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Abstract. In the paper, an inf-sup stabilized finite element method by multiscale
functions for the Stokes equations is discussed. The key idea is to use a Petrov-
Galerkin approach based on the enrichment of the standard polynomial space for
the velocity component with multiscale functions. The inf-sup condition for P1−P0
triangular element (or Q1−P0 quadrilateral element) is established. The optimal
error estimates of the stabilized finite element method for the Stokes equations are
obtained.
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1 Introduction

In fluid dynamics, the Stokes equations model the slow flows of incompressible flu-
ids or alternatively isotropic incompressible elastic materials. The Stokes equations
have also become an important model for designing and analyzing finite element al-
gorithms because some of the problems encountered for solving the Navier-Stokes
equations already appear in the Stokes equations which are of simpler form. In par-
ticular, it gives the right setting for studying the stability problems connected with
the choice of finite element spaces for the velocity and the pressure. It is well known
that the finite element spaces cannot be chosen independently when the discretization
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is based on the Galerkin variational form, because it is very important to ensure the
compatibility of the approximations of velocity and pressure (see, e.g., [19]).

It is well known that the simplest conforming low order elements like the P1(Q1)−
P0 (linear(bilinear) velocity, constant pressure) element is not stable. To overcome the
limitation, many kinds of stabilized finite element methods have been proposed for
the Stokes or Navier-Stokes equations. Brezzi and Pitkäranta in [3] firstly proposed
the stabilized finite element method for P1−P1 triangular element. Later, many stabi-
lized methods have been prooposed by relaxing the incompressibility constraint (i.e.,
modifying the second equation of (2.3)), see, e.g., [1–3, 6, 14–16, 22]. Furthermore, a
general locally stabilized mixed finite element method was provided by Kechkar and
Silvester in [20]. In [12], a new locally stabilized method based on the idea of [20] con-
taining the jump terms across the inter-element boundaries of the macro elements was
derived, which is called bubble condensation procedure. A particular kind of bubble
functions of the velocity space is obtained by the residual free bubble method (RFBM)
(see, e.g., [1, 9]), in which the bubble functions are the solutions of a problem contain-
ing the residual of the continuous equation at the element level. At the same time, the
stabilized finite element method by multiscale functions was derived by [11], and a
priori error analysis can be found in [10]. A main characteristic of the above methods
is to use the Petrov-Galerkin approach to split the solution into two parts, i.e., the trial
function space is enriched with the bubble functions which are the solutions to a lo-
cal problem containing the residual of the momentum equation and special boundary
conditions so that the local problem can be solved analytically.

In the paper, we use the Petrov-Galerkin approach based on the enrichment of
the standard polynomial space for the velocity component with multiscale functions
to propose a new stabilized finite element method for the Stokes equations. Although
the main idea is derived from [10] and [11], our method is different from the one in [11]
because the multiscale functions are new and the jump term which is introduced to the
Galerkin variational formulation can be calculated no longer on the element boundary.

The remaining part of this paper is organized as follows. In the next section, we
present the general framework and derive a stabilized finite element method for the
Stokes equations. We then analyze the inf-sup stable condition for P1(Q1)−P0 element
and obtain the optimal error estimate.

2 Stabilized FEM by multiscale functions

Let Ω be an open bounded domain in Rd (d=2 or 3) with Lipschitz boundary ∂Ω. We
consider the following Stokes equations:

−ν∆u +∇p = f , in Ω, (2.1)
∇ · u = 0, in Ω, (2.2)
u = 0, on ∂Ω, (2.3)
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where u=
(
u1(x), · · · , ud(x)

)
represents the velocity vector, p=p(x) the pressure, f =

f (x)∈L2(Ω)d the prescribed body force, and ν the viscosity coefficient.
For the mathematical setting of the problem (2.1)-(2.3), we introduce Hilbert spaces:

X = H1
0(Ω)d, M = L2

0(Ω) ,
{

q ∈ L2(Ω) :
∫

Ω
qdx = 0

}
.

