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Abstract. In this article, a level-set approach for solving nonlinear elliptic Cauchy
problems with piecewise constant solutions is proposed, which allows the defini-
tion of a Tikhonov functional on a space of level-set functions. We provide con-
vergence analysis for the Tikhonov approach, including stability and convergence
results. Moreover, a numerical investigation of the proposed Tikhonov regular-
ization method is presented. Newton-type methods are used for the solution of the
optimality systems, which can be interpreted as stabilized versions of algorithms in
a previous work and yield a substantial improvement in performance. The whole
approach is focused on three dimensional models, better suited for real life appli-
cations.
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1 Introduction

We start by introducing the inverse problem under consideration. Let Ω⊂R3, be an
open bounded set with piecewise Lipschitz boundary ∂Ω. Further, we assume that

∂Ω = Γ1 ∪ Γ2,

where Γi are two open disjoint parts of ∂Ω. Given the function q : R → R+, we define
the second order elliptic operator

P(u) := −∇ · (q(u)∇u) . (1.1)
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We denote by nonlinear elliptic Cauchy problem the following problem



P(u) = f , in Ω,
u = g1, on Γ1,
q(u)uν = g2, on Γ1,

(CPnl)

where the pair of functions (g1, g2) ∈ H1/2(Γ1)× H1/2
00 (Γ1)′ are given Cauchy data and

f∈L2(Ω) is a known source term in the model (see [32, p. 66] or [14] for a definition of
the Sobolev spaces).

A solution of (CPnl) is a distribution in H1(Ω), which solves the weak formulation
of the nonlinear elliptic equation P(u)= f in Ω and further satisfies the Cauchy data
on Γ1 in the sense of the trace operators. Notice that, if we know the Neumann (or
Dirichlet) trace of u on Γ2, say q(u) uν|Γ2=ϕ, then u can be computed as the solution
of a nonlinear mixed boundary value problem (BVP) in a stable way, namely




P(u) = f , in Ω,
u = g1, on Γ1,
q(u)uν = ϕ, on Γ2,

(BVP)

Therefore, in order to solve (CPnl), it is enough to consider the task of determining the
Neumann trace of u on Γ2 (a distribution in H1/2

00 (Γ2)′).

Remark 1.1. For simplicity of the presentation the boundary parts Γi are assumed to
be connected. Using standard elliptic theory one can prove that the results in this
article also hold without this assumption. Moreover, the theory derived here extends
naturally to Cauchy problems defined on domains with ∂Ω=Γ1 ∪ Γ2 ∪ Γ3, where Γi
are disjoint and some extra boundary condition (Dirichlet, Neumann, Robin, . . . ) is
prescribed on Γ3.

Remark 1.2. Let P be the linear elliptic operator defined in Ω by

P u := −
3

∑
i,j=1

Di(ai,jDju),

where the real functions ai,j∈L∞(Ω) are such that the matrix A(x) := (ai,j)d
i,j=1 satisfies

ξt A(x)ξ>α||ξ||2, for all ξ∈R3 and for a.e. x∈Ω. Here α is some positive constant.
The linear elliptic Cauchy problem corresponds to the problem (CPnl) obtained when the
operator P is substituted by P and the Neumann boundary condition is substituted
by uνA |Γ1=g2. The linear version of (CPnl) has been intensively investigated over the
last years [5–8, 11, 13, 17, 19, 23, 25, 28, 30, 31].

Linear elliptic Cauchy problems were used by Hadamard in the 1920’s as an ex-
ample of (exponentially) ill-posed problem [22]. For linear elliptic operators with an-
alytical coefficients, uniqueness of solutions is known for over half a century [10, 12].
Moreover, as a straightforward argumentation with the Schwarz reflection principle
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shows, existence of solutions for arbitrary Cauchy data cannot be guaranteed [21, 30].
More recently, analytical features of linear elliptic Cauchy problems were investigated
in [5, 6, 11, 19, 30] (see also [24, 26] and the references therein) and several numerical
approaches were considered in [5, 7, 8, 13, 17, 19, 23, 25, 27, 28, 30, 31, 36].

What concerns nonlinear elliptic Cauchy problems, analytical and numerical ap-
proaches can be found in [29]. Uniqueness of H1(Ω) solutions for (CPnl) was proved in
[29, Theorem 2]. The result in [5, Lemma 2.1], which guarantees existence of solutions
of linear Cauchy problems for a dense subset of Cauchy data in H1/2(Γ1)× H1/2

00 (Γ1)′,
can be extended for (CPnl) (see Appendix).

