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Abstract. This paper presents a comprehensive overview of the element-wise lo-
cally conservative Galerkin (LCG) method. The LCG method was developed to find
a method that had the advantages of the discontinuous Galerkin methods, without
the large computational and memory requirements. The initial application of the
method is discussed, to the simple scalar transient convection-diffusion equation,
along with its extension to the Navier-Stokes equations utilising the Characteristic
Based Split (CBS) scheme. The element-by-element solution approach removes the
standard finite element assembly necessity, with an face flux providing continuity
between these elemental subdomains. This face flux provides explicit local conser-
vation and can be determined via a simple small post-processing calculation. The
LCG method obtains a unique solution from the elemental contributions through
the use of simple averaging. It is shown within this paper that the LCG method
provides equivalent solutions to the continuous (global) Galerkin method for both
steady state and transient solutions. Several numerical examples are provided to
demonstrate the abilities of the LCG method.
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1 Introduction

The locally conservative Galerkin (LCG) method, introduced in 2004 [1], has been de-
veloped and employed in an increasing number of applications. It is however impor-
tant to note that its potential has not yet been fully realised. In this paper an overview
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of the method is provided along with several numerical examples to demonstrate its
ability.

The conservation of the Galerkin finite element method has been investigated by
many researchers [2–7] and the method has been shown to be globally conserva-
tive if Neumann boundary conditions are imposed. Local conservation is seen as a
highly valued property possessed by both finite volume methods and discontinuous
Galerkin (DG) finite element methods. Local (element-wise) conservation may be of
advantage when considering problems involving discontinuities or interfaces in prob-
lems such as porous-medium interfaces and fluid structure interaction.

In order to achieve a timely solution, the use of parallel computation is a desirable
property for a method to possess. In order to parallelise the global Galerkin method
domain decomposition techniques are required [8–10]. An alternative to decomposing
the domain would be to use an element-by-element solution scheme. Such a scheme
is already decomposed into multiple subdomains and as such is more applicable to
parallel computation.

To rectify some of the inherent drawbacks of the continuous (or global) Galerkin
(GG) method, the discontinuous Galerkin method (DGM) [11–22] has been developed.
The DGM allows for element by element solution and can therefore be easily paral-
lelised [23, 24]. Discontinuous methods can also utilise varying orders of approxi-
mation to locally capture a more refined solution [25]. Use of DG methods within
industry is often hampered by the large CPU and memory requirements, due to the
requirements of storing multiple solutions at a node as well as solving for additional
flux variables. Therefore, researchers have been seeking a DG method with the struc-
ture of a continuous Galerkin (CG) method [26].

The approach adopted within this paper allows for the introduction of the inter-
face fluxes within the continuous (global) framework [1, 27, 28], rather than adopt a
discontinuous Galerkin method to a continuous Galerkin framework. This method
can be readily adapted to existing industrial codes with a minimum of modification.
The adoption of the interface fluxes does not necessarily have to break the shape func-
tion spaces but can be constructed within the continuous framework. The proposed
method, corrected LCG, is identical to both the standard and stabilised versions of the
continuous Galerkin method for internal nodes. The LCG method and the CG method
are not identical on the global boundaries due to the nature of the CG method itself.
The LCG method is implicitly globally conservative and does not require the extra cal-
culations CG would require to be globally conservative. The LCG method utilises an
element-by-element solution approach removing the standard finite element assem-
bly, with a edge (2D) or face (3D) flux providing continuity between these elemental
subdomains. This removal of the standard assembly allows the elemental matrices to
be computed, inverted and stored at the pre-processing stages of a computation. This
is possible since often these matrices are functions of an element property, such as vol-
ume. In an Eulerian frame of reference this property does not change, therefore control
over individual elements gives a great deal of freedom to optimise memory require-
ments. Investigation has shown that the majority of LCG forms, especially the implicit
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forms, are much faster than their continuous (or global) Galerkin counter parts [1,27].
In the LCG method, the face flux is weakly imposed via a small post-processing

calculation at every time step. The formulation is written in a space-time framework,
utilising a pseudo time step as an iterative mechanism. Transient solutions can be
recovered through use of a dual time stepping approach. The method is both locally
and globally conservative and maintains many of the advantages DG methods offer,
but at a lower computational cost. This is due to the use of a small post processing
calculation to determine the face fluxes. Memory requirements are not as intensive as
with DG methods, since multiple solutions at a node can be discarded after each time
step.

