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Abstract. A parameter-free limiting technique is developed for high-order unstruc-
tured-grid methods to capture discontinuities when solving hyperbolic conserva-
tion laws. The technique is based on a ”troubled-cell” approach, in which cells re-
quiring limiting are first marked, and then a limiter is applied to these marked cells.
A parameter-free accuracy-preserving TVD marker based on the cell-averaged so-
lutions and solution derivatives in a local stencil is compared to several other mark-
ers in the literature in identifying ”troubled cells”. This marker is shown to be
reliable and efficient to consistently mark the discontinuities. Then a compact high-
order hierarchical moment limiter is developed for arbitrary unstructured grids.
The limiter preserves a degree p polynomial on an arbitrary mesh. As a result, the
solution accuracy near smooth local extrema is preserved. Numerical results for
the high-order spectral difference methods are provided to illustrate the accuracy,
effectiveness, and robustness of the present limiting technique.
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1 Introduction

A nonlinear hyperbolic conservation law can generate discontinuities even if the ini-
tial solution is smooth. A significant computational challenge with a nonlinear hyper-
bolic conservation law is the resolution of such discontinuities, which has been a very
active area of research for over four decades. However, any linear scheme higher than
first order accuracy cannot generate monotonic solutions, according to the Godunov
theorem [8]. This means linear schemes of 2nd-order and higher will produce spuri-
ous oscillations near discontinuities due to the so-called Gibbs phenomenon, which
can result in numerical instability and non-physical data, such as negative pressure
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or density. Early research work on shock-capturing relied on numerical diffusion to
smear the discontinuities so that they can be captured as part of the numerical so-
lution [14, 20, 25, 40]. Besides the existence of user-defined parameters, the historical
drawback of the artificial viscosity approach is that the added terms are frequently
too dissipative in certain regions of the flow. Later, another type of approach was
developed based on flux limiting, which introduced numerical diffusion implicitly
to reduce or remove spurious oscillations. Pioneering works in flux limiting include
the FCT [3], the MUSCL and related methods [9, 38, 39], and TVD methods [10, 44].
However, the flux-limiting and TVD methods suffered from accuracy-degradation to
first-order at local extrema in smooth regions.

High-order (3rd-order and higher) shock-capturing algorithms have the potential
to obtain sharp non-oscillatory shock profile and simultaneously preserve accuracy
in smooth regions. The challenge of producing oscillation-free numerical solutions is
tougher for high-order methods than for lower order ones because of much reduced
numerical dissipation. The artificial viscosity method has been improved [6, 7, 36] to
minimize undesirable dissipation by using a spectrally vanishing viscosity approach
based on high-order derivatives of the strain rate tensor, though there still exist user-
defined parameters that can be mesh or problem dependent. The ENO [9] and WENO
methods [15] used the idea of adaptive stencils in the reconstruction procedure based
on the smoothness of the local numerical solution. However, due to a lack of com-
pactness, the implementation of both ENO and WENO methods is complicated on
arbitrary unstructured meshes, especially for 3D problems.

High-order methods designed for unstructured meshes offer obvious advantages
in geometric flexibility. Examples of such methods include the discontinuous Galerkin
(DG) method [4, 5, 30], the multi-domain staggered- grid method [16, 17], the spectral
volume method [41, 42], the spectral difference (SD) method [22, 34]. A review of
these and other unstructured-grid based high-order methods can be found in [43].
These high-order methods are usually compact, meaning cells are coupled with their
immediate face neighbors. Compact high-order methods are much more suitable for
massively parallel machines as the amount of data communication is minimized. In
designing limiters for such methods, it is natural to require that the limiters should
be compact. There have been many notable developments in limiters for high-order
methods in the last decade. Many of the limiters employ the so-called ”troubled cell”
(TC) approach, in which ”oscillatory” cells are marked first, and the solutions in these
cells are re-generated to remove or reduce the oscillations satisfying certain criteria
such as mean-preserving. The idea is first developed in [5], and then further extended
in [2]. In [5], a limiter developed for the finite volume method [1] was used. The
moment limiter developed in [2] can be viewed as the generalization of the minmod
limiter [39] to higher order derivatives or moments. The central DG scheme proposed
in [23] is a further generalization of the MUSCL scheme and the moment limiter. Other
more recent developments include the use of WENO [28] and Hermite WENO [24,29]
schemes to generate the reconstruction in ”troubled cells”. High-order limiters based
on artificial viscosity have also been investigated by various researchers [13,26]. In the
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present study, our focus is on the TC approach.
There are two major components in the TC approach: the marking or detection of

”troubled cells”, and the data limiting (or remapping) in these cells. In developing
the present moment-based limiter, we set to achieve several goals: (1) free of user ad-
justable parameters; (2) capable of preserving accuracy at smooth regions including
smooth extrema; (3) compact and efficient for arbitrary unstructured meshes. The re-
quirement of no-user adjustable parameters is very important for a general purpose
production-type flow solver, which can be applied to a wide variety of problems. If
a limiter’s success hinges on a ”suitable” parameter which depends on the solution,
the mesh and the order of accuracy, the limiter will more likely fail than succeed in
real world applications. In the present study, we compare several markers investi-
gated in [27], namely, the minmod TVB marker [5], the KXRCF marker developed
by Krivodonova et al. in [19], and the Harten marker [11], with a parameter-free
accuracy-preserving TVD marker. For the limiter step, we extend the approach in [2]
and [23] to arbitrary unstructured meshes in an efficient manner. Numerical results
show that the present limiter can preserve accuracy at smooth regions, while captur-
ing discontinuities.

The remainder of this paper is organized as follows. In Section 2 we review the
formulation of the spectral difference method as it will be used as the carrier of the
present limiter. In Section 3 we compare several markers in the literature and describe
in detail the construction and implementation of the present TVD marker. In Section
4, we formulate the generalized moment limiter for arbitrary unstructured meshes. In
Section 5 we provide extensive numerical examples to demonstrate the performance
of the present marker and limiter with the SD method. Finally, conclusions and some
possibilities for future work are given in Section 6.

