij ,

Ih(f(t, u) − f(t, uh)) =
∑

(f(tk, uk) − f(tk, uhk))ϕk

=
∑

[fu(tk, uk)(uk − uhk) + 0.5fu(tk, ξ)(uk − uhk)2]ϕk

= fu(t, u)(uI − uh) + O(h)max |ρ| + O(1)max |ρ|2,

where uk = u(tk), uhk = uh(tk). Hence, this yields the important formula

∫

Ij

(θ′ − fu(t, u)θ)vdt

=

∫

Ij

(w − wI − fu(t, u)(u− uI))vdt + [O(h)max |ρ| + O(1)max |ρ|2]h1/2‖v‖Ij
. (14)

In the following arguments we shall use the inverse inequality max |ρ| ≤ Ch−1/2‖ρ‖Ij
.

By summation for j for (14), and noticing that R = u − uI = O(hn+1) where uI is the
Lagrangian interpolation associated with the (n+ 1)-order Lobatto points, we have

∫ tj

0

(θ′ − fu(t, u)θ)vdt

≤

∫ tj

0

(w − wI − fu(t, u)(u − uI))vdt + C(h‖ρ‖ + h−1/2‖ρ‖2)‖v‖, (15)

or

∫ tj

0

(θ′ − fu(t, u)θ)v ≤ C(hn+1 + h‖ρ‖ + h−1/2‖ρ‖2)‖v‖.
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In particular, above formula is valid for n = N, tN = T . Choosing v = θ′, we have

‖θ′‖2 =

∫ T

0

|θ′|2dt

≤

∫ T

0

fu(t, u)θθ′dt+ C(hn+1 + h‖ρ‖ + h−1/2‖ρ‖2)‖θ′‖

≤ C‖θ‖‖θ′‖ + C(hn+1 + h‖ρ‖ + h−1/2‖ρ‖2)‖θ′‖.

Consequently, the superconvergence estimate of derivative follows:

‖θ′‖ ≤ C‖θ‖ + Chn+1 + Ch‖ρ‖ + Ch−1/2‖ρ‖2. (16)

It is known, see Chen [1], that for the interpolation uI at (n + 1)-order points the remainder
R = u− uI has good approximate orthogonal property

∫

Ik

Rvdt = O(hn+2)‖u‖n+2,p,Ik
‖v‖1,p′,Ik

, ∀v ∈ H1.

Letting p = p′ = 2 and summing from 1 to j, we have

∫ tj

0

Rvdt = O(hn+2)‖u‖n+2‖v‖1. (17)

In order to bound ‖θ‖, we shall use dual argument. To begin with, construct inverse initial value
problem

−ψt − fu(t, u)ψ = g, t ≤ T = tN , ψ(T ) = 0. (18)

For solutions of the first order ordinary differential equation, the following regular estimate holds:

‖ψ‖1 ≤ C‖g‖.

By integration by parts, noting θ(0) = ψ(T ) = 0, we have

J =

∫ T

0

(θ′ − fu(t, u)θ)ψdt

= θψ|T0 −

∫ T

0

θ(ψ′ + fu(t, u)ψ)dt = (θ, g).

On the other hand, let ψI be the (n − 1)-degree piecewise polynomial approximation such that
R = ψ − ψI = O(hn), R(tj) = 0. Hence, using (15) and (17) gives

J =

∫ T

0

(θ′ − fu(t, u)θ)(ψ − ψI)dt+

∫ T

0

(θ′ − fu(t, u))θ)ψIdt

≤ C‖θ‖1h‖ψ‖1 + Chn+2‖ψI‖1 + (Ch‖ρ‖ + Ch−1/2‖ρ‖2)‖ψI‖.

Choose g = θ and use the regularity estimates ‖ψ‖1 ≤ C‖θ‖ and ‖ψI‖1 ≤ C‖ψ‖1. Then using
the above two formulas of J we have

‖θ‖2 ≤ (Ch‖θ‖1 + Chn+2 + Ch‖ρ‖ + Ch−1/2‖ρ‖2)‖θ‖,

which yields
‖θ‖ ≤ Ch‖θ‖1 + Chn+2 + Ch‖ρ‖ + Ch−1/2‖ρ‖2.
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Substituting the superconvergence estimate (16) for derivatives into above formula gives

‖θ‖ ≤ Ch‖θ‖ + Chn+2 + Ch‖ρ‖ + Ch−1/2‖ρ‖2.

Consequently, for sufficiently small h, canceling the first term of right hand side, we obtain

‖θ‖ ≤ Chn+2 + Ch‖ρ‖ + Ch−1/2‖ρ‖2. (19)

Recalling Lemma 2.1 gives

‖ρ‖ = ‖uI − uh‖ ≤ ‖uI − ũh‖ + ‖θ‖ ≤ Chn+1 + Ch‖ρ‖ + Ch−1/2‖ρ‖2,

and for sufficiently small h, we have

‖ρ‖ ≤ C1h
n+1 + C2h

−1/2‖ρ‖2. (20)

Now adopting a simplified continuity argument, temporarily assume that there exits h1 > 0 such
that

‖ρ‖ ≤ 2C1h
n+1 (21)

holds for any h < h1. Substituting it for ρ on the right hand side in (20), we have

‖ρ‖ ≤ C1h
n+1 + 4C2C

2
1h

2n+3/2 ≤ C1(1 + 4C1C2h
n+1/2)hn+1.

