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Abstract. Based on the time-dependent density functional theory (TDDFT), the ex-
cited state intramolecular proton transfer (ESIPT) mechanism of a new compound 1
chromophore synthesized and designed by Liu et al. [Journal of Photochemistry and
Photobiology B: Biology., 138 (2014), 75-79] has been investigated theoretically. The
calculations of primary bond lengths, angles and the IR vibrational spectra verified
the intramolecular hydrogen bond was strengthened. The fact that reproducing the
experimental absorbance and fluorescence emission spectra well theoretically demon-
strates that the TDDFT theory we adopted is reasonable and effective. In addition,
intramolecular charge transfer based on the frontier molecular orbitals demonstrated
the indication of the ESIPT reaction. The constructed potential energy curves of ground
state and the first excited state based on keeping the O-H distance fixed at a serious of
values have been used to illustrate the ESIPT process. A little barrier of 2.45 kcal/mol
in the first excited state potential energy curve provided the transfer mechanism. Fur-
ther, the phenomenon of fluorescence quenching has been explained reasonably based
on the ESIPT mechanism.

PACS: 31.25.Jf; 82.39.Jn
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1 Introduction

The hydrogen bonding interaction has formed the nucleus of intensive research for years
due to its pivotal roles in physics, chemistry, and biology [1-14]. Proton transfer (PT), as
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one fundamental class of photochemistry, has attracted more and more attentions along
hydrogen bonding in recent years [15-30]. In fact, in the middle of the last century, the in-
vestigation of the excited-state intramolecular proton transfer (ESIPT) reaction has been
a new arena of research in the field of photochemistry since the experimental observa-
tion of the phenomenon reported by Weller et al. firstly [31, 32]. PT occurs containing
both acidic and basic groups in close proximity, which could rearrange structures in the
electronic excited state via a proton or hydrogen atom transfer. After photo-excitation,
the molecules could be projected on a potential energy surface, which could make the
position of a proton unstable. The driving force for the transformation could be provided
based on the energy difference between the locally excited state and the relaxed excited
state. In turn, the slope of the surface connecting these two points determines the rela-
tive kinetics. The stationary fluorescence spectroscopy provides important indications of
the occurrence of proton transfer in the excited state. The observation of a nearly mirror
symmetry between absorption and fluorescence spectra demonstrates that the nuclear
configuration of the molecule and its surrounding medium remains close to that of the
ground state over the timescale of the excited state lifetime. And the effect of the proton
transfer on the Frank-Condon factors is enough to result in the break-up of the mirror
symmetry. The light emission originating from the proton-transferred state occurs at
longer wavelength with a red shift with respect to absorption ranging. It is hence possi-
ble to interpret the normal, shorter wavelength emission as originating from the locally
excited state, and to associate the red shifted long wavelength emission with the product
of the proton transfer.

Recently, a new compound 1 chromophore has been synthesized and designed by
Liu et al. [33], which shows high selectivity for some biologically ions. Based on the
absorption spectra, fluorescence spectra, 1HNMR and more experiment measures, Liu
et al. offered the important spectrum properties of 1 chromophore and inferred the ES-
IPT mechanism. However, only the indirect information about photo-physical properties
could be provided based on spectroscopic techniques. Therefore, in order to give a clear
and detailed picture of this proton transfer mechanism, in the present work, a theoretical
investigation based on the density functional theory (DFT) and the time-dependent den-
sity functional theory (TDDFT) method have been applied to study both the ground and
the excited state of molecular relevant to the transfer mechanism, respectively. We mainly
forced our attention on the configurations of ground state and the first excited state, and
further calculated and analyzed the vertical excitation energies, the frontier molecular
orbitals and homologous ground state and the first excited state potential energy curves
to elaborate the proton transfer mechanism.

2 Computational details

In the present work, the DFT and TDDFT methods have been adopted to optimize the
ground state and the first excited state structures, respectively [34-38]. Becke’s three-
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Table 1: The calculated primary bond lengths (Å) and angles (◦) in the S0 state and the S1 state based on the
DFT and TDDFT methods, respectively.