2 Review of the spectral difference method

Consider the following hyperbolic conservation law

∂Q
∂t

+∇ · ~F = 0, (2.1)

on domain Ω × [0, T] and Ω⊂Rd (d=2 or 3) with proper initial conditions within Ω
and boundary conditions on ∂Ω. The state variable Q can be a scalar or a vector,
and the generalized flux ~F can be a scalar, vector, or tensor. In the case of the Euler
equations, Q is the vector of conservative variables. Domain Ω is partitioned into
non-overlapping triangular or quadrilateral cells (or elements). In the SD method,
two sets of points, i.e., the solution points and flux points are defined in each element.
The solution points are the locations where the nodal values of the state variable Q are
specified. Flux points are the locations where the nodal values of fluxes are computed.
The DOFs in the SD method are the conservative variables at the solution points. Fig.
1 displays the placement of solution and flux points for the third-order SD schemes on
triangular and quadrilateral cells.
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Figure 1: Solution (red solid circles) and flux points (green/blue solid squares). (a) Triangular mesh; (b)
Quadrilateral mesh.

Given the solution Qj,i at the j-th solution point within cell i (denoted as~rj,i), an
element-wise degree p polynomial can be constructed using Lagrange-type polyno-
mial base, i.e.,

pi(~r) =
m

∑
j=1

Lj,i(~r)Qj,i, (2.2)

where Lj,i(~r) are the Lagrange shape functions. With (2.2), the solutions at the flux
points can be computed. Since the solutions are discontinuous across element bound-
aries, the fluxes at the element interfaces are not uniquely defined. Obviously, in order
to ensure conservation, the normal component of the flux vector on each face should
be identical for the two cells sharing the face. A one dimensional approximate Rie-
mann solver [21, 31] is then employed in the face normal direction to compute the
common normal flux F̂(Q−, Q+,~n). Since the tangential component of the flux does
not affect the conservation property, several choices are possible at the face flux points.
Let the unit vector in the tangential direction be~l as shown in Fig. 2. Here we offer
two possibilities. One is to use a unique tangential component by averaging the two

Figure 2: Flux computation.
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tangential components from both sides of the face, i.e.,

Fl = Fl(Q−, Q+,~l) =
1
2
{[~F(Q−) + ~F(Q+)] ·~l}. (2.3)

The other option is to use their own tangential components separately, allowing dis-
continuous tangential components on the element interfaces. For cell i, the tangential
component is ~F(Q−) ·~l, and for its neighbor ~F(Q+) ·~l. For a corner flux point in cell i,
two faces (viewed from cell i) share the corner point, as shown in Fig. 2. The full flux
vector at the corner point can be uniquely determined from the two normal Riemann
flux components F̂1 = ~F ·~n1 and F̂2 = ~F ·~n2. In spite that the fluxes at a cell corner
point do not have the same value for all the cells sharing the corner, local conserva-
tion is guaranteed because neighboring cells do share a common normal flux at all
flux points. Once the fluxes at all flux points are re-computed, they are used to form a
p + 1 degree polynomial, i.e.,

~Pi(~r) =
mp+1

∑
l=1

Zl,i(~r)~Fl,i, (2.4)

where ~Fl,i=~F(~rl,i) and Zl,i(~r) are the set of Lagrange shape functions defined by the
flux points. The divergence of the flux at the solution points can be easily computed
as,

∇ · ~Pi(~r) =
mp+1

∑
l=1

∇Zl,i(~rj,i) · ~Fl,i. (2.5)

Finally the semi-discrete scheme to update the solution unknowns can be written as

dQj,i

dt
+

mp+1

∑
l=1

∇Zl,i(~rj,i) · ~Fl,i = 0. (2.6)

The SD method for quadrilateral or hexahedral grid is identical to the staggered grid
multi-domain spectral method [16, 17]. It is particularly attractive because all the spa-
tial operators are one-dimensional in nature. In the original staggered-grid method
[16, 17], the solution and flux points are the Chebyshev-Gauss and Chebyshev-Gauss-
Lobatto points. Recently, it was found [12, 37] that these flux points result in a weak
instability for high-order schemes. New stable fluxes points were suggested in [12,37].
In the present study, we employ the Legendre-Gauss points plus the two end points
as the flux points, as suggested in [12]. In an actual implementation, each physical
element (possibly curved) is first transformed into a standard element (square). The
governing equations are also transformed from the physical space to the computa-
tional space as follows

∂Q̃
dt

+
∂F̃
∂ξ

+
∂G̃
∂η

= 0, (2.7)

where [
F̃
G̃

]
= |J|

[
ξx ξy
ηx ηy

]
·
[

Fx
Fy

]
, Q̃ = |J| ·Q.
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The Lagrange interpolation shape functions in one direction for the conservative so-
lution variable Q and fluxes can be written as follows, respectively,

hi(X) =
N

∏
s=1,s 6=i

( X− Xs

Xi − Xs

)
, li+1/2(X) =

N

∏
s=0,s 6=i

( X− Xs+1/2

Xi+1/2 − Xs+1/2

)
. (2.8)

The reconstructed solution for the conservative variables in the standard element is
just the tensor products of the three one-dimensional polynomials, i.e.,

Q̃(ξ, η) =
N

∑
j=1

N

∑
i=1

Q̃i,jhi(ξ)hj(η). (2.9)

Similarly, the reconstructed flux polynomials take the following form:

F̃(ξ, η) =
N

∑
j=1

N

∑
i=0

F̃i+1/2,jli+1/2(ξ)hj(η), (2.10)

G̃(ξ, η) =
N

∑
j=0

N

∑
i=1

G̃i,j+1/2hi(ξ)lj+1/2(η). (2.11)

For the inviscid flux, a Riemann solver is employed to compute a common flux at the
interfaces to ensure conservation and stability. Time integration is done by using either
explicit TVD or SSP Runge-Kutta scheme [32,33] or an implicit LU-SGS scheme [35,45].

3 Comparison of troubled cells markers

In this section, we first review and evaluate several troubled-cell detection methods
found in the literature [27]. Then we present a parameter-free TVD marker.