Furthermore, the space L2(Ω)d are endowed with the L2-scalar product and L2-norm
denoted by (·, ·)Ω and ‖ · ‖0,Ω. The space X are equipped with their usual scalar prod-
uct and norm

((u, v)) = (∇u,∇v)Ω, |u|1,Ω = ((u, u))1/2.

Define Laplace operator A by

Au = −∆u, ∀u ∈ D(A) = H2(Ω)d ∩ X.

Let
B0 ((u, p); (v, q)) = ν(∇u,∇v)Ω − (p,∇ · v)Ω + (q,∇ · u)Ω.

It is easy to check that B0 satisfies the following important properties (see, e.g., [5, 13,
20] ):

ν|u|21,Ω = B0((u, p); (u, p)), (2.4a)

|B0((u, p); (v, q))| ≤ γ
(|u|1,Ω + ‖p‖0,Ω

)(|v|1,Ω + ‖q‖0,Ω
)
, (2.4b)

α0
(|u|1,Ω + ‖p‖0,Ω

) ≤ sup
(v, q)∈(X, M)

B0((u, p); (v, q))
|v|1,Ω + ‖q‖0,Ω

, (2.4c)

where γ>0 and α0>0.
Under the above notations, the standard Galerkin variational formulation of the

problem (2.3) reads as follows: find (u, p)∈(X, M) such that

B0((u, p); (v, q)) = ( f , v)Ω, ∀(v, q) ∈ (X, M). (2.5)

As for the existence and uniqueness of the solution of Stokes equations, we have the
classical results as follows (see [13] Chapter IV and [23] Chapter II):

Theorem 2.1. Assume that Ω is an open bounded domain in Rd with Lipschitz boundary
∂Ω. Then the problem (2.3) admits a unique solution (u, p) such that

|u|2,Ω + |p|1,Ω ≤ C(ν)‖ f ‖0,Ω. (2.6)

Remarks 2.1. The validity of Theorem 2.1 is known (see [17,21]) if ∂Ω is of C2, or if Ω
is a two-dimensional convex polygon.
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Let Ω be characterized by {Th}h>0 into triangles (quadrilaterals) in the usual sense
(see [19], [20]), i.e., for some σ and λ with σ>1 and 0<λ< 1,

hK ≤ σρK, ∀K ∈ Th,
| cos θiK| ≤ λ, i = 1, 2, 3, 4, ∀K ∈ Th,

where hK is the diameter of element K, ρK is the diameter of the inscribed circle of ele-
ment K, and θiK are the angles of K in the case of a quadrilateral partitioning. The mesh
parameter h is given by h=max{hK : K∈Th}, and the set of inter-element boundaries
is denoted by Γh.

The finite element subspaces in this paper are defined by

Xh = {v ∈ C0(Ω̄)d ∩ X : vi
∣∣
K ∈ R1(K)d, ∀K ∈ Th},

Mh = {q ∈ M : q
∣∣
K ∈ P0(K), ∀K ∈ Th},

where R1(K) is defined by

R1(K) =
{

P1(K) if K is triangular,
Q1(K) if K is quadrilateral.

Here Pn(K) and Qn(K) are the set of all polynomials on K of degree less than n and
n = 1, 2, · · · . Let Eh be a finite dimensional space, called multiscale space, such that

Eh ⊂ H1(Th)d, Eh ∩ Xh = {0},

where
H1(Th)d = {v ∈ L2(Ω)d : v|K ∈ H1(K)d}.

Under the above notations, we have the Petrov-Galerkin variational formulation of
the Stokes equations: find uh + ue∈Xh ⊕ Eh and ph∈Mh such that

ν(∇(uh + ue),∇v)Ω − (ph,∇ · v)Ω + (qh,∇ · (uh + ue))Ω = ( f , v)Ω, (2.7)

for all v∈Xh ⊕ E0
h and qh∈Mh, where

E0
h = {v ∈ H1(Th)d : v|K ∈ H1

0(K)d}.