If taking h < h2 such that 4C1C2h
n+1/2 < 1, then ‖ρ‖ ≤ 2C1h

n+1 still holds for all h <
min(h1, h2). This shows that the assumption (21) is right.

Substituting (21) into (19), we obtain

‖θ‖ ≤ Chn+2.

Substituting the above estimate and (21) into (16), we obtain

‖θ′‖ ≤ Chn+1.

In order to obtain pointwise estimate, we again use the dual argument. We construct following
inverse initial value problem

ψ′ + fu(t, u)ψ = 0, ψ(tj) = θ(tj), (22)

which has better regularity estimate

‖ψ‖l ≤ C|θ(tj)|, l ≥ 0.

By integration by part we have

∫ tj

0

(θ′ − fu(t, u)θ)ψdt = θψ
∣

∣

∣

tj

0
−

∫ tj

0

θ(ψ′ + fu(t, u)ψ)dt = θ2(tj).

On the other hand, let again ψI be the (n− 1)-degree piecewise polynomial approximation such
that R = ψ − ψI = O(hn), R(tj) = 0. This, together with (15),(17) and (21), implies

∫ tj

0

(θ′ − fu(t, u)θ)ψdt =

∫ tj

0

(θ′ − fu(t, u)θ)(ψ − ψI)dt+

∫ tj

0

(θ′ − fu(t, u)θ)ψIdt

≤ C‖θ‖1h‖ψ‖1 + Chn+2‖ψI‖1 ≤ (Ch‖θ‖1 + Chn+2)|θ(tj)|.
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From the above two formulas, we can obtain the following superconvergence estimate

|θ(tj)| ≤ Ch‖θ‖1 + Chn+2 ≤ Chn+2.

It remains to prove uniform estimate |θ(t)| ≤ Chn+2. Choosing v = θ′ in (14) yields
∫

Ij

θ′2dt ≤ C

∫

Ij

θ2dt+ C

∫

Ij

(w − wI)
2dt+ C

∫

Ij

(u− uI)
2dt+ Ch2n+4.

Using the approximation properties
∫

Ij
(w−wI)

2dt = O(h2n+3) and
∫

Ij
(u− uI)

2dt = O(h2n+3),

the above formula becomes
∫

Ij

θ′2dt ≤ C

∫

Ij

θ2dt+ Ch2n+3. (23)

Noting θ(0) = 0, hence, θ(t) =
∫ t

0
θ′(t)dt. An application of Schwarz inequality yields

∫

Ij

θ2dt ≤ Thj

∫ tj

0

θ′2dt ≤ Ch

∫ tj

0

θ2dt+ Ch2n+3.

Canceling the first term of right hand side by the discrete Gronwall inequality, we obtain
∫

Ij

θ2dt ≤ Ch2n+3.

Recalling (23), we obtain
∫

Ij

θ′2dt ≤ Ch2n+3.

In the element Ij , we have

|θ(t)| ≤

∣

∣

∣

∣

∣

θ(tj−1) +

∫ t

tj−1

θ′dt

∣

∣

∣

∣

∣

≤ |θ(tj−1)| +

∫

Ij

|θ′|dt

≤ Chn+2 + Ch1/2

(

∫

Ij

θ′2dt

)1/2

≤ Chn+2. (24)

Finally we decompose the error as

u− uh = u− ũh + ũh − uh = u− ũh + O(hn+2),

and an application of Lemma 2.1 completes the proof of this theorem.

3 Numerical example

Consider the initial value problem of the nonlinear ordinary differential equation

u′(t) = et−u, 0 < t < T = 1, u(0) = 1.

Its exact solution is u = ln(et + e− 1). We compute the approximate solution by the quadratic
continuous finite element method with interpolated coefficients. Divide uniformly interval I into
N elements. The errors eN (tj) = u(tj)−uh(tj) are listed in Table 1 where the right two columns
are their ratios.

From Table 1, we see that the quadratic continuous finite element with interpolated coeffi-
cients has high accuracy of O(h4) and good stability which conforms our theoretical analysis.
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Table 1: The errors and ratios of the quadratic interpolating coefficient continuous finite element.

e10 e20 e40 e10/e20 e20/e40
t = 1 9.8129E − 10 6.1329E − 11 3.8338E − 12 16.001 15.997
t = 2 1.9742E − 9 1.2338E − 10 7.7121E − 12 16.002 15.998
t = 3 2.9578E − 9 1.8484E − 10 1.1554E − 11 16.003 15.997
t = 4 3.9096E − 9 2.4431E − 10 1.5272E − 11 16.003 15.997
t = 5 4.8067E − 9 3.0035E − 10 1.8775E − 11 16.004 15.997
t = 6 5.6261E − 9 3.5154E − 10 2.1976E − 11 16.005 15.997
t = 7 6.3468E − 9 3.9655E − 10 2.4789E − 11 16.006 15.997
t = 8 6.9501E − 9 4.3422E − 10 2.7144E − 11 16.006 15.997
t = 9 7.4207E − 9 4.6361E − 10 2.8981E − 11 16.007 15.997
t = 10 7.7478E − 9 4.8402E − 10 3.0256E − 11 16.007 15.997
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