Qiu and Shu [27] investigated seven markers currently used in the CFD commu-
nity, and found that the minomd TVB marker [5], the marker developed by Krivodonova
et al. named KXRCF in [19], and the Harten [11] marker are the best three among the
seven markers they studied based on the amount of spurious oscillations in the so-
lution, and the total number of cells marked. These three markers are chosen in the
current study, and are evaluated next.

Consider the following 1D scalar conservation law

ut + f (u)x = 0, x ∈ Ω, t > 0, (3.1a)
u(x, 0) = u0(x), x ∈ Ω. (3.1b)

The computational domain Ω is partitioned into N cells with p + 1 solution points
and p + 2 flux points in each cell. In the following description, hi, ūi and uj,i denote
the mesh size of cell i, the average solution and the value of the reconstructed solution
polynomial at the j-th flux point of the i-th cell, respectively.
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3.1 Minmod TVB marker

A user specified parameter M is chosen, which is of the order of the solution’s sec-
ond derivative in a smooth region. Then the differences between the solutions at the
cell interfaces and the cell-averaged solution are examined. Denote these differences
4ui,L=ūi − u1,i and 4ui,R=up+2,i − ūi. If the following inequalities are satisfied

|4ui,L| ≤ Mh2
i and |4ui,R| ≤ Mh2

i , (3.2)

the solution in cell i is considered smooth, and thus the cell is NOT a troubled cell.
Otherwise, compute the following quantities

4ũi,L = min mod(4ui,L, ūi − ūi−1, ūi+1 − ūi), (3.3)
4ũi,R = min mod(4ui,R, ūi − ūi−1, ūi+1 − ūi), (3.4)

where the minmod function is defined as

min mod(a1, a2, · · · , an) =

{
s · min

1≤k≤n
|ak|, if sign(a1) = · · · = sign(an) = s,

0, otherwise.
(3.5)

If either4ui,L or4ui,R are modified in (3.3) or (3.4), i.e.,4ũi,L 6=4ui,L or4ũi,R 6=4ui,R,
the cell is marked a troubled cell. Eqs. (3.3) and (3.4) are similar to the MUSCL scheme
[39] in spirit, but not as restrictive. In order to explain this, assume the solution to be
linear with a slope of Si in cell i. Then we have

4ui,L = 4ui,R = Sihi/2. (3.6)

Define two more slopes using

Si+1/2 =
ūi+1 − ūi

xi+1 − xi
, Si−1/2 =

ūi − ūi−1

xi − xi−1
. (3.7)

The following equation is equivalent to (3.3) and (3.4),

S̃i = min mod
(

Si, Si−1/2
hi−1 + hi

hi
, Si+1/2

hi + hi+1

hi

)
, (3.8)

where S̃i is the limited slope. We have used xi+1− xi=(hi+1 + hi)/2 and xi− xi−1=(hi−1
+hi)/2 in (3.8). If the mesh is uniform, then the factors (hi−1 + hi)/hi and (hi+1 +
hi)/hi become 2. If the mesh is extremely non-uniform, the factors can approach 1. In
practice, we could use a factor between 1 and 2, i.e.,

S̃i = min mod
(

Si, β
ūi − ūi−1

xi − xi−1
, β

ūi+1 − ūi

xi+1 − xi

)
. (3.9)

The larger β is, the fewer number of cells is marked at the expense of possibly missing
some troubled cells. A good compromise is β=1.5. Obviously if the solution is locally
linear, the cell is not marked because

Si =
ūi − ūi−1

xi − xi−1
=

ūi+1 − ūi

xi+1 − xi
.
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Eq. (3.9) will be used again to design marker and limiters.
As pointed out in [27], M>0 is a free parameter, which depends on the solu-

tion of the problem. For scalar problems it is possible to estimate M if the solution
is smooth [5] (M is proportional to the second derivative of the initial condition at
smooth extrema). However it is more difficult to estimate M for the systems case,
such as the Euler and N-S equations. If M is chosen too small, more cells than neces-
sary will be marked as troubled cells. If M is chosen too large, spurious oscillations
may appear.

3.2 KXRCF marker

In [19] Krivodonova et al. proposed a shock-detection technique based on DG’s super-
convergence property at the outflow boundaries of an element in smooth regions. This
method was termed the KXRCF marker. The boundary of a cell, ∂Ii, can be partitioned
into two portions: the inflow boundary ∂I−i where flow goes into the cell, and the
outflow boundary ∂I+

i where flow exits the cell. In the 1D case, if the wave speed
f ′(u) is positive at the left interface, then the left face (xi−1/2) is an inflow boundary;
otherwise, the left face is an outflow boundary. The right face can be classified in
exactly the opposite fashion. In an actual implementation, we use the averaged wave
speed from both sides of a face to determine if it is an inflow or outflow boundary.
The KXRCF marker checks the solution on the inflow boundary to determine troubled
cells. Without loss of generality, let’s assume the inflow boundary is the left interface
for cell i. Then compute the following quantity Li,

Li =
|u1,i − up+2,i−1|

h(p+1)/2
i |ūi|

. (3.10)

If Li>1, then cell i is marked as a troubled cell. Note that since DG’s super-convergence
property occurs only in a smooth region, the KXRCF marker might unnecessarily
mark some cells in continuous but not smooth regions.

3.3 Harten/ modified Harten marker

The Harten marker was originally developed in [11] and further modified in [27]. Here
is the basic idea. First extend the reconstructed solution polynomials from the neigh-
boring cells ui−1(x) and ui+1(x) into cell i. Then compute the differences between the
average extended polynomials and the average of cell i. In 1D, a jump (discontinu-
ity) within cell i can cause one extension above the current cell average and the other
below the current cell average. Therefore the Harten marker can be formulated as
follows. Compute

Fi(z) =
1
hi

{ ∫ z

xi−1/2

ui−1(x)dx +
∫ xi+1/2

z
ui+1(x)dx

}
− ūi. (3.11)
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If
Fi(xi+1/2) · Fi(xi−1/2) ≤ 0, (3.12)

then a discontinuity possibly exists within cell i. To improve its performance at smooth
extrema, the cell-averaged degree p derivatives between the neighboring cells and the
current cell are also compared. Thus, if

Fi(xi+1/2) · Fi(xi−1/2) ≤ 0, |ū(p)
i | > θ|ū(p)

i−1| and |ū(p)
i | > θ|ū(p)

i+1|, (3.13)

cell i is marked as a troubled cell. We take the same value for the constant θ(= 1.5) in
the numerical tests as in [27].

