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Abstract. This paper analyzes a nonconforming 5-node quadrilateral transition fi-
nite element for Poisson equation. This element was originally proposed by Choi
and Park [Computers and Structures, 32 (1989), pp. 295–304 and Thin-Walled Struc-
tures, 28 (1997), pp. 1–20] for the analysis of Mindlin plates. We show the consis-
tency error of this element is only O(h1/2) over the transition edges of the quadri-
lateral subdivision. By modifying the shape functions with respect to mid-nodes,
we get an improved version of the element for which the consistency error is O(h).
Numerical examples are provided to verify the theoretical results.
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1 Introduction

Adaptive methods for the numerical solution of the PDEs are now standard tools in
science and engineering to achieve better accuracy with minimum degrees of freedom.
In the adaptive analysis, the mesh is locally refined according to the estimated error
distribution through repeating the working loop comprised of finite element analy-
sis, error estimation, element or edge marking and mesh refinement until the error
decreases to a prescribed level.

As far as adaptive quadrilateral mesh refinement is concerned, when a 4-node
quadrilateral element is subdivided into smaller elements, new nodes (hanging nodes)
appear on the boundaries of its immediate neighborhoods, which are known as transi-
tion elements. In these elements, each edge may possess a mid-side node and the edge
is shared by the adjacent bilinear elements. When the conventional quadratic interpo-
lation is used along the 3-node edge, interelement compatibility is violated. There are
several ways to secure this [8, 16].
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The first way is to constrain the mid-side node displacement of the transition ele-
ment to be the average of the displacement at the two corner nodes of the same edge
(Fig. 1(a): uc=(ua + ub)/2) [19, 20]. However, this nullifies the accuracy enhance-
ment effect of the mid-side nodes and constraint equations are computationally in-
efficient [1].

The second way is to use a meshing technique of finite element layout shown in
Fig. 1(b). In this case, no constraints are imposed, but the use of distorted elements is
inevitable.

Figure 1: Examples of mesh transition.

The third way is to use macro-elements formed by compatible 4-node bilinear
quadrilaterals and compatible 3-node linear triangles (Fig. 1(c)). Since the triangu-
lar elements produce worse results than the quadrilaterals in general, the introduction
of triangular elements in the mesh may cause poor solutions even if the quadrilaterals
in the mesh behave well.

The fourth way is to introduce transition elements (Fig. 1(d)) to connect directly
the different layer patterns. Well-established transition element can overcome some
of the aforementioned meshing problems. Gupta [13] derived a set of compatible
interpolation functions for the quadrilateral transition elements. The displacement
interpolation along a 3-node element edge is continuous piecewise bilinear instead
of quadratic, thus preserve the interelement compatibility. Carstensen and Hu [5]
provided a method to preseve the interelement compatibility with just modifying
the nodal basis functions of the immediate neighborhoods of the hanging nodes.
McDill [17] and Morton [18] presented the 3D counterpart of Gupta’s conforming
transition elements. Choi et al. [6–9] proposed a set of 2D and 3D nonconforming
transition elements. Wan et al. [16,21], Wu et al. [22], Duan et al. [11], Hasan et al. [14]
and Peters et al. [19] constructed some hybrid stress and enhanced strain transition
quadrilateral/hexahedral elements.

In this paper, we shall analyze the nonconforming 5-node quadrilateral transition
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finite element proposed by Choi and Park [8] and then derive its improved version.
To simplify the analysis, we consider the Poisson problem

{ −∆u = f , in Ω,
u|ΓD = 0, ∇u · n|ΓN = g,

(1.1)

where Ω ∈ <2 is a polygonal domain with boundary

∂Ω = ΓD
⋃

ΓN , meas(ΓD) > 0,

f ∈ L2(Ω), g ∈ H−1/2(ΓN).

The weak formulation for this problem reads as: find

u ∈ V :=
{

v ∈ H1(Ω) : v|ΓD = 0
}

,

such that ∫

Ω
∇u · ∇vdx = F(v), ∀v ∈ V, (1.2)

where
F(v) :=

∫

Ω
f · vdx +

∫

ΓN

g · vds.