The paper is organised into the following sections. In Section 2, the convection-
diffusion equation is introduced. Section 3 discusses the locally conservative Galerkin
spatial discretisation of the convection-diffusion problem. Section 4 investigates the
solutions produced by both the locally conservative Galerkin method and the continu-
ous Galerkin method. In Section 5 the Navier-Stokes equations and their temporal dis-
cretisation, using the characteristic based split (CBS) scheme, are briefly introduced.
In Section 6 the locally conservative Galerkin spatial discretisation of the semi-discrete
equations is discussed. Discussion in this section includes the matrices arising from
the spatial discretisation and a brief summary of local and dual time stepping proce-
dures. Section 7 contains numerical examples to demonstrate the validity and accu-
racy of the LCG method against both continuous Galerkin solutions and benchmark
values. These examples consist of 2D steady state heat conduction problem, a transient
2D flow around a circular cylinder at a Reynolds number of 100, a 3D steady state lid
driven cavity flow problem at a Reynolds number of 100, and a patient specific 3D
carotid bifurcation. Finally, in Section 8, some important conclusions are discussed
along with the possibilities for future research.

2 Convection-diffusion problem

Consider the following simple scalar transient convection-diffusion equation:

∂φ

∂t
+

∂Fi

∂xi
= 0, (2.1)

where β is a constant, φ is a scalar variable and Fi is the flux. In general, the flux has
both diffusive and convective components, although it can be purely diffusive or con-
vective. The equation is complete with the following initial and boundary conditions.

φ (x, t = 0) = φ0 (x) , ∀x ∈ Ω, (2.2a)
φ = φ (x, t) , onΓφ, (2.2b)

Fn = F (x, t) , onΓ f . (2.2c)

The boundary domain Γ of Ω is decomposed as Γ = Γφ ∩ Γ f , where Γφ and Γ f repre-
sent the Dirichlet and Neumann partitions respectfully. The semi-discrete form of Eq.
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(2.1) in its explicit form is defined as

φn+1 − φn

∆t
= −∂Fn

i
∂xi

, (2.3)

with the spatial discretisation of the scalar variable φ approximated as

φ ≈ φ̃ =
m

∑
a=1

Naφa = NΦ, (2.4)

where φ̃ indicates an approximate quantity, N is the shape functions and subscript a
indicates nodes. The Galerkin weighted residual form of Eq. (2.3) is defined as

∫

Ω
NaNb

∆φ̃

∆t
dΩ =

∫

Ω
Na

∂F̃n
i

∂xi
dΩ, (2.5)

where F̃n
i denotes the approximate flux, i denotes the spatial direction, n denotes the

nth time step and ∆φ̃ = φ̃n+1 − φ̃n. Performing integration by parts on the RHS term
of Eq. (2.5) gives

∫

Ω
NaNb

∆φ̃

∆t
dΩ =

∫

Ω

∂Na

∂xi
F̃n

i dΩ−
∫

Γ
Na F̃n

i nidΓ, (2.6)

where ni represents the components of the outward boundary normal vector.Note
that Eq. (2.6) represents an assembled system of simultaneous equations using the
standard (continuous) Galerkin discretisation. This equation is valid for any domain
divided into non-overlapping continuous elements. The loading vector {f} may be
determined using only a small post-processing calculation, as opposed to DG meth-
ods which utilise extra equations to determine the interface flux, with flux continuity
often determined using Lagrangian multipliers [21].

3 The LCG discretisation

In the locally conservative Galerkin method the variable and its fluxes are explicitly
conserved over each individual element. If it is possible to ensure that the flux cross-
ing a common face between two elements is equal and opposite then Eq. (2.6) is valid
between individual elements. The LCG method conserves the fluxes and the variable
through calculation of a numerical face flux. This ensures continuity between neigh-
bouring elements. This process is equivalent to treating the global domain as a group
of elemental subdomains, each with its own time-dependent Neumann boundary con-
ditions prescribed at each timestep.

Assuming accurate calculation of the numerical face flux, Eq. (2.6) can be rewritten
for an elemental subdomain Ωe as

∫

Ωe

NTN
∆Φ

∆t
dΩe =

∫

Ωe

∂NT

∂xi
F̃n

i dΩe −
∫

Γe

NT ˆ̃F
n
i nidΓe, (3.1)
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Figure 1: Flux crossing a common face (edge) between two triangular elements.

where subscript e indicates an element and Γe indicates an element face. The face flux

term is replaced with a numerical flux ˆ̃F
n
i across the elemental boundary. In matrix

form, Eq. (3.1) can be rewritten as

[Me] {∆Φ} = ∆t
(
[Ke] {Φ}n + {fΓe}n)