We can make the following observations regarding the Harten marker. When the
polynomial degree p is high, the extension of the reconstructed solution polynomials
from the neighboring cells might be strange and unexpected near a discontinuity, and
may fail to mark a shock, as shown in Fig. 7. In this case, the extended polynomials
from both sides have cell averaged solutions larger than the current cell. Therefore this
strategy may fail to mark a discontinuity in a high-order scheme. The Harten marker
is difficult to implement for unstructured grids in multiple dimensions.

To illustrate the performance of the above three markers, examples of both smooth
and discontinuous solution profiles have been used:
i) A smooth sine function, u=sin(2πx), 0≤x≤1;
ii) A combination of smooth and discontinuous profiles: a smooth Gaussian, a square
pulse, a triangle and half an ellipse [18], which is defined as

u0(x) =





(
G(x, β, z− δ) + G(x, β, z + δ) + 4G(x, β, z)

)
/6, −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,
1− |10(x− 0.1)|, 0 ≤ x ≤ 0.2,(

F(x, α, a− δ) + F(x, α, a + δ) + 4G(x, α, z)
)
/6, 0.4 ≤ x ≤ 0.6,

0, otherwise,

(3.14)

G(x, β, z) = e−β(x−z)2
, F(x, α, a) =

√
max(1− α2(x− a)2, 0), (3.15)

where a=0.5, z=−0.7, δ=0.005, α=10, β=log 2/(36δ2).
iii) An oscillatory shock profile obtained when solving nonlinear hyperbolic equa-
tions.

The marked cells for the initial profiles are then plotted. In the following figures,
the solid black lines stand for the initial profile, and the elevated red squares represent
the troubled cell.

The Minmod TVB marker works well for the scalar cases as shown in Fig. 3(a) and
3(b), where no cell is marked as troubled cell for the smooth sine wave, and only the
cells at the discontinuity region are marked as troubled cells. Here we estimated M
from [5] by computing the maximum absolute value of the second derivatives of the
initial solution in smooth regions for each of the two cases. However, for the complex
oscillatory shock profile case in Fig. 4, it is difficult to estimate M from this initial
profile. It appears that M=40 works well in that only the two cells at the discontinuity
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Figure 3: Minmod TVB marker by using M from [5] (p=2). (a) sine wave, 20 cells; (b) discontinuous
profile [18], 200 cells, p=2.

Figure 4: Minmod TVB marker for the oscillating shock profile with different M (5 cells), p=6.

are marked as troubled cells. But we found M=40 by ad hoc testing. For the system
cases such as Euler and Navier-Stokes equations, it is more difficult to estimate M.

The KXRCF marker detects the discontinuities as shown in Fig. 5(b) and Fig. 6.
It also works well for the smooth sine wave case in Fig. 5(a) as well as the smooth
Gaussian extremum in Fig. 5(b) (see the close-up view in Fig. 5(c)), where no trou-
bled cell at the local smooth extrema is marked. This is expected because the KXRCF
marker is exactly based on the super-convergence property on the elements’ outflow
boundaries in smooth regions. However, in continuous but not smooth regions, such
as the vicinity of x=−0.8 in Fig. 5(b) or x=−0.16 in Fig. 6, the KXRCF marker can
unnecessarily mark the cells in those continuous regions as troubled cells.

The Modified Harten marker gives good results in the smooth sine wave case, as
shown in Fig. 8. The results for the discontinuous profile case are acceptable, but
its performance is sensitive to the interpolation order of polynomial as shown in Fig.
9, where some more cells are marked when p=5 than the p=2 case. This sensitivity
can cause a serious problem in the high-order cases as shown in Fig. 7, where the
necessary condition (3.12) of the Harten marker fails to mark the shock cell. This is
because that the extensions of the solution polynomials from the neighboring cells can
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Figure 5: KXRCF marker (p=2). (a)
sine wave, 20 cells; (b) discontinu-
ous profile [18], 200 cells; (c) close-up
view for the Gaussian peak (the first
from the left).

become large in the current cell, and the integral values from the left and the right cells
are all positive, i.e.,

Fi(xi−1/2) = 1.886, Fi(xi+1/2) = 7.22.

That is why the Modified Harten marker fails in this typical case.

3.4 Accuracy-Preserving TVD (AP-TVD) marker

The above examples show that the free parameters in the minmod TVB marker can
have decisive effects on the performance of the marker; the KXRCF marker can mark

Figure 6: KXRCF marker for an oscillating shock profile (5 cells, p=6).
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Figure 7: Harten condition (3.12) (5 cells, p=6) cells. Circle: solution points; Blue line: extension from
right; Red line: extension from the left.

Figure 8: Modified Harten marker for a sine wave with 20 cells. (a) p=2; (b) p=5.

Figure 9: Modified Harten marker for the discontinuous profile with 200 cells. (a) p=2; (b) p=5.

too many cells in continuous regions as troubled cells; the Harten marker can fail to
detect a shock at a high-order setting, due to the unexpected polynomial extensions
from the neighboring cells. In addition, the Harten marker is difficult to implement in
2D and 3D. Although it is impossible to design a perfect marker, one design goal we
hope to achieve is a marker free of user-specified parameters.

In the minmod TVB marker, if parameter M is 0, it becomes a TVD marker. A
well known drawback of the TVD marker is that cells at smooth solution extrema
are marked. In order to unmark these smooth extrema, the first derivatives of the
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solutions are examined to see if they are locally monotonic. This marker is divided
into the following steps.

1. Compute the cell averaged solutions at each cell. Then compute the min and max cell
averages for cell i from a local stencil using

ūmax,i = max(ūi−1, ūi, ūi+1) and ūmin,i = min(ūi−1, ūi, ūi+1). (3.16)

If uj,i > ūmax,i + 0.001|ūmax,i| or uj,i < ūmin,i − 0.001|ūmin,i|, (j = 1, p + 2), (3.17)

the cell i is considered as a possible troubled cell, which is further examined in the next step.

