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Abstract. In this paper we compare different methods currently used in the sta-
bilization of numerical simulations of time-dependent viscoelastic fluid flows de-
scribed with the Oldroyd-B and related models. The methods under consideration,
based on the separation of newtonian-like components from the stress tensor, are
applied to a finite volume analysis of two simple benchmark problems (the plane
Poiseuille startup and pulsated flows), for which analytical solutions are known.
The relative performances of each method are evaluated regarding stability, accu-
racy and efficiency.
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Key words: Time-dependent viscoelastic flows, oscilating flow, start-up flow, computational
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1 Introduction

The absence of explicit diffusive terms in the governing equations of the Oldroyd-B
and related models makes the convergence of numerical iterative simulations of time
dependent viscoelastic flows based on the original formulation of such models diffi-
cult if at all possible. To remedy this situation it is common practice to include dif-
fusive terms in the equations, either by separating purely viscous components from
the stress tensor (like in elastic-viscous stress splitting methods [1–3] or in solvent-
polymer decompositions [4, 5]) or by explicitly adding such a term and a correspond-
ing correction in ”source” terms [6–8]. These techniques have been (and still are)
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widely applied to stabilize the numerical computation of non-newtonian flows us-
ing viscoelastic constitutive models but, to our knowledge, their relative merits have
never been systematically studied. Such is the purpose of this work.

In this introduction to the problem, we first present the governing differential
equations we will be dealing with, then we provide a brief description of alternative
formulations currently used in numerical simulations and finally show how these for-
mulations can be written under a common general form. We then (Section 2) present
the benchmark problems used in the comparison and their analytical solutions and,
in Section 3, the numerical method is briefly outlined. In Section 4 we present and
discuss our results, and conclusions are drawn in the last section.

1.1 Basic equations and viscoelastic model

Fluid motion at a macroscopic level is well described by Newton’s Second Law, which,
per unit volume and in the absence of external forces, is written as

ρ
d~v
dt

= −~∂p +~∂ · τττ, (1.1)

for a fluid with mass density ρ moving with velocity ~v, under a pressure field p. The
stress tensor τττ obeys a constitutive equation that describes the particular stress-strain
behavior of the fluid under consideration. In this work we consider the Oldroyd-B
model [9], defined by the following constitutive relation

τττ + λ1
∇
τττ = 2η0

(
DDD + λ2

∇
DDD

)
. (1.2)

Here, η0 is the viscosity and λ1 and λ2 are two model parameters respectively named
relaxation time and retardation time. The rate of deformation tensor DDD is given by

Dij =
1
2
(∂ivj + ∂jvi), (1.3)

and the convected derivative [4] is defined in general as

∇
ΩΩΩ =

dΩΩΩ
dt
−ΩΩΩ · (∂v∂v∂v)− (∂v∂v∂v)T ·ΩΩΩ, (1.4)

or, more explicitly (sum over repeated index k implied),

∇
Ωij =

dΩij

dt
−Ωik∂kvj − ∂kviΩkj. (1.5)

The description of a viscoelastic flow requires the simultaneous solution of Eqs. (1.1)
and (1.2), together with an equation for mass conservation which, for the case here as-
sumed of incompressible flow, reduces to a zero velocity divergence constraint (~∂ ·~v =
0), and in most practical situations numerical methods are mandatory. In a straight
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forward numerically iterative approach, the rhs of Eqs. (1.1) and (1.2) are considered
source terms, to be computed from the velocity and stress obtained in previous itera-
tions.

Eqs. (1.1) and (1.2) (with the rhs treated as source terms) define what below will
be designated as the original formulation of the Oldroyd-B model. One inconvenient
feature of this formulation is the absence of a diffusive term that might help stabilize
the numerical solution of the equations. As was said before, this problem has been
addressed in a number of ways, defining different formulations of the model, which
we now recall.

1.2 Specific formulations

One approach consists in isolating the non-Newtonian features of the Oldroyd-B model,
decomposing the stress in its Newtonian and non-Newtonian components,

τττ = τττe + 2η0DDD, (1.6)

where the constitutive equation for the non-Newtonian (elastic) component τττe, is read-
ily found to be

τττe + λ1
∇
τττe = −2λ1ηe

∇
DDD, (1.7)

with

ηe =
(

1− λ2

λ1

)
η0. (1.8)

This redefinition of the stress generates a desired diffusive term in the Momentum
Equation, to be treated implicitly. Considering only incompressible flows, the Mo-
mentum Equation then reads

ρ
d~v
dt

= η0∂2~v +
{
−~∂p +~∂ · τττe

}
, (1.9)

where braces are used to identify those terms that are to be treated as source terms.
Eqs. (1.7) and (1.9) above define an alternative formulation of the Oldroyd-B model,
comonly referred to in computational rheology as elastic-viscous stress splitting [1–3].