, (3.2)

where
{∆Φ} = {Φ}n+1 − {Φ}n ,

[Me] denotes the elemental mass matrix, [Ke] denotes the stiffness matrix and {fΓe} de-
notes the face flux vector. The numerical face flux is calculated utilising a postprocess-
ing approach, with the loading vector {fΓe} determined at the nth time level regardless
of the time discretisation. To determine nodal values for the numerical face flux, sev-
eral postprocessing approaches are available. These include superconvergence patch
recovery (SPR) and area-weighting the gradients, although only a simple averaging
approach is utilised in order to reduce complexity. Once the nodal values are obtained
the following condition (Fig. 1) is enforced

Fe1ne1 = Fe2ne2. (3.3)

An implicit solution procedure is also possible and involves treating matrix [Ke] im-
plicitly. Eq. (3.2) may be rewritten as

[Me + ∆tKe] {Φ}n+1 = [Me] {Φ}n + ∆t {fΓe}n . (3.4)

In both the explicit and the implicit solution procedure, the mass matrix [Me] can
either be kept as a consistent mass matrix or lumped. A lumping procedure for a
linear triangular element would involve row summation.

The LCG method involves solving elemental discrete equations, with the connec-
tions between the elements established via fluxes crossing the common faces. This
leads to multiple solutions at a node for the scalar variable φ, and in order to achieve
a unique solution, an arithmetic mean of the nodal values obtained from the different
elements is undertaken.

4 Comparison between continuous Galerkin and LCG method

To provide a comparison between the continuous Galerkin and the locally conserva-
tive Galerkin method, a two–dimensional transient explicit convection-diffusion prob-
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lem is considered. The continuous Galerkin method for an interior node a (see Fig. 2)
using linear elements is given as

(
5

∑
e=1

Me) {∆φa} = ∆t(
5

∑
e=1

Ke) {Φ}n , (4.1)

where the mass vector [M] is lumped, Ke is element e’s contribution to [K].
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Figure 2: Interior node a - Element connectivity.

The LCG method gives multiple nodal equations due to its element by element so-
lution approach. With the introduction of Neumann type boundary flux conditions at
elemental interfaces, nodal values of the fluxes are required. Nodal values of convec-
tion fluxes can be calculated at the nodes, however diffusive fluxes are constant over
the element and hence nodal values of these fluxes are determined by averaging the
values over the connected elements (see Eq. (4.2)).

( ∂̂φ

∂xi

)
a =

1
ne

ne

∑
e=1

( ∂φ

∂xi

)
e. (4.2)

The LCG nodal equation for element 1 is

[M1] {∆φa} = ∆t
(
[K1] {Φ}n + {f1}n)

, (4.3)

where [M1] represents the mass vector for element 1. It follows that Eq. (4.3) can be
repeated for all of the five connected elements. Using the simple averaging technique
to produce a unique solution gives

(
[M1] + [M2] + [M3] + [M4] + [M5]

){∆φa}
=

1
5

∆t
(
[K1]{Φ}n + {f1}n + [K2]{Φ}n + {f2}n + [K3]{Φ}n

+{f3}n + [K4]{Φ}n + {f4}n + [K5]{Φ}n + {f5}n
)

, (4.4)

which can be simplified on consideration that, by principle, the numerical boundary
flux terms will cancel out

(
5

∑
e=1

Me) {∆φa} =
1
5

∆t(
5

∑
e=1

Ke) {Φ}n . (4.5)
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From comparison between Eqs. (4.5) and (4.1) it is clear that the LCG method and
the CG method will provide the same steady state solution, and in the case where the
individual elements are of identical size, an identical transient solution also. In order
for the LCG method to provide an identical solution for a transient problem on a non-
uniform mesh then a correction factor must be applied. Eq. (4.3) can be rearranged
as

{φa}n+1 = {φa}n + [M1]
−1 ∆t

(
[K1] {Φ}n + {f1}n)

. (4.6)

The correction factor ψ is applied to the mass matrix term on the RHS, and is of the
form

ψ =
(
ne [M]−1 − [Me]

−1 )
. (4.7)

5 Incompressible Navier-Stokes equations and the CBS
scheme

5.1 The Navier-Stokes equations for incompressible flow

The artificial compressibility based Navier-Stokes equations may be written as

Continuity
1
β2

∂p
∂t

+ ρ
∂ui

∂xi
= 0, (5.1)