The rest of this paper is organized as follows. In Section 2, we derive an error estimate
for the nonconforming 5-node quadrilateral transition element and in Section 3 we
give an improved version of the element. We finally do numerical tests to verify our
analysis in Section 4.

2 Error analysis for nonconforming 5-node quadrilateral
transition element

2.1 Finite element construction

Let Th be a shape regular subdivision of Ω into quadrilaterals. Let K ∈ Th be an
arbitrary quadrilateral with diameter hK. Denote

h := max
K∈Th

{hK},

we define the isoparametric bilinear mapping FK : K̂ = [−1, 1]2−→K (see Fig. 2) as

(
x
y

)
= FK(ξ, η) =

1
4

4

∑
i=1

(1 + ξiξ)(1 + ηiη),

where ξ, η are the local isoparametric coordinates and
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Figure 2: The mapping FK.

(
ξ1 ξ2 ξ3 ξ4
η1 η2 η3 η4

)
=

( −1 1 1 −1
−1 −1 1 1

)
.

Let vi (i = 1, · · · , 5) be the nodal values at the four vertices, Zi (i = 1, · · · , 4) of K and
one mid-side node Z5. The corresponding referential mid-side nodal Ẑ5 falls into four
cases as shown in Fig. 3. The interpolation function vtr on the transition element K has
the form [8]

v̂tr = vtr ◦ FK =
5

∑
i=1

Nivi. (2.1)

Here the mid-side nodal basis N5 is taken as

N5 = Ñi, if the i-th mid-side point is a node (Fig. 3),

where i = 5, · · · , 8 and

Ñ5 =
1
2
(1 + ξ)(1− η2), Ñ6 =

1
2
(1 + η)(1− ξ2), (2.2a)

Ñ7 =
1
2
(1− ξ)(1− η2), Ñ8 =

1
2
(1− η)(1− ξ2). (2.2b)

Figure 3: Node number system for transition elements.
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Especially, we take Ñi = 0, if the i-th mid-side point is not a node for i = 5, · · · , 8. The
vertex nodal basis Ni are then given by

N1 =
1
4
(1− ξ)(1− η)− 1

2
(Ñ7 + Ñ8), N2 =

1
4
(1 + ξ)(1− η)− 1

2
(Ñ8 + Ñ5), (2.3a)

N3 =
1
4
(1 + ξ)(1 + η)− 1

2
(Ñ5 + Ñ6), N4 =

1
4
(1− ξ)(1 + η)− 1

2
(Ñ6 + Ñ7). (2.3b)

Remark 2.1. From the basis functions (2.2)-(2.3), we easily know that for any edge ê of
K̂

v̂tr|ê is
{

a linear function in ξ, η, if ê has only 2 nodes,
a quadratic function in ξ, η, if ê has 3 nodes.

Remark 2.2. For Gupta’s conforming transition element [13],

Ñ5 =
1
2
(1 + ξ)(1− |η|), Ñ6 =

1
2
(1 + η)(1− |ξ|),

Ñ7 =
1
2
(1− ξ)(1− |η|), Ñ8 =

1
2
(1− η)(1− |ξ|).

Remark 2.3. When K is a 4-node quadrilateral element, the isoparametric bilinear in-
terpolation vbi is given by

v̂bi = vbi ◦ FK =
1
4

4

∑
i=1

(1 + ξiξ)(1 + ηiη)vi. (2.4)

Let Vh be finite dimensional space defined as

Vh :=
{

v : v|ΓD = 0, v is continuous at all the vertices of the quadrilateral mesh Th,

v|K =
{

vtr, if K is a 5-node transition element for all K ∈ Th,
vbi, if K is a 4-node quadrilateral element for all K ∈ Th,

}
, (2.5)

where vtr, vbi are given by (2.1), (2.4) respectively. It is easy to know Vh contains
continuous piecewise isoparametric bilinear interpolation functions, namely

Vh ⊃ Vc
h :=

{
v ∈ C0(Ω) : v̂ = v|K ◦ FK ∈ span{1, ξ, η, ξη}, for all K ∈ Th

}
. (2.6)

Then the corresponding finite element scheme for the problem (1.2) reads as: find
uh ∈ Vh, such that

∫

Ω
∇huh · ∇hvdx = F(v), for all v ∈ Vh. (2.7)
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2.2 Error analysis

Define

(v, w)h := ∑
K∈Th

∫

K
∇v · ∇wdx, for v, w ∈ Vh + V,

‖v‖h :=
(
(v, v)h

) 1
2 .

