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Abstract. We investigate the thermodynamic properties of the potential superhard or-
thorhombic structure boron-carbonitride β-BC2N by using ab initio plane-wave pseu-
dopotential density functional theory method within both local density approxima-
tion (LDA) and generalized gradient approximation (GGA). The lattice parameters (a,
b and c), equilibrium volume V, bulk modulus B0 and its pressure derivative B0’ have
been calculated, and compared with those of diamond and cubic boron nitride (c-BN).
The obtained results are in excellent agreement with the available experimental data
and other theoretical results. Through the quasi-harmonic Debye model, we also in-
vestigate the thermodynamic properties of β-BC2N. The variation of the thermal ex-
pansion α, the heat capacity CV and the Grüneisen parameter γ with pressure P and
temperature T, as well as the pressure-normalized volume (P-Vn) and the pressure-
bulk modulus (P-B) relationship of β-BC2N are obtained systematically.

PACS: 71.15.Mb, 65.40.-b, 81.05.Uw
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1 Introduction

Superhard materials are of important in modern high-pressure science and technology
due to their outstanding properties, such as ultra-incompressible, high elastic modulus
and hardness, scratch resistance, and so on. It is well-known that diamond and cubic
boron nitride (c-BN) are considered to rank first and second among the known superhard
materials, respectively. By mixing diamond with c-BN, one may create a new pseudo-
diamond BC2N alloy compound, which is harder than c-BN. Such a kind of alloys are
expected to be thermally and chemically more stable than diamond and harder than c-
BN.
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The ternary boron-carbonitride systems, which are isoelectronic with diamond and
c-BN, have been attracted more attention because the theoretical prediction that β-C3N4
compound should have a hardness comparable to diamond [1]. However, most of the
synthesized B-C-N compounds have the turbostratic or amorphous structures so far. A
majority of the previous experimental studies on this topic originated from the isoelec-
tronic carbon and c-BN viewed should have the similar crystal structures to diamond
and c-BN. The theoretically studied structures are all focus on high dense phases, such as
cubic BC2N [2–9], hexagonal BC2N [10–14], and chalcopyrite BC2N [15].

The ternary B-C-N compound, BC2N, as a new ultra-hard material also known as di-
amond and c-BN, has an orthorhombic crystal structure belongs to space group Pmm2.
Therefore, it likely supersede the expensive diamond in various potential applications.
Recently, the lattice dynamics and thermodynamics of orthorhombic β-BC2N have been
investigated by Cheng et al. [16]. To our knowledge, there are no report on the thermo-
dynamic properties of orthorhombic β-BC2N under high pressure and temperature.

In this work, we investigate the structure and thermodynamic properties of β-BC2N
through the Cambridge Serial Total Energy Package (CASTEP) program [17, 18] and the
quasi-harmonic Debye model [19]. The results obtained are well consistent with the avail-
able experimental data and other theoretical results. The paper is organized as follows:
In Section 2, we make a brief review of the theoretical method. The results and some dis-
cussion are presented in Section 3. Finally, the conclusions derived from our calculations
are summarized in Section 4.

2 Theoretical method

2.1 Total energy electronic structure calculations

In our electronic structure calculations, we adopt the non-local ultrasoft pseudopoten-
tial (USPP) introduced by Vanderbilt [20] for the interactions of the electrons with the
ion cores. The exchange and correlation terms are described by both the local density
approximation (LDA-CAPZ) proposed by Vosko et al. [21] and the generalized gradient
approximation (GGA-PBE) proposed by Perdew et al. [22]. The electronic wave functions
are expanded in a plane wave basis set with energy cut-off of 550 eV. Pseudo-atom cal-
culations are performed for B (2s22p1), C (2s22p2) and N (2s22p3). For the Brillouin-zone
k-point sampling, we use the Monkhorst-Pack mesh with 10×10×7 k-points for both
LDA and GGA calculations, where the self-consistent convergence of the total energy is
5.0×10−7 eV/atom. These parameters are sufficient in leading to well converged total
energy and geometrical configurations. All total energy electronic structure calculations
are implemented through the CASTEP code [17, 18].
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2.2 Quasi-harmonic Debye model

To investigate the temperature and pressure dependences of thermodynamic properties
of a crystal, the quasi-harmonic Debye model is applied, in which the phononic effect is
considered. This model is described in detail in Ref. [19]. In the following, we make a
brief description for this model.