Elliptic Cauchy problems arise in many industrial, engineering and biomedical
applications including (A) Expansion of measured surface fields inside a body from
partial boundary measurements [5]; (B) A classical thermostatics problem, which con-
sists in recovering the temperature in a given domain when its distribution and the
heat flux are known over the accessible region of the boundary [17]; (C) The anal-
ogous electrostatics case encountered in electric impedance tomography [5]; (D) An
inverse problem related to corrosion detection [4, 31].

The level-set approach proposed in this article for solving nonlinear elliptic Cauchy
problems with piecewise constant solutions is motivated by application (D) above. In-
deed, the inverse problem in corrosion detection consists in determining information
about corrosion occurring on the inaccessible boundary part (Γ2) of a specimen. The
data for this inverse problem correspond to prescribed current flux (g2) and voltage
measurements (g1) on the accessible boundary part (Γ1) and the model is the Laplace
equation with no source term (P=∆, f =0). For simplicity one assumes the specimen
to be a thin plate (Ω⊂IR2) and ∂Ω=Γ1 ∪ Γ2. Moreover, the unknown corrosion dam-
age γ is assumed to be the characteristic function of some D⊂Γ2, corresponding to the
boundary condition uν + γu=0 on Γ2.

We pursue two main goals in this article:

• The first one is to use a level-set approach [9,33,34] in order to derive a functional
analytical formulation for (CPnl). Then, based on [20, 31] we define a Tikhonov func-
tional on a space of level-set functions, and prove stability and convergence results for
our Tikhonov approach, characterizing it as a regularization method [16].

• The second main goal is to numerically investigate the application of an effi-
cient method (Gauss-Newton) for solving the equations arising from the optimality
conditions for our Tikhonov functional. The numerical approach is focused on three
dimensional models, better suited for real a life applications, where Γ2⊂∂Ω is a 2D-
manifold.

The manuscript is organized as follows: In Section 2, we write (CPnl) in the func-
tional analytical framework of an (ill-posed) operator equation in appropriate Hilbert
spaces. In Section 3, we propose and analyze a Tikhonov regularization method for
(CPnl), which is based on a level-set approach [20, 31]. Convergence and stability re-
sults are proven. Section 4 is devoted to numerical tests. A Newton-type method
for the iterative solution of the optimality systems is proposed. Furthermore, some
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3D numerical experiments are provided, in order to illustrate the effectiveness of our
approach. Section 5 contains final remarks and conclusions.

2 Functional analytical formulation

In this section we write the elliptic Cauchy problem (CPnl) in the form of an operator
equation in Hilbert spaces. In what follows we assume the coefficient function q in
(1.1) to satisfy the following assumptions:

A1) q ∈ C∞(IR);
A2) q(t) ∈ [qmin, qmax] for all t ∈ IR, where 0 < qmin < qmax < ∞.

2.1 A linearization step

In the sequel the nonlinear problem (CPnl) is transformed into a linear elliptic Cauchy
problem, which is then reduced to a linear operator equation. The first step is to define
the primitive of function q

Q(t) :=
∫ t

0
q(s) ds,

(Q is strictly monotone increasing and therefore invertible). Notice that, given u∈L2(Ω)
the function U := Q(u) is also in L2(Ω) and satisfies

−∆U = −∇ · (∇Q(u)) = −∇ · (q(u)∇u) = P(u) .

Moreover, Uν = q(u)uν holds on ∂Ω. Thus, if u is the solution of (CPnl) then U solves
the linear Cauchy problem




−∆U = f , in Ω,
U = Q(g1), on Γ1,
Uν = g2, on Γ1.

(CPl)

Reciprocally, if problem (CPl) admits a solution, say U, for the Cauchy data (Q(g1), g2),
it follows from Q′ = q > 0 (cf. assumption A2)), that

u := Q−1(U) ∈ H1(Ω),

solves problem (CPnl). Summarizing, in order to obtain a solution for (CPnl) it is nec-
essary and sufficient to solve the linearized problem (CPl).