In polymer science (especially in connection to molecular-model constitutive equa-
tions), it is customary to write the stress tensor of polymer solutions as the sum of
a viscoelastic component (from the polymer), described with the upper-convected
Maxwell model [4], and a Newtonian component (the solvent contribution). The con-
stitutive equations for these stress components are

τττ1 + λ1
∇
τττ1 = 2η1DDD, (1.10)

τττ2 = 2η2DDD. (1.11)
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Such a description is equivalent to the Oldroyd-B model, if one takes the viscosities η1
and η2 of the two components given by

η1 = (1− β)η0, (1.12)
η2 = βη0, (1.13)

with β = λ2/λ1. Note that the polymer viscosity η1 and the non-Newtonian viscosity
ηe from elastic-viscous stress splitting [Eq. (1.8)] are equal. In terms of the polymer
stress τ1, the Momentum Eq. (1.1) can be cast as

ρ
d~v
dt

= η2∂2~v +
{
−~∂p +~∂ · τττ1

}
. (1.14)

This equation, together with Eq. (1.10), defines another formulation of the Oldroyd-B
model, which we shall refer to as solvent-polymer stress splitting [4].

A popular ”trick of the trade” in non-Newtonian fluid dynamics is to add and
subtract a diffusive term to the Momentum Equation, numerically treating one of these
two terms as a source term [6–8]. We use this trick to define yet another formulation
of the Oldroyd-B model, adding and subtracting η1∂2~v to Eq. (1.14). The resulting
equation

ρ
d~v
dt

= η0∂2~v +
{
−~∂p +~∂ · τττ1 − η1∂2~v

}
, (1.15)

together with the constitutive equation of the SPSS formulation (1.10) defines the ex-
plicit diffusion formulation.

For easier reference, we collect below the sets of equations that define each formu-
lation:

Original formulation (ORIG)

ρ
d~v
dt

=
{
−~∂p +~∂ · τττ

}
, (1.16a)

τττ + λ1
dτττ

dt
=

{
2η0

(
DDD + λ2

∇
DDD

)
+ λ1

[
τττ · (∂v∂v∂v) + (∂v∂v∂v)T · τττ

]}
. (1.16b)

Elastic-viscous stress splitting (EVSS)

ρ
d~v
dt

= η0∂2~v +
{
−~∂p +~∂ · τττe

}
, (1.17a)

τττe + λ1
dτττe

dt
=

{
− 2λ1ηe

∇
DDD + λ1

[
τττe · (∂v∂v∂v) + (∂v∂v∂v)T · τττe

]}
, (1.17b)

τττe = τττ − 2η0DDD. (1.17c)

Solvent-polymer stress splitting (SPSS)

ρ
d~v
dt

= η2∂2~v +
{
−~∂p +~∂ · τττ1

}
, (1.18a)

τττ1 + λ1
dτττ1

dt
=

{
2η1DDD + λ1

[
τττ1 · (∂v∂v∂v) + (∂v∂v∂v)T · τττ1

]}
, (1.18b)

τττ1 = τττ − 2η2DDD. (1.18c)
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Explicit diffusion (EDIF)

ρ
d~v
dt

= η0∂2~v +
{
−~∂p +~∂ · τττ1 − η1∂2~v

}
, (1.19a)

τττ1 + λ1
dτττ1

dt
=

{
2η1DDD + λ1

[
τττ1 · (∂v∂v∂v) + (∂v∂v∂v)T · τττ1

]}
, (1.19b)

τττ1 = τττ − 2η2DDD. (1.19c)

It should be noted that these formulations are not different physical descriptions of
viscoelastic flows. Instead, they simply are analytically equivalent versions of the
Odroyd-B model, independently developed in different research environments to face
the inherent numerical instability of its original formulation. The difference between
them is manifest only in numerical iterative procedures, because each takes a different
choice regarding what is to be treated as source terms: in the original formulation,
the whole r.h.s of the constituive equations are so considered; in EVSS and EDIF, a
diffusive term weigted by the viscosity parameter η0 is ”extracted” out in the momen-
tum equation and treated implicitly; finally, in SPSS, this diffusive, implicit term has
a weight (η2) related to the elastic properties of the particular Oldroyd-B fluid un-
der study. A final comment is that while both the EVSS and the EDIF formulations
were devised on the basis of purely numerical reasoning, with the objective of max-
imizing the diffusive term in the momentum equations, the SPSS has some physical
background to it since it arises naturally when the viscoelastic fluid is seen as being
composed by an elastic polymeric solute in a Newtonian solvent.

