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Abstract. By considering strict relativistic energy of single particle and using the methods

of quantum statisticsąAthe relativistic paramagnetism of a weakly interacting Fermi gas in a

weak magnetic filed is studied, and the relativistic most probable paramagnetic susceptibil-

ity as well as the average magnetic susceptibility of the system are solved. On the basis, the

influences of relativistic effect on the most probable paramagnetic susceptibility of the sys-

tem are discussed, and the relativistic critical value of particle number is given. It is shown

that, comparing with nonrelativistic situationąAwhen, the relativistic most probable mag-

netic susceptibility and the relativistic critical value of particle number have not changed.

When ąAthe relativistic effects make the system display paramagnetism easily and suscep-

tibility increase,but the relativistic effects also amplified the impact of the interaction on

the magnetic susceptibility.

PACS: 05.30.-d, 51.60.+a
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1 Introduction

In recent years, the discovering of neutrino mass interests one in theoretical research of the

relativistic Fermi gas. The rest mass of a neutrino is one of the million less than that of an

electron. For a system which consists of these small particles, the relativistic effect on the

statistic properties of the system needs to be considered even if under the condition of low

temperatures. However, the most studies are thermodynamic properties of Fermi systems

[1–5], the studies on magnetism of Fermi systems for finite number of particles are much

few, and the paramagnetic researches of considering the relativistic effects have not been
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reported. Xiong et al. [6] and Dong [7] have respectively investigated Pauli’s paramagnetism

of an ideal and a weakly interacting Fermi gas with finite number of particles trapped in a

weakly magnetic field, and have given the respective critical value of magnetic field. Men

et al. [8, 9] respectively investigated relativistic thermodynamic properties and stability of a

weakly interacting Fermi gas in a weak magnetic filed. For the Fermi system, these researches

are important to deep understand magnetic filed and interparticle interactions.

In the present paper, by considering the relativistic effects and using the probability distri-

bution function, we will continually study the paramagnetism of a weakly interacting Fermi

system for finite number of particles, and give the relativistic most probable susceptibility as

well as the average magnetic susceptibility of system. At the same time, we also give the

relativistic critical values of particle number of the system.

2 The relativistic most probable magnetic susceptibility

of the system

We study an imperfect gas of spin-1/2 fermions, with volume V and particle number N ,

confined in an homogenous weak magnetic field B=BZ . It has been derived that, if s-wave

considered only, the energy eigenvalue of the system can be written as [10]

E=
∑

p

(n+
p +n−p )ǫp+

α

V
N+N−−(N+−N−)µB, (1)

where µ is µB, the magnetic moment of fermions, α= 4πa h̄2/m is the parameter of in-

teractions, a is s-wave scattering length, n+
p (n
−
p ) is the number of particles in the states of

momentum p with spin-up(spin-down), N+(N−) is the total number of particles with spin-

up(spin-down). Considering the relativistic effect, the energy of a single particle is expressed

as

ǫp=mc2

r

1+
p2

m2c2
−mc2. (2)

Based on the means which deal with nonideal Bose gases proposed by Huang, Yang et al.

[11, 12], we introduce A0(ξ) and consider it as the relativistic free energy of the system of ξ

spinless and noninteracting fermions without external potential in volume V

A0(ξ)=−
1

β
ln
∑

{ξp}
exp

 

−β
∑

p

ξpǫp

!

, (3)

followed by the method of Ref. [6], through calculation, the probability distribution function

of N+ consideration the relativistic effect can be given as

G(β ,N+)=Anexp

∫ N+

N
+
δ(β ,N+)dN+=Anexp

�

−
�

βσ

N
− 2aλ2

V

�

�

N+−N
+�2

�

, (4)
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and the relativistic most probable magnetic susceptibility of system can be written as

χp=
Mp

V B
=

2nµ2

σ

�

1+
αn

σ

�

, (5)

where An is a normalized constant, Mp is the most probable magnetization, σ =
∂ u0(xN )/∂ x |x=1/2, u0 is the relativistic chemical potential of system of spinless and free

fermions corresponding to A0, n is the particle-number density, , λ=h/
p

2πmkT , β=1/(kT ),

N
+
=(1+r)N/2, r≈2µB/(σ−αn), k is the Boltzmann constant, and h is the Planck constant.