In the following, we use, for convenience, the notation a . b to represent that there
exists a generic positive constant C, independent of the mesh parameter h, such that
a ≤ Cb.

According to the theory of nonconforming finite element methods (cf. [2, 10]), it
holds the following result.

Lemma 2.1. Let u ∈ V be the solution of the variational problem (1.2). Then the discretization
problem (2.7) admits a unique solution uh ∈ Vh, such that

‖u− uh‖h ≤ inf
v∈Vh

‖u− v‖h + sup
w∈Vh\{0}

∣∣(u− uh, w)h
∣∣

‖w‖h
. (2.8)

For the approximation error term inf
v∈Vh

‖u− v‖h, from the relation (2.6) it holds

inf
v∈Vh

‖u− v‖h ≤ inf
v∈Vc

h

|u− v|1,Ω. (2.9)

Here and in what follows, we use ‖ · ‖k,T and | · |k,T to denote the usual norm and
seminorm on the Sobolev space Hk(T).

By (2.9), we only need to analyze the consistency error term

sup
w∈Vh\{0}

∣∣(u− uh, w)h
∣∣

‖w‖h
,

from integration by parts and Remark 2.1, we have

(u− uh, w)h = ∑
K∈Th

∫

K
∇u · ∇wdx−

∫

Ω
f wdx

= ∑
K∈Th

( ∫

∂K
∇u · n wds−

∫

K
∆u wdx

)
−

∫

Ω
f wdx

= ∑
K∈Th

∫

∂K
∇u · n wds = ∑

e∈E∗h

∫

e
∇u · n[w]ds, (2.10)

where E∗h is the set of 3-node edges of all transition elements in Th, n is the unit outer
normal and [w] is the jump of w across e. Then we only need to estimate (2.10).
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Figure 4: Interpolation function along the 3-node edge of a transition element.

Consider a transition element K2 with two adjacent 4-node element K1
1, K2

1 (see
Fig. 4). Denote

K1 := K1
1

⋃
K2

1, K̃ := K1
⋃

K2,

ei := Ki
1

⋂
K2, e := e1

⋃
e2,

where i = 1, 2. Let a, b, c be the three nodes of the edge e. Since [w] vanishes at the
nodes a, b, c and

(
w|Ki

1

)∣∣
ei

is a linear function for i = 1, 2, from a standard scaling
argument together with trace inequality, we have

∣∣[w]
∣∣2
0,e . h|w|21,K̃. (2.11)

Therefore, it follows
∣∣∣ ∑

e∈E∗h

∫

e
∇u · n[w]ds

∣∣∣ ≤
(

∑
e∈E∗h

|u|21,e

) 1
2
(

∑
e∈E∗h

∣∣[w]
∣∣2
0,e

) 1
2 . h

1
2 |u|1,E∗h ‖w‖h,

where

|u|1,E∗h :=
(

∑
e∈E∗h

|u|21,e

) 1
2
.

This indicates

sup
w∈Vh\{0}

∣∣(u− uh, w)h
∣∣

‖w‖h
. h

1
2 |u|1,E∗h . (2.12)

From Lemma 2.1, Eqs. (2.9), (2.12) and the standard interpolation theory, we obtain
the following conclusion.

Proposition 2.1. Let u ∈ V
⋂

H2(Ω) and uh ∈ Vh be respectively the solutions of the weak
problem (1.2) and of the discretized problem (2.7). Then it holds

‖u− uh‖h . h|u|2,Ω + h
1
2 |u|1,E∗h .

