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Žitná 25, Prague 1, CZ 115 67, Czech Republic

Received 20 July 2009; Accepted (in revised version) 30 September 2009
Available online 5 March 2010

Abstract. The parabolic variational inequality for simulating the valuation of Amer-
ican option is used to analyze a continuous dependence of the solution with respect
to the uncertain volatility parameter. Three kinds of the continuity are proved, en-
abling us to employ the maximum range method for the uncertain parameter, un-
der the condition that the criterion-functional has the corresponding property.
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1 Introduction

The problem of pricing American options is important both in theory and in practice.
It has been shown by the Nobel Prize laureates Merton [7] and Black and Scholes
[4] that the valuation of American call option can be simulated by a free boundary
problem for a degenerate parabolic equation. A weak solution of the problem has
been defined by Badea and Wang [2]. They proved the existence and uniqueness of
the weak solution and some regularity results by a detailed analysis based on the use
of maximum principles.

Efficient numerical methods for the solution of the problem using finite elements
in ”space” and backward differences in ”time” have been proposed by Allegretto et
al. [1] and Lin et al. [8]. These authors started from an equivalent variational inequal-
ity, which can be derived by a suitable change of all variables and which avoids the
degeneracy.

The aim of the present paper is to complete the results of Badea and Wang [2, 3]
by an analysis of a continuous dependence of the weak solution with respect to the
volatility. The latter parameter appears to be the only parameter, which is not ob-
servable directly in the market. On the basis of a variational inequality for the weak
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solution [3], we prove three kinds of the continuous dependence, provided the volatil-
ity belongs to a given compact interval of positive numbers. Then one can employ the
maximum range method [5, 6], if a criterion-functional is prescribed, which has prop-
erties, corresponding to the three kinds of the continuity, mentioned above.

2 Formulation by a parabolic variational inequality

The original mathematical model of American call option proposed by Merton [7] is
represented by a free boundary problem for a parabolic equation

wt − 1
2

σ2x2wxx − (r− d)xwx + rw = 0, in D, (2.1)

with the initial condition

w(x, 0) = 0,

and the boundary conditions

w(0, t) = 0, w
(
s(t), t

)
= (x− Z)+, wx

(
s(t), t

)
= 1,

for all t ∈ (0, T]. Here w(x, t) denotes the value of the American call option, T is
the maturity date (the time at which the American call option expires), r is the interest
rate, d the dividend rate, σ the volatility, Z the exercise price, x denotes the stock price,
t ≡ T − tr, where tr is the real time,

D =
{
(x, t) : 0 < x < s(t), t ∈ (0, T]

}
.

The free boundary x = s(t) denotes the optimal exercise curve,

wx ≡ ∂w
∂x

, wt ≡ ∂w
∂t

, and (u)+ = max{u, 0}.

We assume that r, d, Z, σ are positive real constants.
If we define a new function u(x, t) by

u = w− (x− Z)+,

we can extend the function u outside the domain D by zero. In this way a weak
solution has been defined by Badea and Wang in [2], where an upper bound

S0(σ) =
Zλ(σ)(

λ(σ)− 1
) ,

with

λ(σ) = σ−2
{

σ2

2
− r + d +

[(σ2

2
− r + d

)2
+ 2rσ2

] 1
2
}

,
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was found for s(t), so that

sup
t∈(0,T]

s(t) ≤ S0. (2.2)

Remark 2.1. Since d > 0 and σ2 > 0, λ(σ) > 1 follows. One can choose any constant
S ≥ S0(σ) and define Ω = (0, S), I = [0, T], the space

W(I) =
{

v ∈ L2(I, H1
0(Ω)

)
: x−1vt ∈ L2(I, L2(Ω)

)}
,

the bilinear form

a(σ; u, v) =
σ2

2(ux, vx)
+ (d− r)(ux, x−1v) + r(x−1u, x−1v),

and the function

q(x) = (x−1d− x−2rZ)H(x− Z),

where ( f , g) denotes the inner product
∫

Ω f g dx and H(·) is the Heaviside function.

Definition 2.1. We say that u is a weak solution if u ∈ W(I) is such that u(x, 0) = 0 and

(x−2ut, v) + a(σ; u, v) +
(
qH(u), v

)
=

1
2

σ2v(Z), (2.3)

holds for all v ∈ H1
0(Ω) and almost all t ∈ I.