1-enol 1-keto
Electronic state S0 S1 S0 S1

O1-H2 1.000 1.026 1.754 1.848

H2-N3 1.699 1.625 1.038 1.031

δ(O1-H2-N3) 149.6◦ 150.3◦ 140.7◦ 139.3◦

parameter hybrid exchange functions with the Lee-Yang-Parr gradient-corrected corre-
lation functional (B3LYP) and the 6-31+G (d) basis set have been selected throughout.
No constraints to all the atoms, bonds, angles or dihedral angles have been ensured dur-
ing the geometric optimization. In order to ensure the consistency with the experiment
[33], acetonitrile has been used as solvent in the calculations based on the model that the
Polarizable Continuum Model (PCM) based on the integral equation formalism variant
(IEFPCM). All the local minima were confirmed by the absence of an imaginary mode
in the vibrational analysis. The S0 and S1 potential energy curves have been scanned by
constrained optimizations in their corresponding electronic state with keeping the O-H
distance fixed at a serious of values. Fine quadrature grids of size 4 were employed.

Harmonic vibrational frequencies in the ground state and the first excited state were
determined by diagonalization of the Hessian. The excited-state Hessian was obtained
by numerical differentiation of analytical gradients using central differences and default
displacements of 0.02 Bohr. The infrared intensities were determined from the gradients
of the dipole moment. All the electronic calculations were carried out depending on the
Gaussian 09 program suite [39].

3 Results and discussion

3.1 Optimized structures

The ground state and the first excited stated structures of the 1 chromophore were ob-
tained using the B3LYP function with 6-31+G (d) basis set level of theory, with a subse-
quent vibrational frequency analysis to ensure the validity of the stationary points. The
acetonitrile solvent was selected in the IEFPCM model insuring consistency with the ex-
periment [33]. And the most primary structure parameters have been shown in Table 1.
We labeled a serial numbers from 1 to 3 on the atoms connected to the hydrogen bonds
for describing clearly (see Fig. 1). It should be noted that the calculated lengths of O1-H2

and H2 ···N3 are 1.000 and 1.699 Å in the ground state. However, upon the photo exci-
tation, the O1-H2 was lengthened to be 1.026 Å and H2 ···N3 was shortened to be 1.625
Å. The variable-length O1-H2 band as well as variable-short H2 ···N3 bond indicates that
the intramolecular hydrogen bond was strengthened in the first excited state.

In effect, the hydrogen bond strengthening or weakening could also be revealed by
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Figure 1: The optimized structures of 1-enol and its corresponding 1- keto tautomer at B3LYP/ 6-31+G (d)
calculation level.

Figure 2: The calculated IR spectra of 1-enol and 1-enol∗ structure in acetonitrile solvent at the spectral region
of O-H stretching band.

monitoring the spectral shifts of some characteristic vibrational modes involved in the
formation of hydrogen bonds [40-48]. The vibrational spectra of 1 chromophore in the
conjunct vibrational regions of the O-H stretching modes were shown in Fig. 2. It should
be noted that the calculated O-H stretching vibrational frequency is located at 2951 cm−1

in the ground state, whereas it is located at 2864 cm−1 in the first excited state. It demon-
strates that the intramolecular hydrogen bonds O1-H2 ···N3 induces about 87 cm−1 red-
shift of O-H stretching frequency in the first excited state, which could be concluded due
to the effect of the excited-state intramolecular hydrogen bond O1-H2 ···N3. Therefore,
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Figure 3: The calculated absorption and fluorescence spectra of 1 chromophore in acetonitrile solvent.

it further indicates that the intramolecular hydrogen bond was strengthened in excited
state, which is an indication of the ESIPT reaction.

3.2 Electronic spectra and frontier molecular orbitals (MOs)

Based on the TDDFT/B3LYP/6-31+G (d) calculated level, the corresponding absorption
and fluorescence spectra of 1-enol structure were displayed in Fig. 3. Although the
steady-state spectral characters of 1 chromophore have been reported in the experiment
[33], the investigations of the theoretical calculations and proton transfer mechanism are
very limited. In order to show the shape of the spectra clearly, the calculated absorption
and fluorescence spectra from 200 to 800 nm have been selected. It could be noted that
the strong absorption peak for 1-enol was located at 438 nm, which is in consistent with
the experiment [33]. The first excited state of 1 chromophore was fully optimized based
on the ground state optimized geometric conformations as the initial conformations with
the TDDFT method. In effect, the first excited state has two fates. The one is 1-enol∗,
and the other is 1-keto∗. The results of theoretical calculations of 1-enol∗ shown in Fig.
3 reveal a normal Stokes shifted emission maximum at 512 nm in acetonitrile, which is
also in good agreement with the experiment [33]. In addition, in the case of geometry-
relaxed keto form 1-keto, a Stokes shift upon emissive relaxation was calculated at 533
nm. All the agreements with experiment demonstrate that the calculated excited state
of 1 chromophore in acetonitrile solvent based on the TDDFT method can delineate the
excited-states property well.