2. This step is aimed to unmark those cells at local extrema that are unnecessarily marked as
troubled cells in the first step (3.17). If an extremum is smooth, the first derivative of the
solution should be locally monotonic. Therefore, a minmod TVD marker is applied to see if the
second derivative is bounded by the slopes computed with the cell-averaged first-derivatives.
Compute

ũ(2)
i = minmod (ū(2)

i , β
ū(1)

i+1 − ū(1)
i

xi+1 − xi
, β

ū(1)
i − ū(1)

i−1
xi − xi−1

). (3.18)

If ũ(2)
i =ū(2)

i , the cell is unmarked, i.e., not a troubled cell anymore. Otherwise, the cell is
confirmed as a troubled cell. Obviously, this marker works for p>1.

The coefficient 0.001 in (3.17) is not problem-dependent free parameters. It is used
to overcome machine error when comparing two real numbers so as to avoid the triv-
ial case that the solution is constant in the neighborhood. In order to compare the
performance of the new AP-TVD marker with the Minmod TVB marker, the KXRCF
marker, and the Modified Harten marker, we use the same three testing cases as be-
fore. Fig. 10 shows that the present AP-TVD marker performs consistently well at the
local extrema regions for all the polynomial order p>1. No cell is marked as a troubled
cell in this smooth case as expected. Fig. 11 shows that the present marker detects the
discontinuities without unnecessarily marking other cells in smooth regions. It also
shows the consistently good performance of detecting discontinuity for all the poly-
nomial order p>1. Fig. 12 shows the present marker only marks the two cells at the
discontinuity as expected, none elsewhere, in contrast to the other markers.

Comparing with the three ”preferred” markers from [27], the present accuracy
preserving TVD marker has shown the advantages that (1) no free-parameter and
problem-independent; (2) is efficient in terms of the number of marked cells over the
total number of cells and it performs well in marking the discontinuities; (3) it is com-
pact and easy to implement for arbitrary unstructured meshes.

4 Formulation of the generalized moment limiter

Next we present a p-exact high-order accuracy-preserving limiter based on the mo-
ment limiter [2, 23] and cell averages. The present limiter uses a Taylor-series-like



464 M. Yang, Z.J. Wang / Adv. Appl. Math. Mech., 4 (2009), pp. 451-480

Figure 10: AP-TVD marker for the
sine wave, 20 cells.

expansion for the reconstruction, which is similar to that in [23]. The difference is
that the expansion is performed with respect to the cell-averaged derivatives, rather
than the derivatives at a specific point such as the cell centroid. Then these cell-
averaged derivatives are limited in a hierarchical manner starting from the highest
derivative. Combined with the AP-TVD marker, this new limiting technique exhibits
the following properties: (1) free of problem-dependent parameters; (2) unstructured-
grid based, easy to implement for 3D arbitrary meshes, and compact for parallel com-
puting; (3) capable of suppressing spurious oscillations near solution discontinuities
without loss of accuracy at the local extrema in the smooth regions. We will call this
limiting technique ”parameter-free generalized moment limiter” (or termed as ”PFGM
limiter”).

In the SD method the solution points are used to construct a degree p polynomial
that can recover the conservative variables at the flux points. This reconstruction can
produce spurious oscillations near a shock wave. Therefore a new non-oscillatory
reconstruction is needed in the troubled cells. The following idea is followed. First
the original degree p solution polynomial within a ”troubled cell” is replaced with an
equivalent polynomial based on the cell-averaged derivatives up to degree p. Then the
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Figure 11: AP-TVD marker for the
discontinuous profile [18], 200 cells.

Figure 12: AP-TVD marker for
the oscillating shock profile (5 cells,
p=6).

high-order derivatives are hierarchically limited using the cell-averaged derivatives
of one degree lower. In case that the highest derivative is not altered, the original
polynomial is preserved. This procedure can be easily implemented for unstructured-
grid based high-order methods.

Let’s consider the 1D case first. Let the original solution polynomial before limiting
be ui(x), and the limited polynomial be Yi(x) within cell i. First we express ui(x) in
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terms of the cell-averaged derivatives up to degree p, i.e.,

ui(x) = ūi + ū(1)
i (x− xi) +

1
2

ū(2)
i

(
(x− xi)2 − 1

12
h2

i
)
+

1
6

ū(3)
i

(
(x− xi)3 − 1

4
h2

i (x− xi)
)

+
1

24
ū(4)

i

(
(x− xi)4 − 1

2
h2

i (x− xi)2 +
7

240
h4

i

)
+ · · · (4.1)

where xi represents the cell centroid coordinate.
Next the cell-averaged derivatives are limited in a hierarchical manner by using a

minmod-type limiter. Starting from the highest-order derivative, ū(p) is limited using,

Ȳ(p)
i = min mod

(
ū(p)

i , β
ū(p−1)

i+1 − ū(p−1)
i

xi+1 − xi
, β

ū(p−1)
i − ū(p−1)

i−1

xi − xi−1
.
)

(4.2)

If Ȳ(p)
i =ū(p)

i , the highest derivative is not altered. No further limiting is required, and
solution remains the same. Otherwise, the limiting process proceeds to the next lower
derivative in a similar fashion, i.e.,

Ȳ(k)
i = min mod

(
ū(k)

i , β
ū(k−1)

i+1 − ū(k−1)
i

xi+1 − xi
, β

ū(k−1)
i − ū(k−1)

i−1

xi − xi−1

)
, k = p− 1. (4.3)

If Ȳ(p−1)
i =ū(p−1)

i , none of the lower derivative are further limited, i.e.,

Ȳ(k)
i = ū(k)

i , (k = p− 2, · · · , 1). (4.4)

Otherwise, the process continues in a similar fashion hierarchically until the first deriva-
tive is limited. In order to preserve the mean, the zero-th derivative (the mean) is
retained, i.e., Ȳi=ūi. Finally the limited polynomial is written as

Yi(x) = Ȳi + Ȳi(x− xi) +
1
2

Ȳ(2)
i

(
(x− xi)2 − 1

12
h2

i
)
+

1
6

Ȳ(3)
i

(
(x− xi)3 − 1

4
h2

i (x− xi)
)