1.3 General description

The three alternative formulations just described are physically motivated examples
of a general class of formulations directly connected to numerical algorithms that can
be deduced from the Oldroyd-B model as follows. Starting from the original equations
of the Oldroyd-B model [Eqs. (1.16)], we redefine the stress tensor as†

τττ = τ̃ττ + 2rη0DDD, (1.20)

where r is some nondimensional real parameter characteristic of the particular for-
mulation to be defined. In terms of this modified stress τ̃, the model equations now
read

ρ
d~v
dt

= −∂~p +~∂ · τ̃ττ + rη0∂2~v, (1.21a)

τ̃ττ + λ1
dτ̃ττ

dt
= 2η0

[
(1− r)DDD + (λ2 − λ1r)

∇
DDD

]
+ λ1

[
τ̃ττ · (∂v∂v∂v) + (∂v∂v∂v)T · τ̃ττ

]
, (1.21b)

τ̃ττ = τττ − 2rη0DDD. (1.21c)

†A similar general redefinition of the stress tensor is used in the adaptative viscoelastic stress splitting scheme
of Sun, Phan-Thien and Tanner [3].
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The rationale for this redefinition of the stress tensor lies in the appearance, on the r.h.s.
of the Momentum Equation (1.21a), of a diffusive term which, in implicit calculations,
contributes to the ”ellipticity” of the problem and, as such, helps in the stabilization
of numerical iterative solution methods. However, part of this diffusive term can be
treated as a source term (but then it will not play any role in the stabilization of the
numerical method). A general partition of the diffusive term leads to (again, with
braces denoting source terms)

ρ
d~v
dt

= sη0∂2~v +
{
−~∂p +~∂ · τ̃ττ + (r− s)η0∂2~v

}
, (1.22a)

τ̃ττ + λ1
dτ̃ττ

dt
=

{
2η0

[
(1− r)DDD + (λ2 − λ1r)

∇
DDD

]
+ λ1

[
τ̃ττ · (∂v∂v∂v) + (∂v∂v∂v)T · τ̃ττ

]}
, (1.22b)

τ̃ττ = τττ − 2rη0DDD, (1.22c)

where s is another real non-dimensional parameter that, together with r, specifies the
particular formulation considered.

The different formulations previously discussed are particular examples of this
general formalism, with r and s given by

ORIG SPSS EVSS EDIF
r 0 β 1 β
s 0 β 1 1

As was said before, all such formulations are analytically equivalent, but numeri-
cally they differ essentially on what is considered source terms. There is a biunivoque
relation between these different formulations and the corresponding numerical algo-
rithms, so that in this paper we tend to use the two concepts (formulation and algorithm)
interchangeably.

Note that for β=0 ORIG and SPSS are equal algorithms. This was to be expected
because the distinctive feature of SPSS is the separation of the solvent viscosity contri-
bution to the stress [see Eqs. (1.10) and (1.11)], which vanishes for UCM (β=0) fluids.

2 Start-up and pulsated planar Poiseuille flows

Our aim in this work is to evaluate the relative merits of the four formulations defined
in Eqs. (1.16–1.19), regarding accuracy, stability and efficiency. With this purpose in
mind, we consider the plane Poiseuille start-up and pulsated flows in the framework
of the different formulations. These two problems are sufficiently simple for analytical
solutions to be available and for this reason are often used as benchmarks for compar-
ative or testing purposes [10–13]. However, it was shown in [5] that the second of these
1D problems (in space, but with a further dimension in time) poses severe numerical
difficulties in spite of the apparent simplicity of the pysical situation. Furthermore,
the formulation aspects here considered should extend to higher space-dimensional
problems.
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Considering a fully developed flow in the direction of the x-axis, delimited to a
region |y| ≤ h, where 2h is the channel width, the dynamical variables should then be
functions of time and the y coordinate only. Then, Eqs. (1.22) reduce to

ρ
∂u
∂t

= sη0
∂2u
∂y2 +

{
− ∂p

∂x
+

∂τ̃xy

∂y
+ (r− s)η0

∂2u
∂y2

}
, (2.1a)

τ̃xy + λ1
∂τ̃xy

∂t
= η0

{
(1− r)

∂u
∂y

+ (λ2 − rλ1)
∂

∂t
∂u
∂y

}
, (2.1b)

τxx + λ1
∂τxx

∂t
= 2

{
− η0(λ2 − λ1r)

(∂u
∂y

)2
+ λ1τ̃xy

∂u
∂y

}
, (2.1c)

τ̃xy = τxy − rη0
∂u
∂y

, (2.1d)

where u is the x-component of the velocity. Note that, in the simple problems that we
are considering, the stress redefinition of Eq. (1.20) leaves τxx (which, anyway, plays
no role in the flow dynamics) invariant, τ̃xx = τxx. All the remaining components of
the stress tensor (τxz, τyy, τyz and τzz) are null.