Badea and Wang proved in [2] that there exists a unique weak solution,

x−1u ∈ L∞(
I, L2(Ω)

)
, ux ∈ L∞(

I, L2(Ω)
)
,

sup
t∈(0,T]

{s(t)} ≤ S0, inf
t∈I
{s(t)} ≥ Z max

{ r
d

, 1
}

,

ut ≥ 0, in Ω× I, u > 0, in D,
u = 0, in (Ω× I)\D.

Moreover, the values of u(x, t) do not depend on the value of S. It is easy to deduce
that the weak solution satisfies the following parabolic variational inequality (see [3]):

(x−2ut, v− u) + a(σ; u, v− u)

≥σ2(v(Z)− u(Z)
)

2
−

∫ S

Z
q(v− u) dx, (2.4)

for all v ∈ K and

almost all t ∈ I, u ∈ L2(I, K), x−1ut ∈ L2(I, L2(Ω)
)
,

and u(x, 0) = 0, where

K =
{

v ∈ H1
0(Ω) : v ≥ 0, in Ω

}
.

In what follows we will start the analysis on the basis of problem (2.4).
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3 Continuous dependence of solution with respect to
volatility

We will consider that the volatility σ is uncertain and belongs to a given interval

Uad =
[
σmin, σmax

]
, 0 < σmin < σmax < ∞.

A question arises about the dependence of the solution u ≡ u(σ) of problem (2.4) on
the parameter σ ∈ Uad. Let us choose

S ≥ max
σ∈Uad

S0(σ),

Then we will prove the following main result.

Theorem 3.1. Let σn ∈ Uad, σn → σ, as n → ∞. Then

u(σn) → u(σ), in L2(I; H1
0(Ω)

)
,

x−1u(σn)(t) → x−1u(σ)(t), f or a.a. t ∈ I,

x−1u(σn) ⇀ x−1u(σ) (weak star), in L∞(
I; L2(Ω)

)
.

For the proof we shall need the following lemmas and a proposition.

Lemma 3.1. There exist positive constants C0, C1 such that

a(σ; v, v) =
σ2

2 ‖vx‖2
0

+
r + d

2 ‖x−1v‖2
0

≥ C0 ‖v‖2
1 ,

∣∣a(σ; u, v)
∣∣ ≤ C1 ‖u‖1 ‖v‖1 ,

for any u, v ∈ H1
0(Ω) and any σ ∈ Uad.

Henceforth ‖v‖0 denotes the norm in L2(Ω) and ‖v‖1 the standard norm in the
Sobolev space H1(Ω).

Proof is a consequence of the inequalities

S−1‖v‖0 ≤ ‖x−1v‖0 ≤ 2‖vx‖0, ∀v ∈ H1
0(Ω).

Proposition 3.2. There exists a constant C3 such that
∥∥x−1ut(σ)

∥∥
L2

(
I;L2(Ω)

) ≤ C3, ∀σ ∈ Uad.

Proof. By an analysis of the proof of Lemmas 3.4 and 3.5 in [2]-II, we infer that
∥∥x−1∂tuk(σ)

∥∥
L2

(
I;L2(Ω)

) ≤ C(σmax), ∀σ ∈ Uad,
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where uk(σ) is the Rothe piecewise linear approximation of u(σ) in the interval I. Then
a function ω with

x−1∂tω ∈ L2(I; L2(Ω)
)
,

can be found as a weak limit of a subsequence of
{

x−1∂tuk(σ)
}

such that the norm of
x−1∂tω in L2(I; L2(Ω)

)
is bounded by C(σmax). In proving Theorems 4.1 and 2.1 of

[2]-II, it was verified that ω ≡ u(σ). ¤

Lemma 3.2. The set L2(It; K) is weakly closed in

L2(It; H1
0(Ω)

)
, f or all t ∈ I,

where It = (0, T].