+
1
24

Ȳ(4)
i

(
(x− xi)4 − 1

2
h2

i (x− xi)2 +
7

240
h4

i
)
+ · · · (4.5)

Note that this limiter is compact, only involving data from its immediate neighbors,
and easy to implement. Next we present an efficient extension to multi-dimensional
unstructured grids. Similar to the 1D case, we first express the solution polynomial
with respect to the cell-averaged derivatives,

ui(x, y) = ūi + ūx,i4x + ūy,i4y +
1
2

ūxx,i(4x2 − Ixx)

+
1
2

ūyy,i(4y2 − Iyy) + ūxy,i(4x4y− Ixy), (4.6)

where

4x = x− xi, 4y = y− yi, 4x2 = (x− xi)2,

4y2 = (y− yi)2, xi ≡ 1
Vi

∫

Vi

xdV, yi ≡ 1
Vi

∫

Vi

ydV,

Ixx ≡ 1
Vi

∫

Vi

4x2dV, Iyy ≡ 1
Vi

∫

Vi

4y2dV, Ixy ≡ 1
Vi

∫

Vi

4x4ydV.



M. Yang, Z.J. Wang / Adv. Appl. Math. Mech., 4 (2009), pp. 451-480 467

We proceed to limit the cell-averaged derivatives involved in (4.6) for the troubled
cells. In multiple dimensions, especially in 3D, the efficiency of the limiter is a very
important criterion. In order to achieve the highest efficiency, we decide to limit the
derivatives of the same degree altogether with a scalar factor between 0 and 1, i.e., the
limited polynomial can be written as

Yi(x, y) = ūi + α(1)(ūx,i4x + ūy,i4y) + α(2)
{1

2
ūxx,i(4x2 − Ixx)

+
1
2

ūyy,i(4y2 − Iyy) + ūxy,i(4x4y− Ixy)
}

, (4.7)

where α(1) and α(2) are the scalar limiters for the first and second derivatives in [0, 1].
The essential 1D idea is then generalized into 2D and 3D. The limiter is conducted in
the following steps assuming p=2:

1. Compute the cell averaged 2nd order derivatives in the troubled cell, and the cell-averaged
1st order derivatives in the troubled cell and its immediate face neighbors, as shown in Fig.
13. Since the 2nd order derivatives are constants, and the 1st order derivatives are linear, we
can assume that the cell-averaged 1st order derivatives are the first order derivatives at the
cell centroids, i.e., ūx,i=ux,i(xi, yi) and ūy,i=uy,i(xi, yi).

2. Assume one of the face neighbors is cell j. Define the unit vector connecting the centroids of

cell i and cell j as~l. The 2nd order derivative in this direction is examined next to determine
whether limiting is necessary. Compute this second-order derivative according to

ull,i = ūxx,il2
x + ūyy,il2

y + 2ūxy,ilxly.

3. Compute the first derivative in ~l at the centroids of for both cell i and j,

ul,i(xi, yi) = ūx,ilx + ūy,ily, ul,j(xj, yj) = ūx,jlx + ūy,jly.

Estimate the 2nd-derivative using

˜ull,i =
ul,j(xj, yj)− ul,i(xi, yi)

|~ri −~rj| .

4. Finally the scalar limiter for this face is computed according to

α
(2)
ij = minmod(1, βũll,i/ull,i). (4.8)

The process is repeated for the other faces. Finally, the scalar limiter for the cell is
the minimum of those computed for the faces, i.e.,

α(2) = min
j

(α
(2)
ij ). (4.9)

If α(2)=1, the 2nd order derivatives are not altered. The solution polynomial remains
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Figure 13: Schematic of multidimensional limiting.

the same. Otherwise, the 1st order derivatives are limited in a similar fashion to com-
pute α(1), i.e.,

α
(1)
ij = min mod(1, βũl,i/ul,i), (4.10)

where ũl,i≡(ūj − ūi)/|~ri −~rj|. Finally,

α(1) = min
j

(α
(1)
ij ). (4.11)

As can be seen, this generalized moment limiter keeps its compactness for arbitrary
unstructured meshes, and can preserve a locally degree p polynomial, therefore satis-
fying the p-exact property.

5 Numerical tests

In this section we provide extensive numerical experimental results to demonstrate
the performance of the PFGM limiter described in Section 4. In the numerical tests,
the three-stage explicit TVD Runge-Kutta scheme [22] was used for time integration,
unless otherwise noted.

5.1 Accuracy study with smooth problems

5.1.1 Linear scalar wave equation

Consider the 1D linear wave equation

ut + ux = 0, (5.1)

with initial condition u(x, 0)=sin(2πx), and periodic boundary conditions. The CFL
number (CFL= f ′(u)4x = 4t/4x) used for each case is as follows: (1) if p=1, 2, 3,
CFL=0.01; (2) if p=4, 5, CFL=0.001. These CFL numbers are small enough so that the
error is dominated by the spatial discretization. In this test, we did not use the AP-
TVD marker so that the generalized moment limiter is applied to every cell in order
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Figure 14: Grid convergence of the present limiter. (a) Linear advection equation (5.1) for sine wave at
t=1; (b) Non-linear Burgers equation (5.2) at t=0.1.

to test the performance of the limiter alone. Otherwise, none of the cells would be
marked and the results would be the same as the unlimited schemes. The L1 error at
t=1 for various schemes with and without the limiter are shown in Fig. 14(a). We can
see that the present limiter preserves the designed order of accuracy of the original SD
method, although the magnitude of the error is larger than the unlimited schemes.

5.1.2 Nonlinear Burgers equation

Next consider the 1D non-linear Burgers equation

ut +
1
2
(u2)x = 0, (5.2)

with initial condition u(x, 0)=1 + sin(πx), periodic boundary conditions. The CFL
number used for each case is as follows: (1) if p=1, 2, 3, CFL=0.01; (2) if p=4, 5,
CFL=0.001. The solution errors at t=0.1 (when the solution is still smooth) are shown
in Fig. 14(b). Again we can see that the present limiter preserves the designed order
of accuracy of the original SD method. The results are quite similar to the linear scalar
wave case.