Momentum
∂ui

∂t
+ uj

∂ui

∂xj
+

1
ρ

∂p
∂xi

− 1
ρ

∂τij

∂xj
= 0, (5.2)

where ui represent the cartesian components of the velocity vector, p the pressure, β an
artificial compressibility parameter and ρ the fluid density [29–33]. Deviatoric stress
components τij are related to velocity gradients by

τij = µ
(∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (5.3)

where µ is the dynamic viscosity. The non-dimensional form of Eqs. (5.1) and (5.2) are
rewritten as:

Continuity
1

β∗2
∂p∗

∂t∗
= −ρ∗

∂u∗i
∂x∗i

, (5.4)

Momentum
∂u∗i
∂t∗

= −u∗j
∂u∗i
∂x∗j

+
1

Re
∂2u∗i
∂x∗j

2 −
∂p∗

∂x∗i
, (5.5)

where asterisks denote non-dimensional variables defined as

x∗i =
xi

L
; u∗i =

ui

u∞
; t∗ =

tu∞

L
; (5.6)

p∗ =
p

ρu2
∞

; β∗ =
β

u∞
; Re =

ρ∞u∞L
µ∞

. (5.7)
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Here Re is the Reynolds number, the subscript ∞ denotes a reference quantity and
L is a reference length. The problem definition is completed by selecting appropri-
ate initial and boundary conditions. Asterisks will now be dropped for simplicity of
presentation.

5.2 The semi-discrete CBS scheme

The characteristic based split (CBS) scheme is well established in the continuous (global)
Galerkin framework, and can be employed for simulations involving both incom-
pressible and compressible flow [32, 34, 35]. The artificial compressibility technique
has been incorporated into the CBS family since 2003 [29, 30, 36, 37]. For a recent re-
view of the abilities of the CBS scheme, the reader is referred to the work of Nithiarasu
et al. [38].

The LCG spatial discretisation procedure can be coupled to the semi-discrete CBS
scheme to obtain an element-by-element solution technique. The CBS algorithm utilises
a fractional step involving a split to circumvent the LBB restriction. The three steps of
the CBS scheme can be described as:

1. Solve for the auxiliary intermediate velocity field ui
†;

2. Solve for the pressure field p;

3. Determine the corrected velocity field ui.

The first step of the CBS scheme follows from a rearranged Eq. (5.5) without the
pressure term

∂ui
†

∂t
+

∂Fij

∂xj
= 0, (5.8)

where the flux term Fij is defined as

Fij =
(

ujui − 1
Re

∂ui

∂xj

)
. (5.9)

Applying the simple explicit characteristic temporal discretisation [39] to Eq. (5.8) gives

ui
† − ui

n

∆t
= −(∂Fij

∂xj

)n +
∆t
2

uk
∂

∂xk

(∂Fij

∂xj

)n. (5.10)

This forms the first step of the LCG-CBS scheme. The corrected value of ui
n+1 is given

by

ui
n+1 = ui

† − ∆t
( ∂p

∂xi

)n +
∆t2

2
uk

∂

∂xk

( ∂p
∂xi

)n, (5.11)

which is actually the third step of the scheme. The second step of the scheme is the
determination of the pressure field. The pressure equation used is based on the conti-
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nuity relation given by Eq. (5.4)

1
β2

∆p
∆t

= −ρ
∂ui

n+1

∂xi
. (5.12)

Using Eq. (5.11) to eliminate ui
n+1 and neglecting terms higher than second-order, the

pressure equation becomes

1
β2

∆p
∆t

= −ρ
∂

∂xi

(
ui

† − ∆t(
∂p
∂xi

)n)
. (5.13)

Eq. (5.13) is the second step of the algorithm. Assuming the pseudo compressibility
allows for a fully explicit scheme. The artificial compressibility parameter, β, has been
successfully used since 2003 [29–33, 36–38, 40]. The value of β can be a designated
constant within the domain although the recommended technique, adopted here, is
to calculate β locally. This local value of β is based on both convective and diffusive
time-step restrictions [29, 30, 32]. This accommodates both flow regimes (convection
and diffusion dominated) within a problem at a particular Reynolds number. In this
work the relation

β = max
(
ε, νconv, νdi f f

)
, (5.14)

is employed. The constant ε, is to ensure that β does not approach zero, and typically
takes the value of 0.1≤ε≤0.5. νconv is the local convective velocity and νdi f f is the local
diffusive velocity. These velocities are calculated from the non-dimensional relations
[29]:

νconv =
√

uiui, νdi f f = (hRe)−1. (5.15)