In the quasi-harmonic Debye model, the non-equilibrium Gibbs function G∗(V;P,T)
is taken in the form of

G∗(V;P,T)= E(V)+PV+AVib(Θ(V);T), (1)

where E(V) is the total energy, PV corresponds to the constant hydrostatic pressure con-
dition, the vibrational contribution AVib can be written as [23, 24]

AVib(Θ;T)=nkBT
[

9
8

Θ
T

+3ln(1−e−Θ/T)−D(Θ/T)
]

, (2)

where n is the number of atoms per formula unit, and D(Θ/T) represents the Debye
integral. For an isotropic solid, the Debye temperature Θ is expressed by [23]
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where M is the molecular mass per unit cell, BS is the adiabatic bulk modulus, and f (σ)
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By solving the following equation with respect to V
(

∂G∗(V;P,T)
∂V

)

P,T
=0, (5)

one can obtained the isothermal bulk modulus BT, the heat capacity CV , and the thermal
expansion coefficient α

BT(P,T)=V
(

∂2G∗(V;P,T)
∂V2

)

P,T
, (6)

CV =3nkB

[
4D(Θ/T)− 3Θ/T

eΘ/T−1

]
, (7)

α=
γCV

BTV
, (8)
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where γ is the Grüneisen parameter, which is defined as

γ=−dlnΘ(V)
dlnV

. (9)

Through the quasi-harmonic Debye model, one could calculate the thermodynamic quan-
tities of orthorhombic structure β-BC2N at any pressures and temperatures.

3 Results and discussion

3.1 Structure and equation of state of β-BC2N

For the β-BC2N compound with very low symmetry, we determine the static equilib-
rium lattice structure by seeking for the minimum total energy value of the crystal. The
most stable ground state structure of β-BC2N is investigated by the total energy elec-
tronic structure calculations over a wide range of primitive cell volumes V from 0.89V0
to 1.12V0, where V0 is the zero pressure equilibrium primitive cell volume. The detailed
calculated procedures as follows: in the first step, for a given b, we fix the axial ratio
c/a, and take a series of different lattice values a and c to calculate the total energies E.
No constraints are imposed on the c/a ratio, that is, both lattice parameters a and c are
optimized simultaneously. In the second step, this procedure is repeated over a wide
range of ratio c/a. By obtaining the minimum total energy E for each fixed axial ratio
c/a, the minimum total energy E is obtained for the given b. In the third step, we repeat
the above two procedures for different b, and then find the minimum total energy E for
each b. By fitting the E-b data to a third-order polynomial, we obtained the minimum
total energy of the β-BC2N. Meanwhile, the axial ratio c/a with minimum total energy
is also obtained. The resulting equilibrium volumes V0 are 22.79 and 23.63 Å3 with LDA
and GGA, respectively, which is in agreement with the calculated volumes by Mattesini
et al. [25] and Sun et al. [15, 26]

The calculated equilibrium structure parameters a, b and c, equilibrium volume V,
bulk modulus B0 and its pressure derivative B0’ for β-BC2N with both LDA and GGA at
P=0 GPa and T=0 K are listed in Table 1, in which the data of diamond and c-BN are also
shown for comparison. It is not difficult found that our results are excellent agreement
with the available experimental values and other theoretical results. Moreover, from the
ground-state equilibrium structure parameters we can found that the calculated results
with the LDA is much better than GGA, so in the following calculations, we all adopt the
GGA exchange and correlation function.

From Table 1, we can see that the-zero pressure equilibrium volume, bulk modulus
and its pressure derivative are also determined by fitting the calculated total energy-
volume data to Birch-Murnaghan equation of state (EOS) [31]

P=2B0

(
V0

V

)
fN

[
1+

3
2
(B′−2) fN +

3
2

(
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f 2
N
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, (10)
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Table 1: Lattice parameters a, b, c (Å), equilibrium volume V (Å3), bulk modulus B0 (GPa) and its pressure
derivative B’ (GPa) for the β-BC2N as well as diamond and c-BN at 0 GPa and 0 K

a b c V B0 B0’