It follows from (2.7) that

ν
(∇(uh + ue),∇vh

)
Ω − (ph,∇ · vh)Ω +

(
qh,∇ · (uh + ue)

)
Ω

= ( f , vh)Ω, ∀(vh, qh) ∈ Xh × Mh, (2.8)
ν
(∇(uh + ue),∇vK

)
K − (ph,∇ · vK)K

= ( f , vK)K, ∀vK ∈ H1
0(K)d, ∀K ∈ Th. (2.9)

From (2.9), it follows that

(−ν∆ue, vK)K = ( f + ν∆uh, vK)K, ∀vK ∈ H1
0(K)d, ∀K ∈ Th, (2.10)
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which implies that ue is the strong solution of the local problem

−ν∆ue = f + ν∆uh, in K, (2.11)

for all (uh, ph) ∈ Xh × Mh.
Denote the mean value operator by 〈·〉, i.e., if v is a vector field experiencing a

discontinuity across an element boundary, then

〈v · n〉∣∣
∂K =

v+ · n+ − v− · n−

2
=

v+ · n+ + v− · n+

2
= n · (v+ + v−

2
)
,

where n = n+ = −n−, v+ = v
∣∣
∂K+ and v− = v

∣∣
∂K− .

In order to give an expression for ue in term of uh, ph and f on each element K,
we need to impose some special boundary condition and obtain the following local
problem

−ν∆uK
e = f + ν∆uh, in K, (2.12a)

−ν∆u∂K
e = 0, in K, (2.12b)

uK
e |∂K = 0, u∂K

e = ge, on ∂K, (2.12c)

−ν∂ssge =
1
he
〈ν∂nuh + ph I · n〉, ∀s ∈ T, (2.12d)

ge = 0, at the nodes, (2.12e)

where ue
∣∣
K=uK

e + u∂K
e , he,mesT denotes the length of the edge T, n is the normal out-

ward vector on ∂K, ∂s, ∂n are the tangential and normal derivative operators, respec-
tively, and I is the Rd×d identity matrix.

It is easy to check that problem (2.12) is well posed, i.e., ue can be solved in term of
uh, ph and f on each element K.

For convenience, we define two operators

HK : L2(K)d → H1
0(K)d, JK : L2(∂K)d → H1

0(∂K)d,

by

uK
e =

1
ν
HK( f + ν∆uh), ∀K ∈ Th, (2.13a)

u∂K
e =

1
heν

JK

(
〈ν∂nuh + ph I · n〉

)
, ∀K ∈ Th. (2.13b)

Integrating by parts on K∈Th, we have

ν(∇ue,∇vh)K = −ν(ue, ∆vh)K + (ue, ν∂nvh)∂K, ∀vh ∈ Xh, (2.14a)
(qh,∇ · ue)K = −(ue,∇qh)K + (ue, qh I · n)∂K, ∀qh ∈ Mh. (2.14b)
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Substituting (2.14) into (2.8) yields

∑
K∈Th

[
ν(∇uh,∇vh)K − (ph,∇ · vh)K + (qh,∇ · uh)K − (ue, ν∆vh)K

+(ue, ν∂nvh)∂K

]
+ ∑

K∈Th

[
− (ue,∇qh)K + (ue, qh I · n)∂K

]

= ∑
K∈Th

( f , vh)K, (2.15)

which implies that

ν(∇uh,∇vh)K − (ph,∇ · vh)K + (qh,∇ · uh)K − (ue, ν∆vh +∇qh)K

+(u∂K
e , ν∂nvh + qh I · n)∂K = ( f , vh)K, (2.16)

for (uh, ph), (vh, qh)∈Xh × Mh, ue∈Eh and for each K∈Th. Combining (2.13) with (2.16)
yields

ν(∇uh,∇vh)K − (ph,∇ · vh)K + (qh,∇ · uh)K

+
1
ν

(
HK(−ν∆uh)− 1

he
JK

(〈ν∂nuh + ph I · n〉), ν∆vh +∇qh

)
K

+
1

heν

(
JK(〈ν∂nuh + ph I · n〉), ν∂nvh + qh I · n

)
∂K

= ( f , vh)K +
1
ν

(HK( f ), ν∆vh +∇qh
)