Proof. It is readily seen that L2(It; K) is convex, since K is convex. Let un ∈
L2(It; K), un → u in L2(It; H1

0(Ω)
)
, as n → ∞. Then from

∫ t

0
‖un(τ)− u(τ)‖2

1 dτ → 0, ∀t ∈ I,

we infer that un(τ) → u(τ) in H1
0(Ω) for a.a. τ ∈ It, so that u(τ) ∈ K for a.a. τ ∈ It

and u ∈ L2(It; K). Since L2(It; K) is convex and closed in L2(It; H1
0(Ω)

)
, it is weakly

closed. ¤
Proof of Theorem 3.1. For brevity, let us denote un = u(σn) and

L(σn; w) =
σ2w(Z)

2
−

∫ S

Z
qw dx,

From (2.4), we infer that

(x−2unt, v− un) + a(σn; un, v− un) ≥ L(σn; v− un), (3.1)

holds for any v ∈ K and a.a. t ∈ I.
Let us insert v = 0 to obtain

(x−1∂tun, x−1un) + a(σ; un, un) ≤ L(σn; un). (3.2)

By using Lemma 3.1, the embedding H1
0(Ω) ↪→ C(Ω) and the inequality

| f g| ≤ ε

2 f 2 + (2ε)−1g2,

with ε > 0, we arrive at

d
dt

∥∥x−1un(t)
∥∥2

0 + 2C0‖un‖2
1 ≤ C0‖un‖2

1 + C,
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Integrating over the interval It, we obtain

∥∥x−1un(t)
∥∥2

0 + C0

∫ t

0
‖un(τ)‖2

1 dτ ≤ CT, ∀t ∈ I, n ≥ 1, (3.3)

Then there exists a subsequence {um} ⊂ {un} and u∗ such that

x−1u∗(t) ∈ L2(Ω), u∗ ∈ L2(I; H1
0(Ω)

)
,

and

x−1um(t) ⇀ x−1u∗(t) (weakly), in L2(Ω), ∀t ∈ I, (3.4)

x−1um ⇀ x−1u∗ (weak star), in L∞(
I; L2(Ω)

)
, (3.5)

um ⇀ u∗ (weakly), in L2(I; H1
0(Ω)

)
. (3.6)

Let us verify that u∗ = u(σ). To this end we choose an arbitrary v ∈ L2(It; K). We have

(x−2∂tum, um − v) + a(σm; um, um − v) ≤ L(σm; um − v),

for almost all t ∈ I. From this inequality, we obtain

d
2dt

∥∥x−1um
∥∥2

0 + a(σm; um, um)

≤(x−1∂tum, v) + a(σm; um, v) + L(σm; um − v), (3.7)

so that

1
2

∥∥x−1um(t)
∥∥2

0 +
∫ t

0
a
(
σm; um(τ), um(τ)

)
dτ

≤
∫ t

0

[(
x−1∂tum(τ), v(τ)

)
+ a

(
σm; um(τ), v(τ)

)

+ L
(
σm; um(τ)− v(τ)

)]
dτ, (3.8)

holds for all t ∈ I.
Let us pass to the lim inf with m → ∞. By virtue of (3.4), we arrive at

lim inf
∥∥x−1um(t)

∥∥2
0 ≥

∥∥x−1u∗(t)
∥∥2

0. (3.9)

The functional

ψ(w) =
∫ t

0
a
(
σ; w(τ), w(τ)

)
dτ,

is convex and continuous in L2(I; H1
0(Ω)

)
due to Lemma 3.1. Hence, it is weakly lower

semicontinuous, so that (3.6) yields

lim inf
∫ t

0
a
(
σ; um(τ), um(τ)

)
dτ ≥

∫ t

0
a
(
σ; u∗(τ), u∗(τ)

)
dτ. (3.10)
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Moreover, we observe that

∣∣∣
∫ t

0
a(σm; um, um) dτ −

∫ t

0
a(σ; um, um) dτ

∣∣∣

≤1
2

∫ t

0

∣∣σ2
m − σ2∣∣ ‖um(τ)‖2

1 dτ → 0, (3.11)

follows from (3.3).
By using Proposition 3.1, we infer that a subsequence of {um} exists (and we shall

denote it by the same symbol), such that

x−1∂tum ⇀ x−1∂tu∗ (weakly), in L2(I; L2(Ω)
)
, as m → ∞.