Next we consider the auxiliary problems

−∆wa = 0, in Ω, wa = 0, on Γ1, (wa)ν = ϕ, on Γ2, (2.1)
−∆wb = f , in Ω, wb = Q(g1), on Γ1, (wb)ν = 0, on Γ2, (2.2)

in order to define the function z := (wb)ν|Γ1 , and the operator

L : ϕ 7→ (wa)ν|Γ1 . (2.3)
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It is straightforward to check that ϕ = q(u) uν|Γ2 (= Uν|Γ2) is the solution of (CPnl) iff
it is a solution of the operator equation

L ϕ = g2 − z . (2.4)

Notice that z = z(g1, f , q) can be computed a priori.
A more precise definition of L as well as some regularity properties are investi-

gated in Subsection 2.2.

2.2 Abstract functional analytical framework

We consider (CPnl) in the form of the operator equation (2.4). Further we assume the
Cauchy data to satisfy

(g1, g2) ∈ H1/2(Γ1)× H1/2
00 (Γ1)′, (2.5)

and the source term f to be a distribution in L2(Ω). Here, H1/2
00 (Γ1)′ denotes the dual

space of H1/2
00 (Γ1), which consists of functions in H1/2(∂Ω), vanishing on Γ2. For de-

tails on these spaces we refer to [2, 14]. Due to the choice of g1, f and q, it follows
from the elliptic theory [14, Ch. VII.2] that the mixed BVP (2.2) has a unique solution
vb ∈ H1(Ω). Moreover, z := (vb)ν|Γ1 ∈ H1/2

00 (Γ1)′ (cf. [30, Theorem A.4]) and the term
g2 − z on the right hand side of (2.4) is in H1/2

00 (Γ1)′.
The next result ensures that the linear operator L in (2.3) is well defined for an

appropriate choice of spaces.

Proposition 2.1. Let Ω⊂R3 and Γi (i = 1, 2), be defined as in Section 1. The operator defined
in (2.3) is a linear injective bounded map

L : L3/2(Γ2) → H1/2
00 (Γ1)′.

Sketch of the proof. The linearity of L is obvious. Since the boundary part Γ2 is
a 2D-manifold, it follows from the Sobolev embedding theorem [2] that the embed-
ding Hs(Γ2)⊂Lp(Γ2) is compact for p<2(1− s)−1. In particular we have H1/2(Γ2) ↪→
Lp(Γ2) for p<4, from what follows

H1/2
00 ⊂ H1/2 ⊂ L3 and L3/2 = [L3]′ ⊂ H−1/2 ⊂ [H1/2

00 ]′,

(recall that Hs=Hs
0 for s≤1/2). Then, given ϕ∈L3/2(Γ2), it follows from elliptic theory

[14, Ch. VII.2] that the mixed BVP in (2.1) has a unique solution wa∈H1(Ω) satisfying
the a priori estimate

‖va‖H1(Ω) ≤ C1‖ϕ‖H1/2
00 (Γ2)′

,

where C1=C1(Ω, Γ2)>0. Moreover, from the continuity of the Neumann trace opera-
tor

γN,1 : H1(Ω) 3 v 7→ vν|Γ1 ∈ H1/2
00 (Γ1)′,
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it follows that
‖Lϕ‖H1/2

00 (Γ1)′
≤ C2‖va‖H1(Ω) ≤ C3‖ϕ‖L3/2(Γ2) ,

proving the boundedness of L. It remains to prove the injectivity. Notice that, if Lϕ=0
then wa in (2.1) satisfies: ∆wa=0 in Ω, wa=(wa)ν=0 on Γ1. Thus, ϕ=0 follows from the
uniqueness of weak solution for (CPl).

Summarizing, if the Cauchy data is given as in (2.5) and assumptions A1), A2)
hold, then problem (CPnl) can be stated in the form of equation (2.4), where L is the
linear continuous and injective operator

L : L3/2(Γ2) → H1/2
00 (Γ1)′, (2.6)

defined in (2.3).

Remark 2.1. The choice of the space L3/2(Γ2) in Proposition 2.1 is non standard. More
natural would be the choice H1/2

00 (Γ2)′. This point will become clear when we intro-
duce the level-set method in Section 3 (Lemma 3.1).

2.3 A remark on noisy Cauchy data

If only corrupted noisy data (gδ
1, gδ

2) are available for problem (CPnl), we assume the
existence of a consistent Cauchy data (g1, g2) satisfying (2.5) such that

‖g1 − gδ
1‖L2(Γ1) + ‖g2 − gδ

2‖L2(Γ1) ≤ δ . (2.7)

Since z in (2.4) depends continuously on g1 in the H1/2(Γ1) topology, a natural ques-
tion arises:
(Q) Is it possible to obtain from measured data (gδ

1, gδ
2) satisfying (2.7), a corresponding

zδ∈H1/2
00 (Γ1)′ such that ‖z− zδ‖H1/2

00 (Γ1)′
→ 0 as δ → 0?