β-BC2N

LDA(present) 2.5285 2.5024 3.5905 22.79 403.12 3.54

GGA(present) 2.5591 2.5338 3.6339 23.63 374.08

Ref.[15] 2.536 2.510 3.605 22.95 383.2

Ref.[25] 2.5280 2.5024 3.5871 22.69 408.95 3.54

Ref.[26] 2.556 2.528 3.631 23.46

Diamond

Ref.[27] 3.5707 442.8 3.43

Exp.[28] 3.567 443 3.67

c-BN

Ref.[29] 3.582

Exp.[30] 3.616 369-382 4.0-4.5

where fN = ln(l/l0) which may be written as fN = ln(V/V0)/3 for hydrostatic compres-
sion. The bulk modulus B0 is a factor to indicate the resistance to volume change due
to the external pressure. The calculated bulk modulus B0 of β-BC2N is 403.12 GPa and
374.08 GPa within LDA and GGA levels, respectively, which is between diamond and
c-BN, and in excellent agreement with those in Refs. [15,25]. It indicates that the lattice is
more difficult to compress than c-BN near their respective equilibrium volumes.

The pressure P versus the normalized volume Vn(= V/V0), where V0 is the equilib-
rium volume at zero pressure) are also obtained through the following thermodynamic
relationship

P=− dE
dV

=
B0

B′0
[V−B′0

n −1]. (11)

The pressure P versus the normalized volume V/V0 are illustrated in Fig.1. Notice that,
as the pressure P increases, the relative volume V/V0 are all decreases for β-BC2N, dia-
mond and c-BN, and the normalized volume V/V0 of β-BC2N is less than diamond and
more than c-BN at the same pressure. In Fig. 2, we illustrate the relations of the bulk mod-
ulus B as a function of pressure P up to 100 GPa at the temperatures T =0 K for β-BC2N,
diamond and c-BN. It is shown from Fig. 2, the relationships between bulk modulus B
and pressure P are nearly linear at T = 0 K and increases with the elevated pressure P.



248 J. Chang, Y. Cheng, and M. Fu / J. At. Mol. Sci. 1 (2010) 243-252

Figure 1: Calculated relative volume as a function of pressure for diamond, c-BN and β-BC2N.

Figure 2: Calculated bulk modulus as a function of the pressure for diamond, c-BN and β-BC2N.

Therefore, Fig.1 and Fig.2 have similar relationships, that is, the bulk modulus value of
β-BC2N is between the diamond and c-BN.

3.2 Thermodynamic properties of β-BC2N

Applying the quasi-harmonic Debye model to β-BC2N, we calculate the lattice heat ca-
pacity CV , Debye temperature Θ and the Grüneisen parameter γ of β-BC2N at different
temperatures (0 K, 300 K, 600 K, 900 K, 1200 K) and different pressures (0 GPa, 20 GPa,
40 GPa, 60 GPa, 80 GPa, 100 GPa). All calculated results are listed in Table 2. The Debye
temperature is an important fundamental parameter and closely related to many physi-
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Table 2: Heat capacity CV (J·mol−1K−1), Debye temperature Θ (K), and Grüneisen constant γ of orthorhombic
β-BC2N under temperatures T (K) and pressures P (GPa)

T
P

Parameters 0 20 40 60 80 100

0

CV 0 0 0 0 0 0

Θ 1745.4 1865.7 1949.0 2010.7 2058.1 2095.0

γ 2.028 1.488 1.154 0.920 0.743 0.602

300

CV 28.23 24.68 22.49 21.01 19.94 19.15

Θ 1742.7 1864.4 1948.3 2010.4 2057.9 2094.8

γ 2.041 1.493 1.157 0.921 0.744 0.603

600

CV 68.21 64.57 62.16 60.42 59.11 58.10

Θ 1724.7 1856.2 1943.9 2007.9 2056.4 2093.8

γ 2.130 1.527 1.174 0.931 0.749 0.607

900

CV 84.17 81.65 80.02 78.84 77.95 77.27

Θ 1690.9 1841.8 1936.3 2003.5 2053.7 2092.0

γ 2.304 1.588 1.204 0.947 0.759 0.614

1200

CV 91.08 89.15 88.01 87.21 86.60 86.14

Θ 1636.0 1822.9 1926.5 1998.0 2050.3 2089.8

γ 2.606 1.670 1.242 0.968 0.772 0.622

cal properties of solids, such as specific heat and melting temperature. As is well known
to all, when below Debye temperature, quantum mechanical effects are very important in
understanding the thermodynamic properties, while above Debye temperature quantum
effects can be neglected. In this work, we obtained the Debye temperature ΘD =1745 K
at P = 0 GPa and T = 0 K, consistent with the theoretical values 1700 K, as reported by
Cheng et al. [16].