The gradient of the pressure, ∂p/∂x, is a simple step function for the start-up flow
problem

−∂p
∂x

=

{
0, if t < 0,
K, if t ≥ 0,

(start-up flow), (2.2)

or an oscillatory function for the pulsated flow

−∂p
∂x

= Ks + Ko cos ωt, (pulsated flow). (2.3)

2.1 Start-up flow

In non-dimensional form, the governing equations for the start-up problem [Eq. (2.1)
with ∂p/∂x given by Eq. (2.2)] read

1
E

∂u
˜

∂t
˜

= s
∂2u

˜
∂y

˜

2 +
{

3 +
∂τ̃

˜
xy

∂y
˜

+ (r− s)
∂2u

˜
∂y

˜

2

}
, (2.4a)

τ̃
˜

xy +
∂τ̃

˜
xy

∂t
˜

=
{
(1− r)

∂u
˜

∂y
˜

+ (β− r)
∂

∂t
˜

∂u
˜

∂y
˜

}
, (2.4b)

τ
˜

xx +
∂τ

˜
xx

∂t
˜

= 2Wi
{

τ̃
˜

xy
∂u

˜
∂t

˜

− (β− r)
(∂u

˜
∂y

˜

)2}
, (2.4c)

τ̃
˜

xy = τ
˜

xy − r
∂u

˜
∂y

˜

, (2.4d)

where the new non-dimensional variables are defined as

t
˜
=

t
λ1

, y
˜
=

y
h

, u
˜

=
u

ū∞
, τ̃

˜
xy =

τ̃xy

η0ū∞/h
. (2.5)
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Here, h is the channel half-width, ū∞ = Kh2/(3η0) is the average value of the steady-
state flow velocity, and the elasticity number E = λ1η0/(ρh2) and the Weissenberg
number Wi = λ1ū∞/h were introduced. In order to alleviate the notation, and since
only non-dimensional variables will henceforth be used, we will drop the undertilde
to represent non-dimensional variables. Also, since the normal stress τxx plays no role
in the dynamics of the flow, it will not in the following receive any further considera-
tion.

The analytical solution for the start-up planar Poiseuille flow of Oldroyd-B fluids
was obtained by Waters and King [14]. The velocity is given by

u(a)(t, y) =
3
2
(1− y2) +

∞

∑
k=1

Ak(t)Bk(y), (2.6)

Ak(t) = e−bkt





bk−a2
k

ck
sinh ckt + cosh ckt, if bk ≥ ak,

bk−a2
k

ck
sin ckt + cos ckt, if bk < ak,

(2.7)

Bk(y) =
48(−1)k

(2k− 1)3π3 cos
2k− 1

2
πy, (2.8)

where

ak =
2k− 1

2
π
√

E, bk =
1 + βa2

k
2

, ck =
√
|b2

k − a2
k |. (2.9)

The shear stress is readily obtained from the velocity using the Momentum Equation:

τ
(a)
xy (t, y) = −3y +

1
E ∑

k
Ck(t)Dk(y), (2.10)

Ck(t) =
dAk

dt
= −e−bkt





(
bk

bk−a2
k

ck
− ck

)
sinh ckt + a2

k cosh ckt, if bk ≥ ak,(
bk

bk−a2
k

ck
+ ck

)
sin ckt + a2

k cos ckt, if bk < ak,
(2.11)

Dk(y) =
∫ y

0
Bk(y′)dy′ =

96(−1)k

(2k− 1)4π4 sin
2k− 1

2
πy. (2.12)

2.2 Pulsated flow

The period of the pulsated pressure gradient is now a more natural time unit, that is,
we now take t

˜
= ωt/(2π). Keeping all the remaining definitions of Eq. (2.5), the gov-

erning equations [Eq. (2.1) with ∂p/∂x now given by Eq. (2.3)] assume the following
non-dimensional form

α2

2π

∂u
∂t

= s
∂2u
∂y2 +

{
3
(

1 +
Ko

Ks
cos 2πt

)
+

∂τ̃xy

∂y
+ (r− s)

∂2u
∂y2

}
, (2.13a)

τ̃xy +
α2E
2π

∂τ̃xy

∂t
=

{
(1− r)

∂u
∂y

+
α2E
2π

(β− r)
∂

∂t
∂u
∂y

}
, (2.13b)
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where α2 = h2ρω/η0 is the Stokes (or Womersley) number.
The analytical solution for the velocity of the pulsated flow of an Oldroyd-B fluid

was deduced by Hayat et al in [15] (see also [5]) as

u(a)(t, x) =
3
2
(1− y2) +

3
α2

Ko

Ks
Re

[
i
(cosh Zy

cosh Z
− 1

)
e2πit

]
, (2.14a)

where Z = α
√

iZ1/Z2, Z1 = 1 + iEα2 and Z2 = 1 + iβEα2. The shear stress is again
obtained from the Momentum Equation, resulting [5]

τ
(a)
xy (t, y) = −3y− 3

Ko

Ks
Re

[ sinh Zy
Z cosh Z

e2πit
]
. (2.14b)

This problem depends on the four non-dimensional parameters E, β, α and Ko/Ks. In
this study, different values of E and β will be considered, but the remaining two will
assume the fixed values α = 4.864 and Ko/Ks = 2.587 used by Khodadadi et al. [16]
and later by Duarte et al. [5], typical of hemodynamic applications.