6 LCG discretization of CBS scheme

As with the continuous Galerkin method, the variables are approximated by the stan-
dard finite element spatial discretisation as:

ui ≈ ũi = Nui and p ≈ p̃ = Np, (6.1)

where N are the shape functions. In an LCG discretisation, the domain can be broken
into elemental subdomains if required. Introducing the Galerkin weighting and inte-
grating by parts, neglecting third- and higher-order terms gives the final matrix form
of the first step as

[M1e]{∆ui
†} = ∆t

(
[K1e]{ui}n + [K1cg

e ]{ui}n + { ˆf1e}n
)

, (6.2)

[M1e] =
∫

Ωe

NTNdΩe, [K1e] =
∫

Ωe

∂NT

∂xj

(
ujN− 1

Re
∂N
∂xj

)
dΩe,

[K1cg
e ] =

∫

Ωe

(
∆t
2

uk)
∂NT

∂xk
uj

∂N
∂xj

dΩe,
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{ ˆf1e}n = −
∫

Γe

NTujNnjdΓe{ui}n +
1

Re

∫

Γe

NTNnjdΓe{
ˆ∂ui

∂xj
}n

+
∫

Γe

(
∆t
2

uk)NTujNnkdΓe{
ˆ∂ui

∂xj
}n. (6.3)

The boundary terms are replaced with a numerical flux ˆf1e, calculated at time n on the
element boundaries. K1cg

e denotes the characteristic Galerkin stabilisation term. The
final matrix form of the second step is

[M2e]{∆p} = ∆t
(
[C2e]{ui

†} − ∆t[K2e]{p}n + { ˆf2e}
)

, (6.4)

[M2e] =
∫

Ωe

NT(
1
β2 )nNdΩe, [C2e] =

∫

Ωe

∂NT

∂xi
NdΩe,

[K2e] =
∫

Ωe

∂NT

∂xi

∂N
∂xi

dΩe,

{ ˆf2e}n = −
∫

Γe

NTNnidΓe({ui
†} − ∆t{ ∂̂p

∂xi
}n). (6.5)

The final matrix form of the third step is

[M3e]{ui}n+1 = [M3e]{ui}† + ∆t
(
[K3e]{p} − [K3cg

e ]{p}+ {f3e}
)n

, (6.6)

[M3e] =
∫

Ωe

NTNdΩe, [K3e] =
∫

Ωe

∂NT

∂xi
NdΩe,

[
K3cg

e
]

=
∫

Ωe

(
∆t
2

uk)
∂NT

∂xk

∂N
∂xi

dΩe,

{f3e}n = −
∫

Γe

NTNnidΓe{p}n +
∫

Γe

(
∆t
2

uk)NTNnkdΓe{ ∂̂p
∂xi
}n. (6.7)

6.1 Local time-stepping

A local time-step is introduced at each node a, for the artificial compressibility LCG-
CBS method is defined as

∆ta = min
( ha√

uiui + β
,

h2

2
Re

)
, (6.8)

where ha is an appropriate element size, which in this work is defined as

ha = min(3V/Ao)e, (6.9)

in three dimensional problems. V denotes element volume, and Ao denotes the area
of the opposite face. The minimum value is selected among the number of elements e
connected to the node a. In two dimensions, the relation is defined as

ha = min(2A/Lo)e, (6.10)
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where A represents the area of the element and Lo the opposite side length.
The artificial compressibility parameter β in Eq. (6.8) is calculated from Eq. (5.14).

The inclusion of β in Eq. (6.8) allows the artificial wave speed to be included into
the local time-step limit. The calculated ∆ta is in practice multiplied by a non-zero
safety factor below unity, with the actual value of the safety factor dependent on the
problem being simulated and the mesh used. The approach adopted for this study
does not handle the convection part of ∆t using the Courant-Friedrichs-Lewy (CFL)
number condition as advocated by many authors in order to avoid tuning the CFL
number and the diffusion time step parameter [29].

The convergence criteria of the artificial compressibility LCG-CBS scheme is de-
fined using the velocity residual error of the solution. The L2 residual norm of the
velocity is given as

‖u‖L2
=

(
nnode

∑
i=1

(|u|n+1
i − |u|ni )2

nnode
∑

i=1
(|u|n+1

i )2

)−1/2
, (6.11)

where nnode is the total number of nodes in the mesh. The criterion for reaching
steady-state is that this error should be reduced to a value of 10−5 or less.

6.2 Recovering a transient solution via a dual time-stepping approach

For the solution of transient incompressible-flow problems, a dual time-stepping pro-
cedure is utilised. The method has been shown to be very successful for both pre-
conditioned artificial-compressibility, finite volume [31, 40, 41] and the continuous
Galerkin fully-explicit CBS schemes [29, 30, 32, 36–38].

