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Abstract. An embedded atom method potential for Ni-Al alloys is developed. The ex-
pression of the embedded function is constructed by analogy with the density function
theory. Both the repulsive function and the electron density function here have simple
forms. The potential parameters of pure Al and Ni are fitted to the experimental val-
ues, including their lattice parameters, cohesive energies, vacancy formation energies
and three elastic constants (c11,c12,c13). The potential for the Ni-Al alloy are then con-
structed from the Ni and Al potentials. The equation of states and the phonon disper-
sion calculated by the present potential parameters are in good agreements with first-
principles calculations and experimental data, indicating the reliability of the present
potential.
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1 Introduction

In the atomic-scale simulation of materials, the first-principles calculations are restricted
to a small number of atoms and short time scale. On the other hand, the empirical and
semi-empirical methods are very efficient for larger systems and longer time scale. The
embedded-atom method (EAM) [1–3], which was developed by Daw and Baskes over
two decades ago, has been widely applied in large molecular dynamic simulations be-
cause of its computational simplicity. The predictions using EAM for metals have gen-
erally been quite good, both qualitatively and quantitatively superior to the early pair
potential calculations.
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In the embedded atom method, the energy required to place an impurity atom in a
lattice is taken solely as a function of the electron density at that particular site. Each
atomic species therefore has a unique energy function which is in turn a function of just
the electron density. However, the theory leads to non-unique EAM potential functions.
Different EAM potential functions have been presented [4–13], some with no reference
to their physical meaning. In this paper, new EAM potentials for fcc metals Ni, Al and
their alloys are constructed. The embedded function in the present work is constructed
by analogy with the density function theory and simple forms for the electron density
function and the repulsive function are given.

2 Formalism

Under EAM formalism, the total energy is represented as

Utot =
1
2 ∑

i,j(i 6=j)
Φ(Rij)+∑

i
F[ρi], (1)

where Φ is the pair potential between atoms i and j, F(ρi) is the embedded function which
is the energy to embed an atom i in an electron density ρi. Rij is the separation between
atoms i and j, and, ρi denotes the host electron density at atom i due to all the other
atoms. The host electron density is assumed to be a linear superposition of contributions
from individual atoms, and it is given by

ρi =∑
i 6=j

fi(rij), (2)

where fi(rij) is the electron density of atom j as a function of distance from its center.
As indicated in the previous section, the EAM potential is not unique. Different forms

of F(ρi), Φ and fi(rij) can be presented. Here, we present a new form for the embedded
function F by analogy with the density functional theory in order to understand its phys-
ical meaning. The density-functional expression for the cohesive energy of a solid is [14]

Utot =
1
2 ∑

i,j(i 6=j)

ZiZj

Rij
+∑

i

∫
ρ(~r)
|~r−~Ri|

d~r+
1
2

∫∫
ρ(~r)ρ(~r′)
|~r−~r′| d~rd~r′+Exc[ρ]+Te[ρ] (3)

where the first term in the right side of Eq. (3) is the core-core repulsion potential, the sec-
ond term is the electron-core coulomb interaction, the third term is the electron-electron
coulomb interaction, the fourth term is the exchange and correlation energy, and, the fifth
term is the electronic kinetic energy. According to Daw [3], the kinetic and exchange-
correlation energy density is

g(ρ)= t(ρ)+x(ρ)+c(ρ),
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where the kinetic energy density can be given by [15]

t(ρ)=
3
10

[
3

π2

]2/3

ρ
5
3 +

λ

8
|∇ρ|2

ρ
, (4)

the exchange energy density can be written as

xρ =−3
4

[
3
π

]1/3

ρ4/3, (5)

and the correlation energy density is approximated as

c(ρ)=ρ

[
−0.0575+0.0155ln

(
3

4πρ

)1/3]
. (6)

Neglect the second term of Eq. (4), we rewrite it approximately as

t(ρ)=
3

10

[
3

π2

]2/3

ρ5/3. (7)

For the electron-core and electron-electron coulomb interaction, here, we approximate
their energy densities as follows

∑
i

∫
ρ(~r)
|~r−~Ri|

d~r∼ c2ρ (8)

and
1
2

∫∫
ρ(~r)ρ(~r′)
|~r−~r′| d~rd~r′∼ c3ρ2. (9)

Taking references to Eqs. (4)-(9), we approximated the embedded function as

F(ρ)= c2ρ+c3ρ2+c4g(ρ), (10)

with

g(ρ)=c6ρ2+x(ρ)+c(ρ)=
3

10

(
3

π2

)2/3

ρ5/3− 3
4

(
3
π

)1/3

ρ4/3

+
[
−0.0575ρ+0.0155ρln

(
3

4πρ

)1/3]