3 Numerical method

We adopt a standard finite volume approach to solve Eqs. (2.4) (for the start-up flow
problem) and (2.13) (for the pulsated flow problem). We consider an equally spaced,
one-dimensional point mesh formed by adjacent cells spanning half of the channel
width from the center (y=0) to the margin (y=1). Integrating the governing equations
over the volume of each cell, we turn the differential equation system onto an algebraic
one, which is written in standard form [17] as

Djφj = Ljφj−1 + Hjφj+1 + S∗j . (3.1)

Here, φj stands for the value of the unknown field (velocity or shear stress) at the
center of each particular control volume, φj±1 its values at the neighbouring mesh
points, Dj, Lj, Hj are coefficients determined by the diffusive and inertial terms in the
governing equations and S∗j encompass the source terms. This linear algebraic system
is at most tridiagonal (in fact, in the determination of the shear stress or of the velocity
in the ORIG formulation — no diffusive term — it even decouples, thus forming a
set of independent equations). Since the source terms Sj include the sought values uj
or τ̃j, the solution must be iterated (S∗j =Sj(u∗, τ̃∗), the asterisk in S∗j denoting that it
is computed from the values of the velocity and the stress obtained in the previous
iteration), until the residue

R =
[ 1

Ny

Ny

∑
j=1

(Djφj − Ljφj−1 − Hjφj+1 − Sj)2
] 1

2
, (3.2)

drops below a fixed convergence criterium (set at 10−6 in this work).
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Regarding temporal discretization, we performed a fully implicit integration us-
ing a second order, three time-level backward differentiation formula [13], except for
the first time step in start-up flow, were the simpler Euler method describes more ac-
curately the sudden start of the pumping. In conjunction with the central differences
used to approximate the spatial derivatives, we have thus a method that is formally
second order accurate in space and time.

In the pulsated flow calculation, the steady-state velocity profile for the constant
component of the pressure gradient was used as initial state. This profile does not
satisfy the governing equations for the problem [Eqs. (2.13)], and therefore a transient
regime is generated in the initial stages of the calculation. We let it decay by continuing
the simulation for a long time (typically, thirty to sixty cycles of the oscillating pressure
gradient, ∼ 8λ1 to ∼ 16λ1 for E=1, α=4.864). Only the data from the very last cycle
of the pulsation, already free of contamination from the arbitrarily chosen initial state,
will be presented and discussed below.

4 Results and discussion

Fig. 1 (graph on the left) shows the centerline velocity in the startup flow problem,
for different fluid parameters. Quite unlike newtonian fluids, which monotonically
approach the assymptotic steady-state velocity distribution, the startup flow of vis-
coelastic fluids displays a variety of behaviours, including damped oscillations, over-
shoots and even localized backward motion. Some of these effects are displayed also
in Fig. 1 (right), where the velocity profiles at different times for a fluid with E=3,
β=0.01 are plotted. Similar general remarks hold relative to the pulsated flow prob-
lem, as shown in Fig. 2. We will examine in more detail different aspects of these
results in the following subsections.
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Figure 1: Centerline velocity for the startup problem, for three different sets of parameters (left) and velocity
profiles at different times for a fluid with E = 3, β = 0.01 (right). The lines plot the analytical solutions;
the small circles show numerical results. Numerical results were obtained with the SPSS formalism, using a
mesh with δy = 0.01, δt = 0.4δy (left) and δt = 0.2δy (right).
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Figure 2: Centerline velocity in the pulsated flow problem, for three different parameter sets during one cycle
of pulsation (left) and velocity profiles for E = 2, β = 0.001 at different instants (right). As in Fig. 1, lines
represent analytical solutions, while the dots represent numerical results, obtained with δt = δy = 0.002
(left) and δt = δy = 0.001 (right).

4.1 Equivalence of formulations EVSS and EDIF

The different formulations are, of course, all analytically equivalent. Numerically,
they differ in what is included in source terms. But formulations EVSS and EDIF have
equal source terms for the Momentum Equation (1.22a). This can be seen either by
noting that what is not a source term is the same in both algorithms or after expressing
the equations in terms of a common stress tensor, like the original, physically measur-
able τ, for instance. The momentum equations in EDIF and EVSS are, therefore, fully
equivalent, also in a numerical sense. Before we realized this, simulations of the same
flow performed with the two formulations produced exactly the same results to all dec-
imal digits, in exactly the same number of iterations. Retrospectively, this conclusion
supports the justifications for the EDIF formulation presented in [8].