5.2 1D problems with discontinuities

5.2.1 Combined smooth and discontinuous waves

We solve the 1D wave equation (5.1) at t=8 with the initial condition [18] as plotted
in Fig. 15. Periodic boundary conditions were used. A uniform mesh is used with
a total of 200 cells. The CFL number used for each case is as follows: (1) if p=1, 2,
CFL=0.01; (2) if p=3, 4, 5, CFL=0.001. The long time evolution (t=8) was considered
in order to check the performance of the high-order schemes. The numerical solution
is plotted at each solution point (red square). As seen that the present PFGM limiter
yields good results at both the smooth region (as for the local extrema of the first jump)
and discontinuities.
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Figure 15: Solution of linear advec-
tion problem at t=8, N=200 cells,
p=1, 2, 3, 4, 5. Solid line: exact
solution; square: solution points.

5.2.2 Burgers equation with shock

In this example the Burgers equation (5.2) was solved with the same initial conditions
and periodic boundary conditions as in 5.2.2, but until t=0.8 when a shock appears.
The CFL number used for each case is as follows: (1) if p=1, 2, CFL=0.01; (2) if p=3,
4, 5, CFL=0.001. A mesh with 100 uniform cells was used with various schemes. The
shock was captured well without oscillations, as shown in Fig. 16.

5.2.3 Sod shock-tube problem

Sod shock-tube problem was solved to test the limiter for the Euler equations

ut + f (u)x = 0, (5.3)



M. Yang, Z.J. Wang / Adv. Appl. Math. Mech., 4 (2009), pp. 451-480 471

Figure 16: Solution of Burgers equa-
tion (5.2) at t=0.8, N=100 cells,
p=1, 2, 3, 4, 5. Solid line: exact
solution; red square: solution points.

where

u = (ρ, ρv, E)T, f (u) = (ρν, ρv2 + p, v(E + p))T,

E =
p

γ− 1
+

1
2

ρv2, γ = 1.4,

and ρ, v, E, p are the density, velocity, total energy, and pressure, respectively. The
initial condition is

(ρ, p, v) =
{

(1, 1, 0) for x < 0,
(0.125, 0.1, 0) for x ≥ 0.

In Fig. 17, the computed density at t=2 with the present PFGM limiter is compared
with the exact solution for p=1, 2, 3, 4. The time step size used for each case is as
follows: (1) if p=1, 2, dt=0.001; (2) if p=3, 4, dt=0.0005. Note that the solutions appear
oscillation-free, and both the shock and contact were well captured. The higher-order
scheme appears to yield better results.
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Figure 17: Sod problem, t=2, N=200 cells, p=1, 2, 3, 4. Solid line: exact solution; Red square: numerical
solution.

5.2.4 Shock acoustic-wave interaction

The problem of shock-acoustic wave interaction [15] was solved to show the advan-
tage of the present high-order limiter for the problems with both shock waves and
complex smooth features. We solved the Euler equations (5.3) with a moving Mach=3
shock interacting with a sine wave in density, i.e., initially,

(ρ, p, v) =
{

(3.857143, 10.333333, 2.629369) for x < −4,
(1 + 0.2 sin(5x), 1, 0) for x ≥ −4.

(5.4)

For comparison, a converged solution using a second-order MUSCL scheme on a grid
of 3200 cells is used as the ”exact” solution. In Fig. 18, the solution of density at t=1.8
is compared with the ”exact” solution for p=1, 2, 3 with the present PFGM limiter
on a medium mesh of N=400 cells and time step size dt=0.0005. It shows that the
smooth local extrema are better recovered if using the present limiter in higher-order
form (p=2, 3). A close-up view of the complex smooth region is also shown for each
case in Fig. 18.

5.3 2D test cases

Next we test the present limiter for 2D inviscid flow problems with discontinuities.
The conservative form of the 2D Euler equation can be written as

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (5.5)
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Figure 18: The shock-acoustic interaction problem, t=1.8, N=400 cells, p=1, 2, 3. Solid line: exact
solution; red square: computed solution at the solution points. Right: close-up view for the complex
smooth region in the left graphs.

where Q is the conservative solution variables, F, G are the inviscid flux given below,

Q = (ρ, ρu, ρv, E)T, F = (ρu, ρu2 + p, ρuv, u(E + p))T,
G = (ρv, ρuv, ρv2 + p, v(E + p))T.

Here ρ is the density, u, v are the velocity components in x and y directions, p is the
pressure, and E is total energy. The pressure is related to the total energy by

E =
p

γ− 1
+

1
2

ρ(u2 + v2),

with ratio of specific heat γ=1.4.
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Figure 19: Pressure contour for 2D shock-vortex interaction, t=0.2.

5.3.1 Shock vortex interaction

This problem describes the interaction between a stationary shock wave and a vor-
tex, and is a good test for the PFGM in resolving both discontinuities and impor-
tant smooth features. The flow conditions are the same as in [15]. The computa-
tional domain is taken to be [0, 2]× [0, 1]. A stationary shock with a pre-shock Mach
number of Ms=1.1 is positioned at x=0.5 and normal to the x-axis. Its left state is
(ρ, u, v, p)=(1,

√
γ, 0, 1). An isentropic vortex p/ργ=const. is superposed to the flow

left to the shock and centers at (xc, yc)=(0.25, 0.5). Therefore the flow variables on the
left side of the shock are as follows:

u = Ms · √γ + ετeα(1−τ2) sin θ, v = −ετeα(1−τ2) cos θ,

ρ =
(
1− γ− 1

4αγ
ε2e2α(1−τ2)) 1

(γ−1) , p =
(
1− γ− 1

4αγ
ε2e2α(1−τ2)) γ

(γ−1) ,

where
τ = r/rc and r =

√
(x− xc)2 + (y− yc)2.

Here ε denotes the strength of the vortex, α is the decay rate of the vortex; and rc is
the critical radius for which the vortex has the maximum strength. They are set to be
ε=0.3, α=0.204, rc=0.05.