To determine the transient solution, a real time stepping term is added to the mo-
mentum equation. This term is added to the third step of the CBS scheme to remain
consistent with the continuous Galerkin approach [29, 30, 36–38]. The third step be-
comes

{ui}n+1 = {ui}† + [M3e]−1∆t
(
[K3e]{p} − [K3cg

e ]{p}+ {f3e}
)n

− ∆t
∆τ
{∆ui}τ, (6.12)

where ∆τ is the real time-step. When utilising the dual time-stepping procedure,
local ∆t becomes a (pseudo) time-stepping iterative mechanism. In order to get
second-order real time accuracy, {∆ui}τ is approximated with an implicit second-
order backward-difference formula

{ui}τ =
1
2

(
3{ui}m+1 − 4{ui}m + {ui}m−1

)
. (6.13)

In the above equation, {ui}m+1 is the nth pseudo-time level value within the pseudo-
time loop, {ui}m is the steady-state solution at the last real time-step and {ui}m−1 is
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the steady-state solution at one real time-step before the last. This requires the storage
of both the latter vectors at the end of each real-time step. The real time-step size is
unrestricted due to the scheme’s implicit nature and only governed by the quality of
the transient solution required. The pseudo time-step, however, is locally calculated
and subjected to the usual stability conditions.

7 Numerical examples

7.1 A 2D steady state heat conduction problem

This problem is a standard benchmark problem. The problem consists of a heat con-
duction problem in a two dimensional square plate of unit size, subject to Dirichlet
boundary conditions on all external faces. The vertical sides, as well as the bottom
side are subjected to a constant temperature of 100◦C, with the top side of the plate
is subjected to a constant temperature of 500◦C. The initial temperature value of the
plate is assumed to be 0◦C. The specific heat cp, density ρ and thermal diffusivity k are
assumed to be 1.0. Two structured meshes were utilised. Mesh A (A) consisted of 200
linear triangular elements and 121 nodes, Mesh B (B) contained 800 linear triangular
elements and 441 nodes. The analytical solution to this problem is given by [42]

T(x1, x2) = (Ttop − Tside)
2
π

∞

∑
n=1

(−1)n+1 + 1
n

sin
(nπx1

w

)sinh(nπx2/w)
sinh(nπH/w)

+ Tside. (7.1)

Using Eq. (7.1) gives an analytical solution of 200◦C at the centre node of the plate
(0.5, 0.5). The problem was analysed using both the explicit and implicit variations of
the LCG and continuous Galerkin method. Use of a consistent mass matrix produced
the least accurate results for both the LCG and continuous Galerkin methods. The so-
lution of the lumped mass matrix explicit variant of the LCG and continuous Galerkin
methods using Mesh A is shown in Fig. 3 and the implicit variant (lumped mass) in
Fig. 4. Table 1 gives the results obtained for the centre point (0.5, 0.5) from the various
versions. Comparison of the CPU times to completion for the different versions can
be found in Table 1 for a fixed time step size of 5.0e−4.

Table 1: 2D Steady State conduction in a square plate. Comparison of temperature calculated at the centre
of the plate and comparison of CPU times for preprocessing and iterations. A: mesh A; B: mesh B; T:
temperature; t: time; E.: explicit; I.: implicit; cm: consistent mass; lm: lumped mass.

Method T (A) ◦C T (B) ◦C t (A) s t (B) s
E. LCG (cm) 206.200 - 0.110 -
E. LCG (lm) 200.000 200.000 0.093 0.297
I. LCG (cm) 201.536 199.841 0.141 0.468
I. LCG (lm) 199.478 199.707 0.141 0.469
E. GG (cm) 202.270 - 1.313s -
E. GG (lm) 200.000 200.000 0.062 0.156
I. GG (cm) 200.774 199.708 1.375 286.672
I. GG (lm) 199.445 199.595 1.453 292.718
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(a) LCG (b) GG
Figure 3: 2D Steady State conduction in a square plate using Mesh A. Explicit (lumped mass) solutions.

(a) LCG (b) GG
Figure 4: 2D Steady State conduction in a square plate using Mesh A. Implicit (lumped mass) solutions.