K. (2.17)

From (2.17), we propose the following approach: find (uh, ph) ∈ Xh × Mh such that

B
(
(uh, ph); (vh, qh)

)
= ( f , vh)Ω, ∀(vh, qh) ∈ Xh × Mh, (2.18)

where

B
(
(uh, ph); (vh, qh)

)
= B0 ((uh, ph); (vh, qh))

+ ∑
T∈ Γh

βT

(
〈ν∂nuh + ph I · n〉, 〈ν∂nvh + qh I · n〉

)
T

. (2.19)

Next, we calculate the parameter βT. Firstly, we define the matrix function AK by

AK =
(JK(φ1)

∣∣JK(φ2)
∣∣ · · · ∣∣JK(φd)

)
,

where φi(i = 1, · · · , d) is a group of basis of Rd. From the definition, we have AK =
aK I, where aK is the solution of

−∆aK = 0, in K, aK = g(s), on each T ⊂ ∂K, (2.20)

where g=0 if T⊂∂Ω, and in the internal edges g satisfies

−∂ssg(s) =
1
he

, on T, g = 0, at the nodes. (2.21)
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Since (uh, ph), (vh, qh) ∈ Xh × Mh, (2.17) reduces to

∑
K∈Th

[
ν(∇uh,∇vh)K − (ph,∇ · vh)K + (qh,∇ · uh)K

]

+ ∑
T∈Γh

1
heν

(
JK(〈ν∂nuh + ph I · n〉), ν∂nvh + qh I · n

)
T

= ∑
K∈Th

( f , vh)K. (2.22)

Secondly, we claim that 〈ν∂nuh + ph I · n〉∣∣T⊂∂K is a constant vector function on every
T. By using (2.20) and (2.21), we have

(aK, 1)T

he
=

he

6
.

It is easy to check that

1
he

(JK(〈ν∂nuh + ph I · n〉), 〈ν∂nvh + qh I · n〉)T

=
( ∫

T
AK

)〈ν∂nuh + ph I · n〉∣∣T〈ν∂nvh + qh I · n〉∣∣T

=
he

6
(〈ν∂nuh + ph I · n〉, 〈ν∂nvh + qh I · n〉). (2.23)

Comparing (2.23) with (2.19) gives βT = he/(6ν).

3 Error estimates

To derive the error estimates of the approximate solution (uh, ph), we use the canonical
interpolation operator Ih: X→Xh defined by

∫

T

(Ihu− u
)
ds = 0, ∀T ∈ Γh,

and the L2-projection operator Ph: L2(Ω)→Mh. Then the following approximation
estimates hold (see, e.g., [5, 7, 13]):

|v− Ihv|m,K ≤ C1h2−m
K |v|2,K, ∀v ∈ H2(K), (3.1)

|v− Ihv|m,T ≤ C2h2−m−1/2
e |v|2,∂K, ∀v ∈ H2(∂K), (3.2)

‖v‖2
0,∂K ≤ C3(h−1

K ‖v‖2
0,K + hK|v|21,K), ∀v ∈ H1(K), (3.3)

‖q−Phq‖0,Ω ≤ C4h|q|1,Ω, ∀q ∈ H1(Ω), (3.4)

where m=0, 1 and Ci (i=1, · · · , 4) are positive constants independent of h.
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Remarks 3.1. The inequality (3.3) is very important which is called by the local trace
theorem.