The next Lemma gives a positive answer to this question.

Lemma 2.1. Let the noisy Cauchy data be given as in (2.7), where g1∈Hs(Γ1) for some
s>1/2. Then (CPnl) reduces to the operator equation

L ϕ = gδ
2 − zδ ,

where the right hand side satisfies

‖(g2 − z)− (gδ
2 − zδ)‖H1/2

00 (Γ1)′
≤ h(δ) . (2.8)

Here h : R+ → R+ is a function satisfying limδ→0 h(δ) = 0.

Sketch of the proof. Notice that ‖g2 − gδ
2‖H1/2

00 (Γ1)′
≤‖g2 − gδ

2‖L2(Γ1). The key argument

to construct zδ and the function h is the existence of a continuous smoothing operator
S : L2(Γ1) → H1/2(Γ1) and of a function µ : R+ → R+ with limδ→0 µ(δ)=0, such that
‖g1 − S(gδ

1)‖≤h(δ). For details see [17, Section 4.2].

Lemma 2.1 will be used in Section 3 for the proof of classical results from regular-
ization theory.
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3 Level-set approximations

In this section, we investigate a level-set approach for (CPnl). In what follows we shall
consider the functional analytical framework for (CPnl) discussed in Subsection 2.2.

3.1 Level-set approach and constrained optimization

The standard level-set approach uses the assumption that the solution ϕ of (2.4) is
piecewise constant, taking only one of two possible values. For simplicity, we assume
that ϕ is the characteristic function χD of a sub-domain D⊂⊂Γ2. Next we introduce a
function φ : Γ2 → IR, in such a way that ϕ can be represented by a level-set of φ

ϕ(x) = χD(x) = 1 ⇐⇒ x ∈ D = {x ∈ Γ2; φ(x) ≥ 0} .

Under this assumption, the Cauchy problem (2.4) can be stated in the form of the
least-square problem

min
φ∈H1(Γ2)

‖L(H(φ))− (gδ
2 − zδ)‖2

Y , (3.1)

where Y := H1/2
00 (Γ1)′ and H the Heaviside projector.

The level-set method discussed here corresponds to a continuous evolution of the
level-set function φ for an artificial time t. This evolution is motivated by the minimiza-
tion of the Tikhonov functional

Fα(φ) := ‖L(H(φ))− (gδ
2 − zδ)‖2

Y + α
[

β|H(φ)|BV + ‖φ− φ0‖2
H1

]
, (3.2)

based on TV-H1-penalization for the least-square functional in (3.1). Here α>0 plays
the role of a regularization parameter and β>0 is a scaling factor.

Since H is discontinuous (considered as an operator from H1 to L3/2), one cannot
prove that the Tikhonov functional in (3.2) attains a minimizer. In order to guarantee
existence of minimizers for Fα, it is necessary to use a generalized minimizer concept.
With this in mind we define

Definition 3.1. Let the boundary part Γ2 ⊂ ∂Ω be defined as in Section 1.
i) A pair of functions

(ψ, φ) ∈ L∞(Γ2)× H1(Γ2),

is called admissible if there exists a sequence {φk}k∈IN in H1(Γ2) such that φk → φ with re-
spect to the L2(Γ2)-norm, and there exists a sequence {εk}k∈IN of positive numbers converging
to zero such that Hεk(φk) → ψ in L3/2(Γ2).†

†Given ε>0, the functions Hε are defined by

Hε(t) :=





0, for t < −ε ,
1 + t

ε , for −ε ≤ t ≤ 0 .
1, for t ≥ 0 .
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ii) The set of admissible pairs is defined by

Ad :=
{
(ψ, φ) ∈ L∞(Γ2)× H1(Γ2); ∃ {φk} ∈ H1 and {εk} ∈ R+, s.t. :

lim
k→∞

εk = 0, lim
k→∞

‖φk − φ‖L2 = 0, lim
k→∞

‖Hεk(φk)− ψ‖L3/2 = 0
}

,

iii) The functional Fα(ψ, φ) is defined on Ad by

Fα(ψ, φ) := ‖Lψ− (gδ
2 − zδ)‖2

Y + αρ(ψ, φ) , (3.3)

where
ρ(ψ, φ) := inf

{φk},{εk}
lim inf

k→∞

{
2β|Hεk(φk)|BV + ‖φk − φ0‖2

H1

}
,

the infimum being taken with respect to all sequences {φk}k∈IN and {εk}k∈IN characterizing
(ψ, φ) as an element of Ad.

iv) A generalized minimizer of Fα(φ) is a minimizer of Fα(ψ, φ) on Ad.