From this proposition we know that the error estimate for the nonconforming 5-
node transition element is, in some sense, not optimal due to the h1/2-loss of accuracy
for the consistency error term. In next section we shall discuss improvement of this
transition element.
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3 Modified nonconforming transition element

From the finite element construction in the above section, we know the interpolation
function on the original nonconforming transition element and its two adjacent 4-node
elements is continuous at the mid-side node as well as at the two endpoint nodes
of the transition edge (see Fig. 4). This, however, leads to h1/2-loss of accuracy, as
shown in Proposition 2.1. In this section, we shall modify the element by replacing the
continuity of interpolation at mide-side nodes with the continuity of mean value over
any transition edge e, namely

∫

e
[w]ds = 0, for all w ∈ Vh. (3.1)

Remark 3.1. For the original nonconforming transition element, a combination
of (2.11) and Hölder inequality yields

∣∣∣
∫

e
[w]ds

∣∣∣ ≤ h
1
2
∣∣[w]

∣∣
0,e . h|w|1,K̃. (3.2)

To arrive at (3.1) it suffices to modify the nodal basis functions in (2.2) as follows:

Ñ5 =
3
8
(1 + ξ)(1− η2), Ñ6 =

3
8
(1 + η)(1− ξ2), (3.3a)

Ñ7 =
3
8
(1− ξ)(1− η2), Ñ8 =

3
8
(1− η)(1− ξ2). (3.3b)

Remark 3.2. Notice that in this case N5 = Ñi is not the nodal basis corresponding to
the mid-side node i for i = 5, · · · , 8.

Lemma 3.1. For the modified nonconforming element, it holds the relation (3.1) and

sup
w∈Vh\{0}

∣∣(u− uh, w)h
∣∣

‖w‖h
. h|u|2,T ∗h , (3.4)

where T ∗
h is the set of all macro-elements like K̃ in Fig. 5, each of which consists of a transition

element and its two adjacent 4-node quadrilateral elements sharing the transition edge,

|u|2,T ∗h :=
(

∑
K̃∈T ∗h

|u|22,K̃

) 1
2
.

Proof. For w ∈ Vh, let wa, wb be the nodal values of w at the two endpoint nodes a, b
and let wc

1, wc
2 be respectively the nodal values of w|K1 and w|K2 at the mid-side node c

(Fig. 5). From (3.3), (2.3) and (2.1), we easily have

wc
2 =

3
4

wc
1 +

1
8
(wa + wb). (3.5)
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Figure 5: Interpolation function along the 3-node edge of a modified transition element.

Denote
f1 :=

(
w|K1

)∣∣
e, f2 :=

(
w|K2

)∣∣
e, hab = length(e),

then by (2.4) and (2.1), we have
∫

e
f1ds =

1
4

wahab +
1
4

wc
1hab +

1
4

wbhab +
1
4

wc
1hab =

1
4

wahab +
1
4

wbhab +
1
2

wc
1hab,

∫

e
f2ds =

∫ b

a

[ 1
hab

(b− s)wa +
1

hab
(s− a)wb +

4
h2

ab
(s− a)(b− s)

(
wc

2 −
wa + wb

2

)]
ds

=
2
3

wc
2hab +

1
6

wahab +
1
6

wbhab.

In view of (3.5), the relation (3.1) follows.
For any ζ∈H1(K̃), denote

c1 :=
1
|K̃|

∫

K̃
ζdΩ and c2 :=

1
|e|

∫

e
f1ds,

also
c2 =

1
|e|

∫

e
f2ds,

by (3.1). Then from trace inequality and Poincaré inequality, it follows

|ζ − c1|0,e . h−
1
2

(
|ζ − c1|20,K̃ + h|ζ|1,K̃|ζ − c1|0,K̃

) 1
2 . h

1
2 |ζ|1,K̃,

| f1 − c2|0,e . h−
1
2

(
|w− c2|20,K1

+ h|w|1,K1 |w− c2|0,K1

) 1
2 . h

1
2 |w|1,K1 ,

| f2 − c2|0,e . h−
1
2

(
|w− c2|20,K2

+ h|w|1,K2 |w− c2|0,K2

) 1
2 . h

1
2 |w|1,K2 .