Remarks 3.2. From (3.3) and (3.4), we deduce that

he‖〈q−Phq〉‖2
0,T

≤ C3

(
‖〈q−Phq〉‖2

0,K + h2
K|〈q−Phq〉|21,K

)
≤ Ch2|q|21,K,

which leads to
(

∑
T∈Γh

he‖〈q−Phq〉‖2
0,T

)1/2
≤ C5h|q|1,Ω, ∀q ∈ H1(Ω). (3.5)

Define the mesh-dependent norm

|(u, p)|h =
(

ν|u|21,Ω + ∑
T∈Γh

βT‖〈ν∂nu + pI · n〉‖2
0,T

)1/2
. (3.6)

Next, we give the inf-sup stable result for P1−P0 element as follows:

Lemma 3.1. There exists β1 > 0 such that

sup
0 6=(vh,qh)∈Xh×Mh

B((uh, ph); (vh, qh))(|vh|21,Ω + ‖qh‖2
0,Ω

)1/2 ≥ β1

(
|uh|21,Ω + ‖ph‖2

0,Ω

)1/2
, (3.7)

for all (uh, ph) ∈ Xh × Mh.

Proof. From the continuous version of inf-sup condition (see [13]), we know that
for each ph∈Mh⊂M there exist a function w∈X and a finite element approximation
wh∈Xh of w such that |w|1,Ω=‖ph‖0,Ω and

(∇ · w, ph
)

Ω ≥ C6‖ph‖0,Ω|w|1,Ω, (3.8)
(

∑
K∈Th

h−2
K ‖w− wh‖2

0,K
)1/2 ≤ C|w|1,Ω, |wh|1,Ω ≤ C|w|1,Ω. (3.9)

Using the Cauchy-Schwartz inequality and (3.8), we have

B
(
(uh, ph); (−w, 0)

)

= −ν(∇uh,∇w)− ∑
K∈Th

βT
(〈ν∂nuh〉, 〈ν∂nw〉)

∂K

+(∇ · w, ph)Ω − ∑
K∈Th

βT
(〈ph I · n〉, 〈ν∂nw〉)

∂K

≥ −ν|uh|1,Ω|w|1,Ω + C6‖ph‖0,Ω|w|1,Ω

− ∑
K∈Th

βT‖〈ν∂nuh + ph I · n〉‖0,T‖〈ν∂nw〉‖0,T

≥ −
(

ν|uh|21,Ω + ∑
T∈Γh

βT‖〈ν∂nuh + ph I · n〉‖2
0,T

)1/2(
ν|w|21,Ω

+ ∑
T∈Γh

βT‖〈ν∂nw〉‖2
0,T

)1/2
+ C6‖ph‖0,Ω|w|1,Ω. (3.10)
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Using (3.3) and the inverse inequality, we obtain

βT‖〈ν∂nw〉‖2
0,T ≤

he

6ν

(
h−1

K ‖ν∇w · n‖2
0,K + hK|ν∇w · n|21,K

)

≤ νhe

6hK
|w|21,K +

νhe

6
CKh−1

K |w|21,K

≤ ν(1 + CK)
6

|w|21,K. (3.11)

Combining (3.10) with (3.11) yields

B
(
(uh, ph); (−w, 0)

) ≥ −
√

Cν|w|1,Ω

(
ν|uh|21,Ω

+ ∑
K∈Th

βT‖〈∂nuh + ph I · n〉‖2
0,T

)1/2
+ C6‖ph‖0,Ω|w|1,Ω

= −
√

Cν|w|1,Ω|(uh, ph)|h + C6‖ph‖0,Ω|w|1,Ω

= −
√

Cν‖ph‖0,Ω|(uh, ph)|h + C6‖ph‖2
0,Ω

≥ −Cνγ−1
1 |(uh, ph)|2h + [C6 − γ1]‖ph‖2

0,Ω, (3.12)

where C = (7 + C0)/6 with C0 = max
K∈Th

CK, and γ1 is chosen small enough. Let

(vh, qh) = (uh − δw, ph), δ > 0.

Using (3.12) we have

B((uh, ph); (vh, qh))
= B((uh, ph); (uh, ph)) + δB((uh, ph); (−w, 0))

≥ |(uh, ph)|2h + δ
(
− Cνγ−1

1 |(uh, ph)|2h + [C6 − γ1]‖ph‖2
0,Ω

)

≥ (1− δCνγ−1
1 )|(uh, ph)|2h + δ(C6 − γ1)‖ph‖2

0,Ω

≥ (1− δCνγ−1
1 )|uh|21,Ω + δ(C6 − γ1)‖ph‖2

0,Ω, (3.13)

provided that 0<δ<γ1/(Cν) and 0<γ1<C6. Denote

C(ν) , min{(1− δCνγ−1
1 ), δ(C6 − γ1)}, C(δ) , max{2, 1 + 2δ2}.