It is seen from Table 2 that, when the applied pressure is from 0 GPa to 100 GPa,
the heat capacity decreases by 0.0%, 32.16%, 14.82%, 8.20%, 5.42% and the Debye tem-
perature increases by 20.03%, 20.20%, 21.40%, 23.72%, 27.74% at 0 K, 300 K, 600 K, 900
K and 1200 K, respectively. As the pressure increases, the heat capacity decreases more
quickly at low temperature than at high temperature except at 0 K. However, the Debye
temperatures Θ increase more quickly at high temperature than at low temperature.

Grüneisen constant γ describes the anharmonic effects in the vibrating lattice, and it
has been widely used to characterize and extrapolate the thermodynamic behavior of a
material at high pressures and temperatures, such as the thermal expansion coefficient
and the temperature dependence of phonon frequencies and line-widths. Moruzzi et
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Figure 3: Calculated thermal expansion of β-BC2N as a function of pressure (a) and temperature (b).

al. [32] reviewed that the Grüneisen parameter is dominated by lower-frequency trans-
verse modes at low temperature. The Slater’s expression for γ assumes that equal exci-
tation of all modes is effectively at high-temperature. In Table 2, we also list the obtained
Grüneisen constant γ. It is noted that the Grüneisen constant γ decrease with increas-
ing pressure at a given temperature, and increase with increasing temperature at a given
pressure.

In Fig.3, we present the pressure and temperature dependences thermal expansion
coefficient α of the orthorhombic β-BC2N. In Fig.3 (a), we can see that, for a given temper-
ature, the thermal expansion coefficient α decreases drastically with the pressure increas-
ing. Moreover, the higher the temperature is, the faster the thermal expansion coefficient
α reduces. When the pressure is above 50 GPa, the thermal expansion α of 1200 K is just
a little larger than that of 900 K. However, in Fig. 3 (b), the effect of the pressure P on the
thermal expansion coefficient α are very small at low temperature, the effect are increas-
ingly obvious as the temperature increases. The thermal expansion coefficient α increase
rapidly with temperature especially at low temperature at zero pressure, and gradually
approaches a linear increase at high temperatures. Finally, the increasing trend becomes
gentler. This shows that the temperature dependence of expansion coefficient α is very
small at high pressure and high temperature. And the impact of temperature is much
greater than the impact of pressure on the thermal expansion coefficient α of this mate-
rial. These results are in accordance with the results of the Debye theory which applies
to many kinds of material.

The variation of the heat capacity at constant pressure CP and the constant volume
heat capacity CV with temperature T and pressure P is shown in Fig. 4. From which we
can see that the variation of CP with T is similar to the thermal expansion coefficient α,
especially at P=0 GPa. Nevertheless, the effect of the pressure is not as significant as that
of the pressure on the thermal expansion coefficient α. At T=0 K, the difference between
the constant pressure heat capacity CP and the constant volume heat capacity CV is almost
zero, but the difference increases almost linearly with the temperature T. This cannot be
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Figure 4: Variation of the heat capacity CP and CV with temperature under different pressures for β-BC2N.

ignored, especially at higher temperatures, as the temperature increase, the heat capacity
at constant pressure CP increases almost linearly with T, whereas the constant volume
heat capacity CV approaches a constant value. As the pressure increases, the difference
between the constant pressure heat capacity CP and the constant volume heat capacity
CV decreases. In addition, due to the anharmonic approximations of the Debye model
used here, for higher temperatures, the anharmonic effect on CV is suppressed, and CV is
very close to the Dulong-Petit limit, where N represents the Avogadro’s constant.

4 Conclusions

In summary, based on the ab initio plane-wave pseudopotential density functional theory
(DFT) and quasi-harmonic Debye model, we have investigated the structure and thermo-
dynamic properties of the potential superhard boron-carbonitride β-BC2N. Some struc-
tural parameters are presented in this work. All of these results are in excellent agreement
with the available experimental and other theoretical results. Finally, we have investi-
gated the thermodynamic properties of β-BC2N. The vibration relations of the thermal
expansion α, the heat capacity CV and the Grüneisen parameter γ with pressure P and
temperature T are also obtained systematically.
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