It is interesting to compare the present embedded function F with

F(ρ)= c2ρ+c1ρ+c8ρ5/3/(c9+ρ)

which was proposed by Angelo et al. [16], the only difference is in the approximation of
g(ρ).
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In brief, the embedded function F is now written as

F[ρ]= c2ρ+c3ρ2+c4

[
0.73856ρ4/3−0.13562ρ5/3+(0.0649ρ+0.00517ρlnρ)

]
, (11)

with three fitting parameters c2, c3 and c4.
For the repulsive function Φ(Rij), we take a simple form

Φ(Rij)=
c1

exp
(

α
(

Rij/rc−1
))
−1

, (12)

with three fitting parameters c1, α and rc. For the local electron density function f (rij),
we take

f (r)= fern exp(−βr), (13)

where fe is a scaling constant. The format of f (r) is derived from the ground state wave
function of the atom. As mentioned by Chen et al. [17], the factor rn can describe approx-
imately the situation that the valence electrons can spread to a larger range in metals. In
summary, from Eqs. (10)-(12), we now have 9 parameters {n, rc, fe, α, β, c1, c2, c3, c4} for
the present EAM potential, for a single crystal such as Ni or Al.

For the ordered Ni-Al alloys, the EAM energy expression is [9]

Ei =
1
2 ∑

j
φtitj(rij)+Fti(ρi), (14)

where the subscripts ti and tj indicate atomic types. Now the core-core repulsion poten-
tial φ depends on the types of atom i and j. For binary Ni-Al alloys, it is necessary to
define the φNiNi(r), φNiAl(r) and φAlAl(r). Except for φNiAl(r), φNiNi(r), and φAlAl(r) are
assumed to be transferable from monatomic systems to alloy systems. According to the
model of Foiles et al. [4], we choose φNiAl(r) as follows

φNiAl(r)=
√

φNiNi(r)φAlAl(r). (15)

We therefore do not introduce any other potential parameters for the Ni-Al alloys.

3 Results and discussion

As mentioned in the previous section, we now have 9 parameters {n, rc, fe, α, β, c1, c2, c3,
c4} for the present EAM potential for bulk Ni or Al. In determining these parameters, as
usual, the experimental values of lattice constant a0, cohesive energy Ec, vacancy forma-
tion energy E f

v and three elastic constant (c11, c12, c44) are fitted for bulk f cc Al and Ni,
respectively. During the fitting process, we let a0, Ec and E f

v equal to the experimental
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values. We then minimize the root square deviation between the calculated and exper-
imental values. The optimized parameters obtained from our fittings are listed in Table
1. In Table 2, we show the results of lattice properties calculated from the present EAM
parameters along with the experimental data. There is no deviation for a0 and Ec for Ni
and Al, since they are set to equal to the experimental values. As shown in Table 2, the
elastic constants and bulk modulus of pure metal Ni are close to the experimental data.
However, the fit for bulk Al is not as good as Ni (EAM seemed to describe transition
metals better than simple metals). The predictions of lattice constants and cohesive en-
ergies for the Ni-Al alloys by the present potential parameters agree within 2% with the
experimental data. However, the prediction on some of the elastic constants of NiAl and
Ni3Al are not very good, e.g., the deviations of c11 of NiAl and c12 of Ni3Al are 42.1% and
24.1%, respectively. The lack of good transferability to Ni-Al alloys might be due to the
simple form we have used in Eq. (14).

To show the reliability of the present EAM potentials, we have calculated the effective

Table 1: The fitted parameters for Ni and Al EAM potentials.

Parameters Ni Al

n 1.0 1.0
rc 1.4 1.6
α 6.60 8.10
β 2.30 1.50
c1 33.80465244 25.28792441
c2 65.94077048 33.60140171
c3 21.50568086 4.97526322
c4 -114.09767658 -51.65870337
fe 3.71150806 0.87286555
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Figure 1: Effective pair potentials for (a) Ni, and (b) Al.
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Table 2: Results from present EAM potentials compared with experimental data, for bulk Ni, Al and their
ordered alloys NiAl and Ni3Al.

a0 E0 c11 c12 c44 B
(nm) (eV) (GPa) (GPa) (GPa) (GPa)

Ni Expt. 0.3516a 4.45b 247b 147b 125b 181b

Present 0.3516 4.45 237.85 151.54 129.60 180.31
Deviation 3.7% 3.1% 3.7% 0.4%

Al Expt. 0.4032a 3.36b 114b 61.9b 31.6b 79b

Present 0.4032 3.36 93.19 68.72 35.07 76.88
Deviation 18.3% 11.0% 11.0% 2.7%

NiAl Expt. 0.288c 4.50c 199c 137c 116c 158e

Present 0.2934 4.525 115.14 131.19 124.04 125.84
Deviation 1.9% 0.6% 42.1% 4.2% 6.9% 20.4%

Ni3Al Expt. 0.3567d 4.57d 230d 150d 131d 177e

Present 0.3578 4.562 196.17 113.80 123.00 141.26
Deviation 0.3% 0.2% 14.7% 24.1% 6.1% 20.2%

a Ref. [22]. The values are at zero temperature, corrected by the data of thermal expansion.
b Ref. [11].
c Ref. [12].
d Ref. [9].
e Ref. [23].