In order to discuss qualitatively on the nature of the excited state, it is necessary to
understand charge distribution in electronic excited state. The frontier molecular orbitals
(MOs) of the 1-enol in acetonitrile were shown in Fig. 4. Herein, we only show the highest
occupied molecular oribital (HOMO), the lowest unoccupied molecular oribital (LUMO),
because the first excited state is only associated with these two orbitals. The π character
for the HOMO as well as the π

∗ character for LUMO can be seen clearly. Therefore, it
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Figure 4: Frontier molecular orbitals (HOMO and LUMO) of 1 chromophore.

is determined that the first excited state is due to a distinct ππ
∗ feature. The one should

be noted that the HOMO and LUMO are localized on different parts. Especially, the
part involved in the intramolecular hydrogen bond O-H···N, the electron density of the
hydroxide radical moiety changes after the transition from HOMO to LUMO. That is to
say, the first excited state involves the intramolecular charge transfer, and the change of
electron density in the hydroxide radical moiety can directly influence the intramolecular
hydrogen bonding O-H···N. As a consequence, the H···O bond length could be shorted
upon excitation to the first excited state. So the ESIPT process could happen due to the
intramolecular charge transfer.

3.3 The potential energy curves and the PT mechanism

In order to understand the PT mechanism clearly, the ground state and the first excited
state potential energy curves have been scanned. Scan is based on constrained optimiza-
tions in their corresponding electronic states with keeping the O-H distance fixed at a
serious of values. Even though the TDDFT/ B3LYP calculated level may not be expected
to be accurate sufficiently to surmount the correct ordering of the closely spaced excited
states, previous researches have indicated that this method may be reliable as far as the
shape of hydrogen-transfer potential energy curves is concerned [49-51]. The potential
energy curves with only the variable parameter of O-H bond length from 1.0 to 2.3 Å
among the 1-enol form and 1-keto form geometries in steps of 0.1 Å were shown in Fig.
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Figure 5: Potential energy curves of the ground and the first excited states for 1 chromophore along with O-H
bond length. The inset shows the detailed configuration.

5, which can provide qualitative energetic pathways for the ESIPT process of 1 chro-
mophore. It can be seen clearly that the energy of the ground state increases along with
lengthening the O-H bond relaxing from the optimized length about 1.0 Å, which illus-
trated that no proton transfer occurs in the ground state. However, it should be noted
that the first excited state potential energy curve exhibits a barrier of 2.45 kcal/mol be-
tween the reagent (from the vertical transition at the geometry of the minimum in the
ground state) and the product. Therefore, it proved that transferring the proton H from
O to N in 1-enol overcomes a very low barrier, thus suggesting that the ESIPT is very
likely to be proceeded in the first excited state. In addition, when the O-H bond was
lengthened to be 1.81 Å, there exists a stable point in the first excited state potential en-
ergy curve (i.e. 1-keto∗ form). Subsequently, the 1-keto∗ decays to the ground state 1-keto
form through radiating fluorescence, which provides a possible explanation for the fluo-
rescence quenching.

4 Conclusion

In summary, we have investigated the ESIPT mechanism of the new compound 1 chro-
mophore reported by Liu et al. [33]. The hydrogen bond strengthening indicates the
tendency of excited state proton transfer. The absorption and fluorescence spectra are
well reappeared based on vertical transition energies calculated from the optimized ge-
ometries of ground and the first excited states. the corresponding frontier molecular
orbitals have been analyzed indicating the ESIPT process could happen due to the in-
tramolecular charge transfer. The constructed potential energy curve of the ground state
demonstrated no proton transfer occurring, while a corresponding low barrier of 2.45
kcal/mol between 1-enol∗ and 1-keto∗ verified an ESIPT process. Based on ESIPT mech-
anism, the fluorescence peak of 533 nm could be attributed to the emission of 1-keto∗,
therefore, the fluorescence quenching was explained legitimately.
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