Being equivalent both analytically and numerically, there is really no point in test-
ing separately the two formulations and, as such, we will give no further consideration
to EDIF.

4.2 Convergence and stability

Generally, the methods tested are stable, in the sense that errors do not amplify in
time. However, convergence of the iterative procedure in the ORIG formulation is
difficult for β>0, especially in the initial stages of flow inception, unless a very small
time integration step is used (typically, δt ∼0.01δy for β=0.1, both in the start-up and
the pulsated flow problems). This difficulty demonstrates the need for stabilizing pro-
cedures such as those (generation of an explicit diffusive term) defined by the alterna-
tive formulations of the Oldroyd-B model generally adopted (e.g., EVSS) in numerical
simulations that we consider in this work.

But because of this convergence difficulty, the ORIG formulation is really only an
option for UCM fluids, where convergence can be achieved with larger time steps.
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Recall, however, that at β=0 formulations ORIG and SPSS are equivalent; even at that
limit, then, there are no strong arguments to prefer the ORIG formulation over any
other. For this reason, there is no point in further considering the ORIG method, and
so in the remaining of this work only SPSS and EVSS are discussed.

For all formulations (except ORIG) convergence is more difficult as β approaches
zero. As was just mentioned, formulation SPSS approaches ORIG, as β→0, and be-
cause of this, for small enough β>0 some convergence difficulties also show up, forc-
ing constraints on the time step. However, the situation is not as difficult as the one
just described in the previous paragraph, and setting

δt = 0.4δy,

ensures convergence in most situations.

4.3 Accuracy

As it is shown in Figs. 3 (for the start-up flow problem) and 4 (pulsated flow), the
two formulations SPSS and EVSS produce essentially the same results. Differences
in results obtained with different algorithms typically show up at the sixth or seventh
significant digit. For a more quantitative assessment of numerical accuracy, we define
the following measure of the error of a numerical solution at time t, based on the L2
norm of the difference relative to the analytical solution,

ε(t) =
[ 1

Ny

Ny

∑
j=1

(
uj(t)− u(a)(t, yj)

)2] 1
2
, (4.1)

where Ny is the total number of control volumes (internal grid points). We can use a
similar measure to estimate the discrepancy between numerical results obtained with

Figure 3: Analytical results (solid line) and computed with formulations SPSS (circles) and EVSS (crosses),
for the start-up flow of a fluid with E = 1, β = 0 and for another with E = 5, β = 0.1. Velocity at the
center of the channel (left) and shear stress at the margin (right) are plotted. The numerical results were
computed with integration steps δy = 0.01, δt = 0.4δy.
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Figure 4: Analytical results (solid line) and computed with formulations SPSS (circles) and EVSS (crosses),
for the pulsated flow of a fluid with E = 1, β = 0 and for another with E = 5, β = 0.1. Velocity at the
center of the channel (left) and shear stress at the margin (right) are plotted. Numerical results obtained
with mesh parameters δy = 10−3, δt = 0.5δy.

two different formulations. In Fig. 5, the discrepancy between results obtained for the
start-up flow problem with formulations SPSS and EVSS is ploted together with the
error ε for SPSS, for an UCM fluid with E=1, using a mesh with 200 control volumes.
This figure shows that the difference between numerical results from the two formu-
lations is as much as four to five orders of magnitude lower then the error of either.
Similar values are obtained considering different values of E and β, and also in the
the pulsated flow problem. The different formulations are then indeed essentially in-
distinguishable regarding accuracy, in the sense that the discrepancy between them is
always smaller than the discretization error. This conclusion was to be expected, since
the main difference between formulations lies in different choices regarding which
terms are treated as source terms and which are treated implicitly, that is, which terms
enter the calculation with values computed in the previous iteration and which are
computed afresh in each iteration. But the iterative process is such that, when converg-
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Figure 5: Error of SPSS (relative to analytic results) and difference between SPSS and EVSS, both estimated
as the L2 norm of the difference, in the start-up flow problem for an UCM fluid with E = 1, using a mesh
with δy = 0.005, δt = 0.4δy.
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ing, the differences between successive estimations of variable values become smaller
and smaller. In the convergence limit, they vanish, and so do the differences between
formulations. Different algorithms may follow different iterative paths to their pre-
dictions, but the predictions themselves, when they are reached, must be equal.