Figure 2: Cohesive energies as a function of lattice constants for various structures, calculated using the present
potentials (lines) for (a): Ni, and (b) Al, compared with ab initio calculations (dots).

pair potentials which are introduced by Finnis and Sinclair [6] to describe the energy
changed associated with any change in configuration of atoms. If the second and higher
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Figure 3: Cohesive energies as a function of lattice constants calculated using the present potentials for various
Ni-Al alloys (lines), compared with ab initio calculations (dots).

derivatives of F are neglected, the effective pair potential can be defined as

φe f f =Φ(r)−2F′(ρ0) f (r), (16)

where F′(ρ0) is the first derivative of the embedding function. The effective pair poten-
tials for Ni and Al are shown in Fig. 1. As seen in Fig. 1, the effective pair potentials are
smooth and very similar to those of the usual empirical pair-potentials.

In order to check the ability of the present EAM potentials for describing the struc-
tural stabilities, we compare the equation of states (EOS), i.e., the cohesive energies as a
function of the lattice constants, calculated from the first-principles method [18–20] with
those from the present EAM parameters. It should be noted that the cohesive energies of
the ab initio calculations (the minimum points of the curves) are shifted to match the cor-
responding experimental values of f cc bulk Ni and Al, respectively. EOS’s for f cc, bcc,
hcp and diamond structures, as well as the EOS from Rose et al. [21], are calculated and
compared in Fig. 2 for Ni and Al, respectively. Very good agreements of EOS’s are shown
for f cc, bcc and hcp structures of Ni, with less agreement for the diamond structure which
is due to the low-coordination of diamond structure (EAM model might not be able to
describe the low-coordination structures well). For Al, generally, the agreements between
EAM and first-principles data are also good, with some deviations in the region of large
lattice expansions. Fig. 3 compares the equation of states from the present potentials with
those from the ab initio calculations, for various structures of Ni-Al alloys. Most of the
alloy structures by EAM agree well with the ab initio calculations around the equilibrium
lattice constants. For the L12-Ni3Al and B2-NiAl, the EAM and ab initio data have some
discrepancy at large lattice constants. For B1-NiAl, the difference is more significant. For
the order of relative structural stabilities, we show good accord in between the present
EAM and the first-principles calculations. The cohesive energies for different structures
decrease gradually from Ni3Al (L12) → NiAl (B2) → Al3Ni (L12) → NiAl (B1).

The phonon spectrum gives more information on inter-atomic interaction and is very
important in describing the thermodynamic behavior of a material. Therefore, the com-
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Figure 4: The phonon spectra of (a) f cc Ni and (b) f cc Al. The points are experimental data, taken from
Ref. [24] (for Ni) and Ref. [25] (for Al).
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Figure 5: The phonon spectrum of Ni3Al in
L12 structure. The points are experimental
data from Ref. [26].

parison of phonon spectra calculated by the present EAM potentials with experimental
data is a crucial test of our EAM model and a good indicator of their predictive abilities.
Shown in the Figs. 4 and 5 are the phonon spectra of f cc bulk Ni, Al and their alloy
Ni3Al in the Ll2 structure. The comparison is in between the present EAM results and
the experimental values. Generally speaking, EAM data are in good accord with exper-
imental data in the low energy modes for all the bulk Ni, Al and Ni3Al. For the higher
energy modes, however, the differences between the EAM calculations and experimental
data are relatively large. The reason for these disagreements might be due to the fitting
of EAM parameters, where the deviations of some elastic constants are relatively large,
as shown in Table 2.

4 Conclusions

In conclusion, new EAM potentials for Al, Ni and Ni-Al alloys have been presented.
The embedded function was derived by analogy with the density function theory. The
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parameters of pure Al and Ni were fitted to the experimental values, including the lat-
tice parameters a0, the cohesive energies Ec, the vacancy formation energies E f

v and the
elastic constants (c11, c12, c44). The potential of their ordered alloy was then constructed
from the potentials of pure Al and Ni. Using these new EAM potentials, the accurate
relative stability of different crystal structures have been predicted, as compared to the
first-principles calculations. The calculated phonon dispersions of bulk Ni, Al and their
alloy Ni3Al were also in fairly good agreement with measurement.
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