The 3rd order SD scheme was employed in the simulation on a coarse mesh of
86× 35 cells in order to have almost the same numbers of degree of freedom as in [15]
(where the WENO method was used) for comparison purposes. The time step size
used is dt=0.0005. The grids are uniform in y-direction and clustered near the shock
in x-direction. The boundary conditions for the top and bottom boundaries are set
to symmetry, or slip wall. The pressure contours computed with the present PFGM
limiter and a linear limiter (in which the solution at the troubled cells is assumed
linear) at t=0.05, t=0.20, and t=0.35 are shown in Figs. 20 and 21, respectively. It
appears the present simulation captures the shock waves with a higher resolution than
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Figure 20: Pressure contours for the 2D shock-vortex interaction by the using 3rd-order PFGM limiter 61
contours from 0.4 1.29. (a) t=0.05; (b) t=0.2; (c) t=0.35.

Figure 21: Pressure contours for the 2D shock-vortex interaction by the using linear limiter 61 contours
from 0.4 1.29. (a) t=0.05; (b) t=0.2; (c) t=0.35.

[15], Fig. 15. The color plots clearly show the regions before and after the shock. A
black and white contour plot is given in Fig. 19 (for t=0.2). Comparing Figs. 20 and
21, we can see that the PFGM limiter recovers the vortex much better than the linear
limiter, and the shock discontinuity has been sharply captured as well by the present
limiter.

Figs. 22 and 23 shows snapshots for later moments, t=0.6 and t=0.8 using the 3rd-
order PFGM limiter and linear limiter, respectively. We can see here that the reflective
boundary takes effects as time goes long enough when one of the shock bifurcations
reaches the top boundary and is reflected. Fig. 22(b) shows that the reflection is well
captured. Again the 3rd-order PFGM limiter gives better results than the linear limiter
in terms of less numerical noise and better-resolved vortex.

5.3.2 Oblique shock reflection by a wedge

This example considers a Mach 2 flow passing a wedge of 20◦. Notice that in 5.3.1
the normal shock is aligned with the grid, while in this example we don’t have this
luxury. The state ahead of the shock is set to be (ρ, u, v, P)=(1.4, 2, 0, 1). The boundary
conditions are as follows: (1) supersonic inlet at the inlet on the left side; (2) inviscid
wall boundary condition for the wall; (3) simple extrapolation boundary condition for
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Figure 22: Pressure contours for the 2D shock-vortex interaction by the using 3rd-order PFGM limiter 90
contours from 1.19 1.37. (a) t=0.6; (b) t=0.8.

Figure 23: Pressure contours for the 2D shock-vortex interaction by the using linear limiter 90 contours
from from 1.19 1.37. (a) t=0.6; (b) t=0.8.

the upper boundary and the outlet on the right end. A coarse mesh (400 elements,
20 boundary elements) was used for this case, as shown in Fig. 24(b). The density
contours in Fig. 24(a) shows that the present 3rd-order PFGM limiter captured the
shock sharply (within one element). Only the cells at the shock are marked (in red),
and the typical marked cells when the shock is formed are shown in Fig. 24(b). As we
can see, the AP-TVD marker works well as expected.

5.3.3 Transonic flow over NACA0012 airfoil

This example is the transonic flow over a NACA0012 airfoil at Mach 0.85 and an angle
of attack α=1◦, characterized by the existence of two shocks, one on the upper surface
and one on the lower surface. To demonstrate the advantage of the present high-order
limiter, we used a relatively coarse mesh (1584 hexahedral elements, 52 elements on
the upper and lower wall surfaces) as shown in Fig. 25. An implicit LU-SGS scheme
was used for time integration in this case.

Fig. 26(a) shows the Mach contours obtained with the 3rd-order PFGM limiter,
and Fig. 26(b) gives a snapshot of the typical distribution of the marked cells. It is
shown that the present limiter is indeed able to eliminate the spurious oscillations and
capture the shock discontinuities sharply while maintaining the high-order accuracy
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Figure 24: Mach 2 flow past a wedge of 20◦ by using the 3rd-order PFGM limiter with the SD method (400
elements, 20 boundary elements). (a) Density contour; (b) Marked cells.

Figure 25: The unstructured hexahedral meshes for the NACA0012 airfoil in transonic flow (1584 elements,
52 wall boundary elements). (a) the whole domain; (b) close-up view around the airfoil.

Figure 26: The transonic flow over NACA0012 airfoil (M∞=0.85, α=1◦) by using the 3rd-order PFGM

limiter in the SD method. (a) Mach contours; (b) the marked cells (red) at the 1000th implicit time step.
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at smooth regions. It was noticed that the marked cells are located just in the vicinity
of the upper and lower shock discontinuities, and the average number of the marked
cells during the LU-SGS implicit time iterations is a very small percentage (about 2%)
of the total number of cells. Therefore it shows that the present AP-TVD marker works
well and efficiently for multidimensional cases.

6 Conclusions

Three design criteria have been set for a general purpose limiter: (1) free of user-
specified parameters, (2) capable of preserving a local degree p polynomial, (3) ap-
plicable to arbitrary unstructured meshes. The parameter-free generalized moment
(PFGM) limiter developed in the present study appears to meet all of the criteria. The
limiter is composed of two components: an efficient accuracy preserving TVD marker
for ”troubled cells” based on cell averaged state variables, and a hierarchical general-
ized moment limiter capable of handling arbitrary unstructured meshes. The PFGM
limiter has been implemented and tested for a high-order SD method, although it
can be easily applied to all other similar high-order methods. The AP-TVD marker is
based on the cell-averaged solutions and solution derivatives, and is quite efficient to
implement. It appears that smooth extrema are not marked, while the discontinuous
cells are consistently marked, without the use of any user-specified parameter. The
AP-TVD marker compares favorably against several markers in the literature, such as
the TVB marker, KXRCF marker, or the Harten marker. Accuracy studies confirmed
that the limiter is capable of preserving accuracy in smooth regions. Numerical tests
for a wide variety of problems in 1D and 2D with both discontinuities and smooth
features demonstrated the capability and usefulness of the PFGM limiter. A remain-
ing challenge is to enhance the convergence property of the limiter for steady state
problems.
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