Then we have

|vh|21,Ω + ‖qh‖2
0,Ω = |uh − δw|21,Ω + ‖ph‖2

0,Ω

≤ 2|uh|21,Ω + (2δ2 + 1)‖ph‖2
0,Ω ≤ C(δ)

(|uh|21,Ω + ‖ph‖2
0,Ω

)
. (3.14)

Taking β1 = C(ν)/C(δ) ends the proof. ¤
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Lemma 3.2. Let (u, p)∈ [H2(Ω)d ∩ X]× [H1(Ω) ∩ M] be the solution of (2.5) and assume
that (uh, ph)∈ Xh × Mh satisfy (2.18). Then there exists a positive constant C independent of
ν and h such that

|B((u− uh, p− ph); (vh, qh))| ≤ Ch
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
|(vh, qh)|h. (3.15)

Proof. Since (u, p)∈[H2(Ω)d ∩X]× [H1(Ω)∩M] is the solution of (2.5) and (uh, ph)
satisfies (2.18), we have

B
(
(u− uh, p− ph); (vh, qh)

)
= B0

(
(u− uh, p− ph); (vh, qh)

)

+ ∑
T∈Γh

βT

(
〈ν∂n(u− uh) + (p− ph)I · n〉, 〈ν∂nvh + qh I · n〉

)
T

= ∑
T∈Γh

βT

(
〈ν∂nu + pI · n〉, 〈ν∂nvh + qh I · n〉

)
T

= ∑
T∈Γh

βT

(
ν∂nu + pI · n, 〈ν∂nvh + qh I · n〉

)
T

. (3.16)

Using (3.16), (3.3), the Cauchy-Schwartz inequality and Lemma 3.1, we obtain

B
(
(u− uh, p− ph); (vh, qh)

)

≤ ∑
T∈Γh

β1/2
T ‖ν∂nu + pI · n‖0,T β1/2

T ‖〈ν∂nvh + qh I · n〉‖0,T

≤ ∑
T∈Γh

β1/2
T ‖ν∂nu + pI · n‖0,T|(vh, qh)|h

≤ ∑
T∈Γh

β1/2
T

(
‖ν∂nu‖0,T + ‖pI · n‖0,T

)
|(vh, qh)|h

≤ Ch
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
|(vh, qh)|h, (3.17)

where C is a positive constant independent of ν and h. ¤

Lemma 3.3. Let (u, p)∈[H2(Ω)d ∩ X]× [H1(Ω) ∩ M] be the solution of (2.5). Then there
exists a positive constant C independent of ν and h such that

|B(
(u− Ihu, p−Ph p); (vh, qh)

)| ≤ Ch
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
|(vh, qh)|h, (3.18)

for all (vh, qh)∈Xh × Mh.

Proof. By using the orthogonality of the L2-projection Ph, we have

(p−Ph p,∇ · vh) = 0, ∀vh ∈ Xh. (3.19)
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From the definition of the canonical interpolation operator Ih and the fact that qh is
piecewise constant, it follows that

(
qh,∇ · (u− Ihu)

)
K =

(
qh, (u− Ihu) · n

)
∂K = 0. (3.20)

Using Cauchy-Schwarz inequality and (3.1), we have

ν
(∇(u− Ihu),∇vh

)
K

≤ √
ν‖∇(u− Ihu)‖0,K

√
ν‖∇vh‖0,K

≤ C
√

νhK|u|2,K|(vh, qh)|h. (3.21)