2.1 The case of T≫TF

In the case of high temperatures, i.e., T≫ TF , the Fermi gas evolves into classical ideal gas,

then we have [13]

u0=u0(T ,V ,xN )=−kT ln

�

4π

xn

�

mc

h

�3 K2(φ)

φ

�

−mc2, (6)

where Kn(φ) is the correctional Bessel function, φ=βmc2, by substituting Eq. (6) into Eq. (5),

we will get the relativistic most probable magnetic susceptibility of system at high tempera-

tures as

χp=
nµ2

KT

�

1+
1

π

TF

T

a

λ0

�

. (7)

When φ≫1, i.e., under the nonrelativistic condition, there is

u0(xN ,V ,T )≈kT ln(xnλ3), (8)

via similar calculations, we get

χp=
nµ2

KT

�

1+
1

π

TF

T

a

λ0

�

, (9)

TF =(3n/8π)2/3h2/(2mk) is nonrelativistic Fermi temperature, and λ0 =(8πn1/2/3)−2/3.

Especially, when φ≪1, i.e., under the ultrarelativistic situation, we get the same analytical

expression with Eq. (9).

Therefore, we may educe conclusion that the relativistic effect does not influence on the

most probable magnetic susceptibility of system in the case of T≫TF .

2.2 The case of T≪TF

It can be known from Ref. [14] that, the chemical potential of consideration the relativistic

effect satisfies

N =−∂Ω

∂ µ
=

V ∗
n′

λn′

�

2

π
βmc2

�1/2 ∞
∑

j=1

(−1) j−1e jβµ

jD+η−1
KD( jβmc2). (10)
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where

V ∗
n′=

n′
∏

i=1

2Li

(βǫi)
1/ti

Γ

�

1

t i

+1

�

, D=
n′+1

2
, η=

n′
∑

i=1

1

t i

,

n′ is space dimension. Let n′=3, η=0. Under the condition of T≪TF , considering relativistic

effects, we get the chemical potential via calculations

u0(xN ,V ,T )≈EF

�
�

1− 7

30

EF

mc2

�

−π
2

12

�

kT

EF

�2�

1+
7

20

EF

mc2

�
�

, (11)

where E f =
h2

2m
( 3n

4π
)2/3. By Eq. (5), we calculated the most probable magnetic susceptibility of

the system as

χp=
3nµ2

2ǫF

�

g+ π
2

12

�

kT

ǫF

�2
�

 

1+
3αn

4ǫF

�

g+ π
2

12

�

kT

ǫF

�2
�

!

, (12)

where g = 1− 7

15

ǫF

mc2 , ǫF = kTF is nonrelativistic Fermi energy. From this we can see that,

comparing with nonrelativistic situationąAthe relativistic effect increased susceptibility, but

also amplified the impact of the interaction.

2.3 The case of T→0

We know that, for a system which consists of very small static mass fermions and is of a high

particle number density, the average kinetic energy of the particles is close to or more than

mc2 even if the temperature tends to 0.

At extremely low temperatures, i.e., T→0, we get [13]

u0(xN ,V ,T )=mc2

s

1+

�

3h3 xN

4πV

�2/3
1

(mc)2
−mc2. (13)

By substituting Eq. (13) into Eq. (5), we will get the relativistic most probable magnetic

susceptibility of the system of at 0 temperatures as

xp=
3mc2

ǫ0
F

2
nµ2

s

1+

�

ǫ0
F

mc2

�2





1+

3mc2

2ǫ0
F

2
αn

s

1+

�

ǫ0
F

mc2

�2





, (14)

where ǫ0
F =hc(3n/8π)1/3 is ultrarelativistic Fermi energy. Especially, under the ultrarelativis-

tic case, i.e., ǫ0
F≫mc2, there is

χp=
3nµ2

ǫ0
F

�

1+
3αn

2ǫ0
F

�

. (15)
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Under the nonrelativistic case, i.e., ǫ0
F≪mc2, there is

χp=
3

2

nµ2

ǫF

�

1+
3

4

αn

ǫF

�

, (16)

where ǫF =kTF is nonrelativistic Fermi energy.

Thereout it may be known that the relativistic effect has evident influence on the most

probable magnetic susceptibility of system at 0 temperatures, which mostly shows that the

effect of particle-number density on the most probable magnetic susceptibility of system

changed.

3 The relativistic average magnetic susceptibility of the system

We normalize G(β ,N+) as

∫ N

0

Anexp

�

−
�

βσ

N
− 2aλ2

V

�

(N+−N
+
)2

�

dN+

=An

∫ N−N
+

−N
+

e−x0 y2

d y=An

∫ N/2−φ

−N/2−φ
e−x0 y2

d y

≈2An

∫ ∞

0

e−x0z2

dz=An

p

π/x0=1,

so An=
p

x0/π, where x0=
βσ

N
− 2aλ2

V
, φ= 2µB

σ−αn
. The average value of N+ is

〈N+〉=
N
∑

N+=0

N+G(β ,N+)≈
∫ N

0

AnN+exp
�

−x0(N
+−N

+
)2
�

dN+

=N
+− An

2x0

×exp

�

−x0

N2

4

�

�

1−exp(−x0N2r)
�

,

we get the average magnetic susceptibility

〈χ〉=
�

〈2N+〉−N
� µ

V B
=χp−

Anµ

x0V B
×exp

�

−x0

N2

4

�

�

1−exp(−x0N2r)
�

. (17)