It can be seen from Table 1 that the explicit (lumped mass) version of the LCG and
continuous Galerkin methods produced identical solutions that agreed with the ana-
lytical solution. The implicit (lumped mass) version of the methods was also in good
agreement with each other and the analytical solution, with the LCG solution being
marginally closer to the analytical solution. The explicit consistent mass versions per-
formed the least accurately, with the LCG version performing worst. The implicit
(consistent mass) versions improve with the mesh refinement to provide good agree-
ment with the analytical solution. From Fig. 3 and Fig. 4 it is possible to see that
all possess high symmetry and are in excellent agreement. From Table 1 it is possible
to see that the explicit (lumped mass) variant of the LCG and continuous Galerkin
method possess the fastest convergence time. The LCG version requires more time to
complete due to the post-processing flux calculation requirement. The three versions
of the LCG method that require the inversion of the elemental matrix require a frac-
tion more time to complete, making them significantly faster than their corresponding
continuous Galerkin counterpart.

7.2 The 2D transient flow past a cylinder at Re=100

This problem is a popular test case for validating the transient part of numerical
schemes [29, 30, 32, 36, 40, 43]. Problem geometry and boundary conditions can be
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Symmetry 

Exit: 

p = 0 

Symmetry 

12D 

 

8D 

 

4D 

 

Inlet: 

u1 = 1 

u2 = 0 

D 

No slip on cylinder surface 

u1 = 0, u2 = 0 

Figure 5: Transient flow past a cylinder. Geometry and boundary conditions.

Figure 6: Transient flow past a cylinder. Unstructured mesh.

found in Fig. 5. The computational domain is 16D in length and 8D in width. The
cylinder centroid is located at a distance of 4D from the inlet and along the horizon-
tal centre line. At the inlet boundary, the horizontal and vertical velocity components
are prescribed as unity and zero respectively. At the outlet boundary, the pressure is
specified as zero. Slip conditions are imposed at the top and bottom of the domain.

(a) u1 velocity contours (b) u2 velocity contours

(c) Pressure contours

Figure 7: Transient flow past a cylinder.
Computed solution at a non-dimensional real
time of 150.
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Figure 8: Transient flow past a cylinder. Computed coefficients of drag and lift, along with computed vertical
velocity component at vertical midpoint at exit. All are plotted as a function of the non-dimensional, real
time. (a) Full history of drag coefficient cd. (b) Comparison of cd with continuous Galerkin solution. (c) Full
history of lift coefficient cl . (d) Comparison of cl with continuous Galerkin solution. (e) Vertical velocity
component u2 at central exit. (f) Comparison of u2 at exit with continuous Galerkin solution.

No-slip conditions are prescribed on the cylinder. Initial horizontal velocity is unity
and both the initial vertical velocity and pressure are zero.

A single unstructured mesh was used in this study and it is shown in Fig. 6. It con-
tains 19,650 linear triangular elements and 9988 nodes. This mesh has been designed
using previous knowledge on the formation of the unsteady wake and subsequent
vortex shedding to refine specific regions [44,45]. The real time-step size utilized is 0.1
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and simulations were carried out to a real non-dimensional time of 200.
Qualitative results are shown in Fig. 7. The contours of horizontal and vertical

velocities along with pressure are shown for the real non-dimensional time of 150. All
results are of high quality with no non-physical oscillations.

In order to perform a quantitative analysis of the results, the real-time history of
both the lift and drag coefficients, along with the variation of the vertical velocity
component at the vertical midpoint of the exit is shown in Fig. 8. It can be seen that
the results of the LCG and the continuous (global) Galerkin methods are in excellent
agreement, with negligible difference between the results of the two methods.

7.3 The 3D lid-driven cavity flow problem

The problem considered is the incompressible fluid flow in a lid-driven cavity. This
problem is a standard test case and comparison of the velocity profiles can be made
with well known benchmark data [46]. The cavity geometry is defined as a cube with
unit length. No-slip boundary conditions are applied to the left, right and bottom
walls and the flow inside the cavity is generated by the motion of the top surface,
which travels in the horizontal direction. The two remaining walls are subjected to a

(a) (b)

(c) (d)
Figure 9: Flow in a 3D lid-driven cavity at Re=400. (a) Flow in a 3d lid-driven cavity. Geometry and bound-
ary conditions. (b) Finite element mesh, Elements 514,297 Nodes 92,405. (c) Comparison of horizontal
velocity distribution along mid-vertical line with Ghia et al.. (d) Comparison of vertical velocity distribution
along mid-horizontal line with Ghia et al.
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symmetrical boundary condition. The geometrical and boundary conditions are given
in Fig. 9(a). The mesh Fig. 9(b) consisted of 514,297 linear tetrahedral elements and
92,405 nodes, with refinement around the solid walls.