Again, applying Cauchy-Schwarz inequality and using (3.3) and (3.4), we get

∑
T∈Γh

βT

(
〈ν∂n(u− Ihu) + (p−Ph p)I · n〉, 〈ν∂nvh + qh I · n〉

)
T

≤ ∑
T∈Γh

β1/2
T ‖ 〈ν∂n(u− Ihu) + (p−Ph p)I · n〉 ‖0,T |(vh, qh)|h

≤ ∑
T∈Γh

β1/2
T (‖ 〈ν∂n(u− Ihu) ‖0,T + ‖ (p−Ph p)I · n〉 ‖0,T)|(vh, qh)|h

≤ ∑
K∈Th

Ch
(√

ν|u|2,K +
1√
ν
|p|1,K

)|(vh, qh)|h. (3.22)

From (3.19)-(3.22), it follows that

B
(
(u− Ihu, p−Ph p); (vh, qh)

)

= ν(∇(u− Ihu),∇vh)Ω + ∑
T∈Γh

βT

(
〈ν∂n(u− Ihu)

+(p−Ph p)I · n〉, 〈ν∂nvh + qh I · n〉
)

T

≤ Ch
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)|(vh, qh)|h. ¤

Lemma 3.4. There exists a positive constant β2 independent of h and ν such that

sup
0 6=(vh,qh)∈Xh×Mh

B((uh, ph); (vh, qh))
|(vh, qh)|h ≥ β2|(uh, ph)|h, (3.23)

for all (uh, ph)∈Xh × Mh.

Proof. Using (3.10), we have

B
(
(uh, ph); (−w, 0)

) ≥ −|(uh, ph)|h|(vh, qh)|h + C6‖ph‖2
0,Ω, (3.24)

which by using the Young’s inequality implies that

B((uh, ph); (−w, 0)) ≥ − 1
2γ2

|(uh, ph)|2h −
γ2

2
|(vh, qh)|2h + C6‖ph‖2

0,Ω, (3.25)
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provided that γ2 is chosen sufficiently small. Denote

(vh, qh) = (uh − δw, ph), δ > 0.

Using (3.25) gives

B
(
(uh, ph); (vh, qh)

)

= B
(
(uh, ph); (uh, ph)

)
+ δB

(
(uh, ph); (−w, 0)

)

≥ |(uh, ph)|2h + δ
(
− 1

2γ2
|(uh, ph)|2h −

γ2

2
|(vh, qh)|2h + C6‖ph‖2

0,Ω

)

≥ (1− δ

2γ2
)|(uh, ph)|2h + δ

(
C6‖ph‖2

0,Ω −
γ2

2
|(vh, qh)|2h

)
, (3.26)

where δ and γ2 are chosen to satisfy 0<δ<2γ2 and γ2 is small enough. Note that

|(vh, qh)|2h = |(uh − δw, ph)|2h ≤ |(uh, ph)|2h. (3.27)

Taking β2 = 1− δ/(2γ2) ends the proof. ¤

Theorem 3.1. Let (u, p)∈[H2(Ω)d ∩X]× [H1(Ω)∩M] be the solution of (2.5) and (uh, ph)
∈ Xh × Mh be the solution of (2.18). Then the following error estimate holds:

|(u− uh, p− ph)|h ≤ Ch
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
. (3.28)

Proof. Starting with Lemma 3.4 we have

|(uh − Ihu, ph −Ph p)|h

≤ 1
β2

sup
(vh,qh)∈Xh×Mh

B
(
(uh − Ihu, ph −Ph p); (vh, qh)

)

|(vh, qh)|h

≤ 1
β2

sup
(vh,qh)∈Xh×Mh

B
(
(uh − u, ph − p); (vh, qh)

)

|(vh, qh)|h

+
1
β2

sup
(vh,qh)∈Xh×Mh

B((u− Ihu, p−Ph p); (vh, qh))
|(vh, qh)|h . (3.29)

Combining (3.15) with (3.18) and (3.29) yields

|(uh − Ihu, ph −Ph p)|h ≤ Ch
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
, (3.30)

which implies that

|(u− uh, p− ph)|h ≤ |(u− Ihu, p−Ph p)|h + |(uh − Ihu, ph −Ph p)|h
≤ Ch

(√
ν|u|2,Ω +

1√
ν
|p|1,Ω

)
.