Then ∫ t

0
(x−1∂tum, x−1v) dτ →

∫ t

0
(x−1∂tu∗, x−1v) dτ. (3.12)

Since

x−1v(τ) ∈ L2(Ω), if v(τ) ∈ H1
0(Ω),

so that the integral represents a linear continuous functional in L2(I, L2(Ω)
)
. By virtue

of (3.6)
∫ t

0
a(σ; um, v) dτ →

∫ t

0
a(σ; u∗, v) dτ,

and using an analogue of (3.11), we arrive at

∫ t

0
a(σ; um, v) dτ →

∫ t

0
a(σ; u∗, v) dτ. (3.13)

Next, we have

∣∣∣
∫ t

0
L(σm; um − v) dτ −

∫ t

0
L(σ; um − v) dτ

∣∣∣

≤C
∣∣σ2

m − σ2∣∣
∫ t

0
‖um − v‖1 dτ → 0,

and
∫ t

0
L(σ; um − v) dτ →

∫ t

0
L(σ; u∗ − v) dτ,

by virtue of (3.6). As a result,

∫ t

0
L(σm; um − v) dτ →

∫ t

0
L(σ; u∗ − v) dτ. (3.14)
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From (3.7)–(3.14), we obtain

1
2

∥∥x−1u∗(t)
∥∥2

0 +
∫ t

0
a(σ; u∗, u∗) dτ

≤
∫ t

0

[
(x−1∂tu∗, x−1v) + a(σ; u∗, v) + L(σ; u∗ − v)

]
dτ.

This inequality can be rewritten as
∫ t

0

[
(x−1∂tu∗, x−1v− x−1u∗) + a(σ; u∗, v− u∗)− L(σ; v− u∗)

]
dτ ≥ 0, (3.15)

By Lemma 3.2 and (3.6), we infer that u∗ ∈ L2(It, K).
Let us set

v(τ) = u∗(τ) + w(x)χε(τ),

where w ∈ K is arbitrary and χε is the characteristic function of the interval
[
t0 − ε, t0 + ε

]
, t0 < T.

Then v ∈ L2(It, K). Since the Lebesgue Theorem implies that

(2ε)−1
∫ t0+ε

t0−ε
g(τ) dτ → g(t0), as ε → 0,

holds for any measurable function g and almost all t0 ∈ I, from (3.15) we infer that
[
(x−1∂tu∗, x−1w) + a(σ; u∗, w)− L(σ; w)

]
t=t0

≥ 0. (3.16)

Next, let us take v = 0 and v = 2u∗ in (3.15). Then
∫ t

0

[
(x−1∂tu∗, x−1u∗) + a(σ; u∗, u∗)− L(σ; u∗)

]
dτ = 0, ∀t ∈ I, (3.17)

and [
(x−1∂tu∗, x−1u∗) + a(σ; u∗, u∗)− L(σ; u∗)

]
t=t0

, (3.18)

follows by differentiation. From (3.16) and (3.18), we obtain

(x−2∂tu∗, w− u∗) + a(σ; u∗, w− u∗)− L(σ; w− u∗) ≥ 0,

for all w ∈ K and almost all t ∈ I, so that u∗ = u(σ).
Since the weak solution is unique (see [2]-I), the whole original sequence {un}

tends to u(σ) weakly in L2(I, H1
0(Ω)

)
, x−1un(t) tends weakly to x−1u(σ)(t) in L2(Ω)

for all t ∈ I and x−1un weakly star to x−1u(σ) in L∞(
I, L2(Ω)

)
.

To prove the strong convergence, we introduce the following bilinear form in
L2(It, H1

0(Ω)
)

〈u, v〉 =
1
2
(
x−1u(t), x−1v(t)

)
+

∫ t

0
a(σ; u, v) dτ,

and let ‖u‖2
a = 〈u, u〉.
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Lemma 3.3. Let us denote u = u(σ), un = u(σn). Then

‖un‖a → ‖u‖a , as n → ∞.