Fig. 9 shows the results obtained for the lid-driven cavity flow problem at a
Reynolds number of 400. Fig. 9(c) shows the comparison of the u1 velocity distri-
bution along the mid-vertical line with the numerical benchmark solution of Ghia et
al [46]. It can be seen that the corrected LCG results obtained are in excellent agree-
ment with the benchmark solution. Fig. 9(d) shows the comparison of the u3 velocity
distribution along the mid-horizontal line with the benchmark solution and it is also
in excellent agreement with the benchmark solution.

7.4 A 3D patient-specific carotid bifurcation

The unique geometry of each individual’s carotid artery can influence the blood flow
dynamics within the artery, and hence affect the risk and location of plaque build-up
and atherosclerosis. A method that has both local and global conservation and that
can capture the complexities of the flow dynamics and produce solutions in a timely
manner would be of particular application in this instance.

Here, blood flow through a carotid bifurcation is investigated. Other studies are
available on blood flow within the carotid artery [47–50]. Fluid dynamics analysis
of this problem can be utilised to investigate and understand problems associated
with the carotid artery. Although atherogenesis is linked to arterial wall shear stresses
(WSS), the uneven distribution of the atherosclerotic lesions are not yet fully under-
stood. Atherosclerosis is an inflammatory disease linked to the geometry of the arte-
rial walls and is found in regions of complex hemodynamics, such as bifurcations.

The patient-specific carotid bifurcation geometry was constructed from a set of
anonymous CT images provided by Singleton Hospital, Swansea, UK. The CT scans
consisted of 390 axial slices from the thorax to the nasal passage. Data preparation,
segmentation and mesh generation was performed using the data software AMIRA
(Mercury Computer Systems, Chelmsford, MA, USA). A no-slip boundary condition
was applied to the walls of the artery. A velocity profile was developed from the

(a) (b)
Figure 10: (a) Mean Velocity Profile. (b) Carotid bifurcation mesh approximately 1.2 million elements.
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(a) (b)

Figure 11: Wall Shear Stress distribution within the carotid bifurcation (a) Posterior, (b) Anterior.

(a) (b)

Figure 12: Oscillating Shear Index distribution within the carotid bifurcation (a) Posterior, (b) Anterior.

fully developed unsteady solution known as Womersley flow [48]. This is a 2D lin-
ear viscous solution of the Navier-Stokes equations in cylindrical tubes. A detailed
description can be found in [51].

The blood density and dynamic viscosity were taken to be ρ=1.0 g/cm3 and
ν=0.035 g/cm s. The Womersley velocity profile was discretized into 40 (real) time
steps. The peak velocity was set to 66 cm/s while the peak mean velocity was 45
cm/s Fig. 10(a). The inlet velocity profile was determined and mapped to the surface
of the inlet. Based upon the inlet mass flow rate the velocity profiles for the interior
and exterior carotid arteries was determined and applied, with the outlet flow split
between the interior (60% flow rate of inlet) and the exterior (40% flow rate of inlet)
carotid artery.

One of the primary indicators for the location of atheroma is the presence of low
or oscillating shear stress on the arterial wall. The time averaged wall shear stress
distribution is shown in Fig. 11. A low WSS below 0.5Pa is believed to stimulate an
atherogenic phenotype. A high WSS is found at the apex, with a localised region expe-
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riencing a WSS greater than 10Pa. This region is closer to the inner wall of the external
carotid artery which is in agreement with the results of Younis et al [48]. The oscilla-
tory shear index (OSI) [52, 53] is used to quantify the transient shear stress dynamics
experienced by the endothelial cells. The oscillatory shear index is defined by

OSI =
1
2

(
1− τmean

τabs

)
, (7.2)

and will always lie within the range 0≤OSI≤0.5. The oscillatory shear index distribu-
tion for the patient specific model used is shown in Fig. 12. It can be seen that a region
within the Common Carotid Artery (CCA) displays a high OSI value, indicating a
region where atherosclerotic plaque is predicted to form.

8 Conclusions and future work

This paper summarises the LCG method and its application to fluid dynamics prob-
lems. Numerical examples demonstrate the ability of the LCG method to provide
equivalent solutions to the continuous Galerkin method. The ability to have a dis-
continuous method without the disadvantages of a true DG method cannot be under-
stated. A timely solution to a patient-specific problem is highly desirable in future
application as a diagnostic tool. Although the LCG method has been developed and
employed on different fluid dynamics problems it has not yet reached its full poten-
tial. Although the method allows for discontinuity capturing at the element interfaces,
this has yet to be implemented. Extension of the method to problems involving fluid-
structure interaction is seen as the next step. Integration of the method into multi-
dimensional models and higher order elements is also called for.
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