Expectedly, the error gets lower as the integration steps δt and δy are reduced but,
when keeping one of them constant and lowering the other, the first will eventually
dominate and further reducing the value of the other integration step does not im-
prove accuracy. For this reason, in studying the convergence rate of the algorithms,
we always take the two integrations steps proportional to each other [5]. Figs. 6 and 7
display graphs of the error as a function of time, for several integration steps.

 !"#$ !%$ !&!%'%($

!&!%'%"$

!&!%'%%)$

!&!%'%%()$

!&!%'%%"()$

"*
+,

 !
"#

 !
"$

 !
"%

 !
" 

+
! % # & '  !

 !"#$ !%&"

!'
()

 !
" !

 !
"#

 !
"$

 !
"%

(
! & % $ #  !

Figure 6: Error as a function of time for different integration steps in the start-up flow problem for an UCM
fluid with E = 1 (graph on the right, δt = 0.4δy was used) and for an Oldroyd-B fluid with E = 1, β = 0.1
(graph on the right, computed with δt = δy).

Since second-order approximations were used in the discretization of the govern-
ing equations, we expect the time average of the error (ε̄=∑ ε(tn)/Nt) to be ideally
given by

ε̄ = c1δy2 + c2δt2,

for some real constants c1 and c2. Taking δt proportional to δy, the average error
should then be proportional to the second power of δy. However, this quadratic be-
havior is not always achieved. Instead, the error is in general a lower power r of δy,
ε̄=c3δyr. Fig. 8 displays plots of the average error for different fluids as a function of
δy. Regarding the start-up flow problem (on the left), the convergence rates for UCM
fluids are disappointingly around 1 (0.977 for E=1, similar results for other values of E
with UCM fluid). However, for general Oldroyd-B fluids with β>0, the convergence
rates rise up to around 2 (1.764, 1.981, 1.992 and 1.94 for β=0.001, 0.01, 0.1 and 0.9,
respectively) and the error is indeed a quadratic function of the mesh parameter. The
low convergence rates displayed by UCM fluids in the start-up flow problem are due
to a discontinuity in the gradient of the shear stress that is generated at the margins
of the channel at time t=0. At the margins, the no-slip condition sets d~v/dt=0. The
momentum equation (1.1) then reduces to~∂ · τττ=~∂p. But the pumping~∂p is suddenly
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Figure 7: Like Fig. 6, but now for the pulsated flow problem. The graph on the left shows the error for an
UCM fluid with E = 1, while the one on the right corresponds to an Oldroyd-B fluid with E = 1, β = 0.05.
In all calculations a time step δt = δy was used.
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Figure 8: Average error ε̄ as a function of mesh parameter δy for E = 1. The lines plot best fits to a power
function ε̄ = aδyr. Results for the start-up flow (left) were obtained with δt = 0.4δy; for the pulsated flow
(right), δt = δy was used.

”turned on” at t=0, generating a discontinuity in the stress gradient, which propa-
gates back and forth across the channel with velocity

√
E [5], without any dissipation

mechanism for the case β=0. This generates a persistent discontinuity in the accelera-
tion of the flow, visible in the graph of Fig. 1 (solid line, corresponding to β=0). Such
temporal and spatial discontinuities are the cause for the much lower accuracy of cal-
culations with β=0 displayed in Fig. 6 above and also for the lower convergence rates.
In the pulsated flow problem, we extend the simulation for a long enough time period
so that initial conditions (including the severe discontinuities just referred to) decay
to negligible influence, as discussed in Section 3. For this reason, in pulsated flow
simulations the accuracies of UCM fluid simulations are not much lower than those of
general Oldroyd-B fluids and the convergence rates are in all cases, much closer to 2
(1.72 for β=0, 1.86, 1.97, 1.98 and 1.99 respectively for β=0.001, 0.01, 0.1 and 1), as can
be seen in Fig. 8 (graph on the right).
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4.4 Efficiency

As shown in the previous section, the accuracy of all formulations is virtually the
same. Regarding accuracy, then, all formulations are equivalent. However, different
formulations converge to the results with widely varying numbers of iterations. We re-
call that, due to the decoupled nature of our algorithms, iterations are required inside
each time step to deal with the inherent non-linearities and the inter-linkage between
flow and constitutive equations. In practice, most algorithms in computational rhe-
ology, using either finite element or finite volume methods, are of decoupled nature
and thus require iteration. For the present spatially one-dimensional problem, the
algebraic equations [like Eq. (3.1)] are solved with the tridiagonal matrix algorithm
TDMA, which is a direct solver. Therefore, the number of outer iterations within a
time step are representative of the computational load along the simulation time and
thus provide a transient measure of efficiency.
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Figure 9: Number of iterations needed to achieve convergence as a function of time for the SPSS formulation
(left) and for EVSS (right), for the start-up flow problem (E = 1). A mesh with δy = 0.01 and δt = 0.004
was used. Note the very different scales used in the two plots.