Proof. Since {un} is bounded in L2(I, H1
0(Ω)

)
by virtue of (3.3),

∫ t

0

(
a(σn; un, un)− a(σ; un, un)

)
dτ ≤ 1

2

∣∣σ2
n − σ2∣∣

∫ t

0
‖un‖2

1 dτ → 0, (3.19)

and
∣∣∣
∫ t

0
L(σn; un) dτ −

∫ t

0
L(σ; un) dτ

∣∣∣ ≤ C
∣∣σ2

n − σ2∣∣
∫ t

0
‖un‖1 dτ → 0. (3.20)

In the variational inequality for un, we insert v = 0 and v = 2un to obtain

Bn ≡
∥∥x−1un(t)

∥∥2

2
+

∫ t

0
a(σn; un, un) dτ

=
∫ t

0
L(σn; un) dτ. (3.21)

Then from (3.19)-(3.21) and the weak convergence of {un} it follows that

∥∥un
∥∥2

a = Bn +
∫ t

0

(
a(σ; un, un)− a(σn; un, un)

)
dτ

=
∫ t

0
L(σ; un) dτ +

∫ t

0

(
L(σn; un)− L(σ; un)

)
dτ

→
∫ t

0
L(σ; u) dτ.

On the other hand, (3.17) yields that

‖u‖2
a =

∫ t

0
L(σ; u) dτ,

so that
∥∥un

∥∥2
a →

∥∥u
∥∥2

a, as n → ∞.

Then the lemma is proved. ¤
Let us observe that

〈un, v〉 =
1
2
(
x−1un(t), x−1v

)
+

∫ t

0
a(σ; un, v) dτ → 〈u, v〉 ,

and 〈v, un〉 → 〈v, u〉 holds for any v ∈ L2(It, H1
0(Ω)

)
by virtue of the weak conver-

gences proved above. Then
∥∥un − u

∥∥2
a = 〈un − u, un − u〉
=

∥∥un
∥∥2

a +
∥∥u

∥∥2
a − 〈u, un〉 − 〈un, u〉 → 0, (3.22)
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follows from Lemma (3.3).
It is readily seen that

C0

∫ t

0
‖v‖2

1 dτ ≤ ‖v‖2
a and

1
2

∥∥x−1v(t)
∥∥2

0 ≤ ‖v‖2
a ,

hold for any v ∈ L2(I; H1
0(Ω)

)
. Then the strong convergence follows from (3.22). ¤

4 Maximum range problem

Assume that a criterion-functional

Φ(σ; v) : Uad ×
(

L2
x−1(Ω)× L2(I, H1

0(Ω)
)) 7→ R,

is given, such that if

σn ∈ Uad, σn → σ, as n → ∞, (4.1)

(i) vn → v, in L2(I, H1
0(Ω)

)
,

(ii) x−1vn(t) → x−1v(t), in L2(Ω), ∀t ∈ I,

(iii) x−1vn ⇀ x−1v (weak star), in L∞(I, L2(Ω)),

then
Φ(σn; vn) → Φ(σ; v), as n → ∞. (4.2)

Theorem 4.1. Let the criterion-functional Φ satisfy conditions (4.1)-(4.2). Then there exists
at least one solution of the maximization problem

σ = arg max
σ∈Uad

Φ
(
σ; u(σ)

)
, (4.3)

and at least one solution of the minimization problem

σ = arg min
σ∈Uad

Φ
(
σ; u(σ)

)
. (4.4)

Proof. 10. Let {σn} be a maximizing sequence of the functional J(σ) ≡ Φ
(
σ; u(σ)

)
,

i.e.,
J(σn) → sup

σ∈Uad

J(σ), as n → ∞. (4.5)

Since Uad is compact, there exists a subsequence {σm} and σ∗ ∈ Uad such that

σm → σ∗, as m → ∞.

By Theorem 3.1, the sequence {u(σm)} and u(σ∗) satisfy conditions (i)-(iii) of (4.1).
By using assumption (4.1)-(4.2), we infer that

J(σm) = Φ
(
σm; u(σm)

) → Φ
(
σ∗; u(σ∗)

)

= J(σ∗), as m → ∞.
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From (4.5), we obtain
J(σ∗) = sup

σ∈Uad

J(σ),

so that σ∗ solves problem (4.3), i.e., σ∗ = σ.
20. Let {σn} be a minimizing sequence of J(σ), i.e.,

J(σn) → inf
σ∈Uad

J(σ), as n → ∞. (4.6)

There exist {σm} ⊂ {σn} and σ∗ such that

σm → σ∗, as m → ∞.

Using Theorem 3.1, we obtain J(σm) → J(σ∗) and by comparing the limit with (4.6),
we arrive at

J(σ∗) = inf
σ∈Uad

J(σ),

so that σ∗ solves problem (4.4), i.e., σ∗ = σ. ¤
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