These three inequalities, together with (3.1), imply
∣∣∣
∫

e
ζ[w]ds

∣∣∣ =
∣∣∣
∫

e
(ζ − c1)[w− c2]ds

∣∣∣
≤ |ζ − c1|0,e

(| f1 − c2|0,e + | f2 − c2|0,e
)

. h|ζ|1,K̃

(|w|1,K1 + |w|1,K2

)
.
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Taking
ζ = ∇u · n,

in the above inequality and summing over all e ∈ E∗h , we obtain
∣∣∣ ∑

e∈E∗h

∫

e
∇u · n[w]ds

∣∣∣ . ∑
K̃∈T ∗h

h|u|2,K̃

(|w|1,K1 + |w|1,K2

) ≤ h|u|2,T ∗h ‖w‖h,

which yields (3.4). ¤

Remark 3.3. Notice that the estimate of consistency error for the modified transition
element is of O(h), while it is of O(h1/2) for the original transition element (cf. (2.12)).

With the modified shape functions (3.3), we still use

Vh :=
{

v :v|ΓD = 0, v is continuous at all the vertices other than hanging nodes of Th,
∫

e
vds is continuous over any transition edge e,

v|K =
{

vtr, if K is a 5-node transition element for all K ∈ Th,
vbi, if K is a 4-node quadrilateral element for all K ∈ Th,

}
,

to denote the modified finite element space. Then, from Lemma 2.1, Eqs. (2.9), (3.4)
and the standard interpolation theory, we have the following result.

Proposition 3.1. Let u ∈ V
⋂

H2(Ω) and uh ∈ Vh be respectively the solutions of the weak
problem (1.2) and of the discretized problem (2.7). Then it holds

‖u− uh‖h . h|u|2,Ω.

4 Numerical tests

To verify performance of the modified nonconforming transition element, we consider
the Poisson problem (1.1) over an L-shaped domain as shown in Fig. 6 (cf. [12]), where

Ω = [−1, 1]2\[−1, 0]2, u = r
2
3 sin

(2θ + π

3

)
,

ΓD = ∂Ω, f = 0.

For comparison we also compute the results of the conforming transition element [13]
and the nonconforming transition element [8].

Test 1: Performance of the transition elements at given meshes.
We list the results of ‖u− uh‖h in Table 1 for different meshes shown in Fig. 6.
Test 2: Performance of the transition elements in h-refinement.
The initial mesh T0 is shown in Fig. 7. The h-refinement algorithm is as follows [3,

4]:
Loop for l = 0, 1, 2, · · · , until termination on level L do:
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1. Solve discrete problem (2.7) on Tl;

2. ∀K ∈ Tl, compute

η2
K := h2

K
∥∥ f + div∇uh

∥∥2
L2(K) +

1
2 ∑

E∈E(K)
hE

(∥∥[∇uh · n]
∥∥2

L2(E) +
∥∥[∇uh · t]

∥∥2
L2(E)

)
,

where E(K) is the set of edges of K excluding ∂Ω. Notice that

[∇uh · t]
∣∣
E= 0,

if E is not a transition edge. Denote

ηN :=
(

∑
K∈Tl

η2
K

) 1
2
;

3. If

ηK >
1
2

max
T∈Tl

{ηT},

mark K for bisection, output Tl+1.

(a) mesh1 (b) mesh2

(c) mesh3 (d) mesh4

Figure 6: Meshes 1–4.
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Figure 7: Initial mesh.

Table 1: The results of ‖u− uh‖h at different meshes.

mesh1 mesh2 mesh3 mesh4
conforming transition element [13] 0.1046 0.0620 0.0288 0.0165
nonconforming transition element [8] 0.1156 0.0872 0.0516 0.0337
modified nonconforming transition element 0.1040 0.0604 0.0282 0.0162

Remark 4.1. In the mesh refinement, we also mark the element which has more than
one mid-side node.

We show the relation between the number of d.o.f and the posteriori error ηN in
Fig. 8.

As we can see from Table 1 and Fig. 8, the modified nonconforming transition ele-
ment behaves better than its original version and the modified version is of the same
accuracy as the conforming transition element by Gupta [13]. But, as pointed out

Figure 8: Relation of number of d.o.f and posteriori error.
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in [13], for the conforming transition element, one has to use a modified quadrature
formula to numerically integrate the gradient term of the stiffness matrix, since the
interpolation functions for the conforming transition element are piecewise isopara-
metric bilinear over a transition element; while the modified nonconforming transition
element, as well as its original version, has no such inconvenience.
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