In Fig. 9, the numbers of iterations needed to achieve convergence in the start-up
flow problem are displayed, for E=1 and different values of β, as functions of time.

The graphs show clearly that, as discussed previously, convergence takes an in-
creased numerical effort at the initial stages of flow inception and, in addition, as
β→0.

It is also clearly displayed in Fig. 9 that formulation SPSS is much more efficient
than EVSS. The latter needs longer iterative cycles to converge in all situations. For
small enough values of β, the number of iterations in EVSS may rise up to twenty
times the SPSS value.

The SPSS algorithm is also manifestly more efficient in the pulsated flow problem.
As can be seen in Fig. 10, EVSS takes a number of iterations to converge up to two
orders of magnitude larger then EVSS, especially so for small values of β. In addition,
another negative aspect of EVSS relative to SPSS is that the number of iterations per
time step shows a much larger sensitivity to the value of the retardation ratio β. SPSS
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Figure 10: Number of iterations needed to achieve convergence as a function of time in SPSS (left) and
EVSS (right), for the pulsated flow problem (E = 1). All calculations done with δy = 0.001, δt = 0.5δy.

requires only about 3 iterations for all β 6=0, while the iteration numbers for EVSS rise
from ≈ 10 for β=0.5 to ≈ 60 at β=0.1, ≈ 200 at β=0.01, and even higher values as
β→0.

In Fig. 11, the total numbers of iterations needed to complete the simulations of
the start-up flow up to non-dimensional time t=10 and of the pulsated flow during a
complete period of the pressure gradient oscillation are plotted as functions of β, both
for SPSS and EVSS. The ordinate in this graph is directly proportional to the overall
computational work required to achieve a solution giving thus a direct measure of the
relative efficiency of the two formulations. Again, we note that the iterative conver-
gence is much more difficult for small β and that SPSS is in general more efficient then
EVSS. But the most striking point in Fig. 11 is the fact that the efficiency of SPSS is
essentially constant, independent of β, as already commented upon in the previous
paragraph in relation to Fig. 10. By setting a variable (s=β) weight of the diffusive

 !"#!$%&' (  
 !"#!$%&')*  
(%+,"!-.' (  
(%+,"!-.')*  

/
0
!"
+'
1!
-
#"
!1
0
2
,

345

346

347

348348

 

4 49: 496 498 49; 3

Figure 11: Total numbers of iterations as a function of beta, for the start-up flow problem up to t = 10
(circles) and for the pulsated flow problem (triangles), for a complete period of the pressure oscillation. The
meshes used here were the same as those for Figs. 9 (start-up flow) and 10 (pulsated flow).
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term in the Momentum Equation [Eqs. (2.4a) and (2.13a)], the algorithm adjusts itself
to the fluid under consideration, resulting in an efficient calculation even in the most
difficult cases.
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Figure 12: Total number of iterations as a function of parameter s, for the start-up flow of four different
Oldroyd-B fluids, with common E = 1 but varying β. The calculations were done using δy = 0.01,
δt = 0.4δy.

This can be more clearly verified by measuring the workload (again, estimated by
the total number of iterations) for different values of the weight of the added diffusive
term (that is, the parameter s). We recall that in EVSS this parameter is unity, while for
SPSS s=β. Fig. 12 displays plots of the total number of iterations in the startup flow
problem (as in Fig. 11) as a function of s, for four different fluids. In all cases, there is
a sharp reduction of the number of iterations needed to complete the calculation for
s=β, that is, for the SPSS formulation.

5 Conclusions

In this work different approaches to the numerical stabilization of the governing equa-
tions of the Oldroyd-B model were compared. The methods studied (Elastic-Viscous
Stress Splitting, Solvent-Polymer Stress Splitting and Explicit Diffusion) are based on
the inclusion of diffusive terms in the Momentum Equation, either redefining the
stress tensor or compensating for the added terms in source terms, in such a way that
the resulting governing equations are analytically (but not numerically) equivalent to
the Oldroyd-B model.

It was found that algorithms EDIF and EVSS are equivalent. It was also shown
that, at least in the simple, one-dimensional problems considered, the approach based
on solvent-polymer stress splitting is much more efficient then elastic-viscous stress
splitting. Indeed, solvent-polymer stress splitting can be regarded as an adaptative
EVSS, in the sense that the ”amount” of stress splitting is variable, depending on the
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properties of the fluid being described (depends on β, specifically) in an optimal (re-
garding efficiency) way.

Since many other more complicated models can be written under the same frame-
work of the Oldroyd-B equations with the inclusion of additional ”source” terms, it is
expected that the present findings may be extended to such models.

In further investigations we will try to verify these findings in higher dimensional
problems and to gain further insight on the conditions for optimal efficiency of this
class of stabilization procedures.
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