This completes the proof of the theorem. ¤
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Theorem 3.2. Let (u, p)∈[H2(Ω)d∩X]× [H1(Ω)∩M] be the solution of (2.5) and (uh, ph) ∈
Xh × Mh be the solution of (2.18). Then the following error estimate holds

‖p− ph‖0,Ω ≤ Ch. (3.31)

Proof. By using Lemma 3.1, we have

‖ph −Ph(p)‖0,Ω

≤ 1
β1

sup
(vh,qh)∈Xh×Mh

B
(
(uh − Ihu, ph −Ph p); (vh, qh)

)

|vh|1,Ω + ‖qh‖0,Ω

≤ 1
β1

sup
(vh,qh)∈Xh×Mh

B
(
(uh − u, ph − p); (vh, qh)

)

|vh|1,Ω + ‖qh‖0,Ω

+
1
β1

sup
(vh,qh)∈Xh×Mh

B
(
(u− Ihu, p−Ph p); (vh, qh)

)

|vh|1,Ω + ‖qh‖0,Ω
. (3.32)

Since (vh, qh)∈Xh × Mh, we conclude that there exists C>0 such that

|vh|21,Ω + ‖qh‖2
0,Ω ≤ C, |(vh, qh)|h ≤ C. (3.33)

Combining (3.15) with (3.18) and (3.32)-(3.33) yields

‖ph −Ph p‖0,Ω ≤ Ch. (3.34)

Therefore, by (3.4) and the triangle inequality we have

‖p− ph‖0,Ω ≤ ‖p−Ph p‖0,Ω + ‖ph −Ph p‖0,Ω ≤ Ch. ¤

Theorem 3.3. Let (u, p)∈[H2(Ω)d ∩X]× [H1(Ω)∩M] be the solution of (2.5) and (uh, ph)
∈Xh × Mh satisfy (2.18). Then the following error estimate holds

‖u− uh‖0,Ω ≤ Ch2
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
. (3.35)

Proof. Firstly, we consider the following duality Stokes problem:
{ −ν∆v−∇q = uh − u, ∇ · v = 0, in Ω,

v = 0, on ∂Ω.
(3.36)

By Theorem 2.1, we have

ν‖v‖2,Ω + ‖q‖1,Ω ≤ C‖u− uh‖0,Ω. (3.37)
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Multiplying (3.36) by (uh − u) gives

‖u− uh‖2
0,Ω

= ν
(∇v,∇(uh − u)

)
Ω +

(
q,∇ · (uh − u)

)
Ω − (ph − p,∇ · v)Ω

≤ ∣∣B(
(uh − u, ph − p); (v− Ihv, q−Phq)

)∣∣ +
∣∣B(

(uh − u, ph − p); (Ihv,Phq)
)∣∣

≤ C
[
|(u− uh, p− ph)|h|(v− Ihv, q−Phq)|h + (p− ph,∇ · (v− Ihv))

]
. (3.38)

Using (3.38) and the Cauchy-Schwartz inequality, we have

‖u− uh‖2
0,Ω

≤ C
[
|(u− uh, p− ph)|h|(v− Ihv, q−Phq)|h

+‖p− ph‖0,Ω‖∇ · (v− Ihv)‖0,Ω

]

≤ C
[
|(u− uh, p− ph)|2h +

1
ν
‖p− ph‖2

0,Ω

]1/2

·
[
|(v− Ihv, q−Phq)|2h + ν‖∇ · (v− Ihv)‖2

0,Ω

]1/2
. (3.39)

Using Theorems 3.1 and 3.2, (3.30), (3.4) and (3.37), we obtain

‖u− uh‖2
0,Ω ≤ Ch2

(
ν|u|22,Ω +

1
ν
|p|21,Ω

)1/2(
ν|v|22,Ω +

1
ν
|q|21,Ω

)1/2

≤ Ch2
(√

ν|u|2,Ω +
1√
ν
|p|1,Ω

)
‖u− uh‖0,Ω. (3.40)

This completes the proof. ¤
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