When T≫TF , σ=2kT , then we obtain

〈χ〉=χp−
r

1

2π

nµ

B
p

N

�

1+
αn

4kT

�

×exp

�

−N

2

��

1−exp

�

−NµB

kT

��

. (18)

When T→0,

σ=
2(ǫ0

F)
2

3mc2

 

1+

�

ǫ0
F

mc2

�2
!−1/2

,
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then 〈χ〉=χp, i.e., when T→0, the effects of finite number of particles disappear, where

χp=(2N
+−N )µ/(V B) is the relativistic most probable magnetic susceptibility of system, the

second term on the right-hand side of Eq. (18) is an amendatory term, which will be close

to zero when the particle number N is maximum, is caused by effects of finite number of

particles. From Eq. (18), it is obvious to find that, in the case of T≫TF , the average magnetic

susceptibility of the system is less than most probable magnetic susceptibility whether the

interactions are repulsive or attractive, and the average magnetic susceptibility 〈χ〉 relate to

magnetic field B, the amendatory term decreases with temperature raising.

4 The relativistic critical values of particle number

The most probable magnetic susceptibility χp in the case of thermodynamic limit only mirrors

the effects of particle-number density and interactions, but it is independent of the total par-

ticle number and magnetic field. For the system with finite particle numbers, the situation is

not so. By considering the relativistic effects and using the methods of Ref. [7], we obtain

p

〈∂ 2N+〉=
p

〈(N+)2〉−〈N+〉2≈ 1
q

2
�

βσ

N
− 2aλ2

V

�

, (19)

where it should be emphasized that the chemical potential in Eq. (19) is relativistic. If the

system displays paramagnetism,

p

〈∂ 2N+〉<(N+−N
−
) (20)

will be satisfied. From Eq. (20) we will get

N>
1

8

KT

(µB)2
(σ−αn). (21)

Eq. (21) is the relativistic condition which particle number of the system will satisfy to observe

the phenomenon of paramagnetism. Under the condition of T≫ TF , by substituting Eq. (6)

into Eq. (21), we will get the relativistic condition at high temperatures

N>
1

8

KT

(µB)2
(2KT−αn)=N0, (22)

where N0 is the relativistic critical value of particle number when T≫TF , i.e., for the system

with finite number of particles, the particle number must be larger than the critical value

to observe paramagnetism. We can also conclude from the critical value of particle number

that, the inter-particle repulsions make the system display paramagnetism easily but the inter-

particle attractions make the system display paramagnetism difficultly.

Similarly, by substituting Eq. (8) into Eq. (21), we will get the same result with Eq. (22).

It shows that, under the condition of T≫TF , the relativistic effect does not influence on the

critical value of particle number.
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By substituting Eq. (11) into Eq. (21), we get

N>
kTǫF

6(µB)2

�

g+
π2

12

�

kT

ǫF

�2

− 3αn

4ǫF

�

. (23)

From this we can know that, under the condition of T≪TF to consider the relativistic effects,

the critical value of the number of particles become smaller, this indicates that the system easy

show paramagnetism to consider the relativistic effects. When T→0, whether the situations

are relativistic or nonrelativistic, one can get N0 =0, i.e., the paramagnetism of the system

require nothing for number of particles. From Eq. (20), we can also discuss the relativistic

critical value of magnetic field to observe paramagnetism.

5 Conclusions

We have studied relativistic paramagnetism of a weakly interacting Fermi gas for finite num-

ber of particles, and have gained the analytical expression of the relativistic most probable

magnetic susceptibility as well as the average magnetic susceptibility of system. At the same

time, we have given the relativistic critical values of particle number. It is shown that, com-

paring with nonrelativistic situation, when T≫ TF , the relativistic most probable magnetic

susceptibility and the relativistic critical value of particle number have not changed. When

T≪ TF , the relativistic effects make the system display paramagnetism easily and suscepti-

bility increase,but the relativistic effects also amplified the impact of the interaction on the

magnetic susceptibility. When T→0, whether the situations are relativistic or nonrelativistic,

the critical value of particle number is all zero. But, comparison between the ultrarelativis-

tic case and the nonrelativistic case, the most probable magnetic susceptibility is different,

that chiefly shows the influence of particle-number density on the most probable magnetic

susceptibility is more evident in the ultrarelativistic case.
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