Remark 3.1. A consequence of the definition above is the fact that Fα is no longer
considered as a functional on H1, but as a functional defined on the closure of the
graph of H, contained in BV × H1, w.r.t. the topology of L1 × L2.

Another consequence is that the penalization term in (3.2) can now be interpreted
as a functional ρ : Ad → R+.

3.2 Convergence analysis

In order to prove coerciveness and weak lower semi-continuity of ρ, the assumption
that L is a continuous operator on a L3/2-space is crucial (see Proposition 2.1). These
properties of ρ are the main arguments needed to prove existence of a generalized
minimizer (ψα, φα) of Fα in Ad, as we shall see next:

Lemma 3.1. Let the boundary part Γ2⊂∂Ω be defined as in Section 1. The following assertions
hold true:
i) The semi-norm | · |BV is weakly lower semi-continuous with respect to L3/2-convergence;

ii) BV(Γ2) is compactly embedded in L3/2(Γ2).

Proof. For (i) see [3, Section 2.3.2]. For (ii) see [18, Section 5.2.1].

Theorem 3.2. Let the functionals ρ, Fα and the set Ad be defined as above. The following
assertions hold true:
i) The functional ρ(ψ, φ) is coercive on Ad;
ii) The functional ρ(ψ, φ) is weakly lower semi-continuous on Ad;

iii) The functional Fα(ψ, φ) attains a minimizer on Ad.
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Proof. (i) Let (ψ, φ)∈Ad. Then, there exist sequences {φk}k∈IN and {εk}k∈IN as in
Definition 3.1 (i). Thus, ‖φ − φ0‖2

H1 ≤ lim infk ‖φk − φ0‖2
H1 . Moreover, Lemma 3.1

implies |ψ|BV ≤ lim infk |Hεk(φk)|BV . Therefore,

2β|ψ|BV(Γ2) + ‖φ− φ0‖2
H1(Γ2)

≤ ρ(ψ, φ) .

(ii) Follows from Lemma 3.1 and the weak lower semi-continuity of the H1-norm.
(iii) Since (0,−1)∈Ad, then Ad 6=∅ and infFα<∞. Let (ψk, φk)∈Ad be a minimizing
sequence forFα, i.e., Fα(ψk, φk) → infFα as k → ∞. This fact implies the boundedness
of ρ(ψk, φk). Item (i) above implies the boundedness of both sequences ‖φk − φ0‖2

H1

and |ψk|BV . From the compactness of the embedding H1 ↪→ L2 and Lemma 3.1 (ii) we
can extract subsequences (again denoted by {ψk} and {φk}) such that

ψk ⇀ ψ in BV, ψk → ψ in L3/2, φk ⇀ φ in H1, φk → φ in L2,

for some (ψ, φ) ∈ BV(Γ2)× H1(Γ2). Now, arguing with (2.6) and item (ii) above, one
obtains

infFα = lim
k→∞

Fα(ψk, φk) = lim
k→∞

{‖Lψk − (gδ
2 − zδ)‖2

Y + αρ(ψk, φk)}
≥ lim inf

k→∞
{‖Lψk − (gδ

2 − zδ)‖2
Y}+ lim inf

k→∞
{αρ(ψk, φk)}

≥ ‖Lψ− (gδ
2 − zδ)‖2

Y + αρ(ψ, φ) = Fα(ψ, φ) .

It remains to prove that (ψ, φ) ∈ Ad. This is done analogously as in the final part of
the proof of [20, Theorem 2.9].

Remark 3.2. If the Cauchy data (g1, g2) is consistent, i.e., δ=0 in (2.7), the existence of
a minimum norm solution (ψ†, φ†) can be proved, i.e., an element (ψ†, φ†)∈Ad, such
that L(ψ†) = g2 − z, and

ρ(ψ†, φ†) = inf{ρ(ψ, φ); (ψ, φ) ∈ Ad and L(ψ) = g2 − z} .

The proof of this result follows the lines of the proof of [20, Theorem 2.10].

The classical analysis of Tikhonov type regularization methods [16] can be applied
to the functional Fα, as we shall see next.

Theorem 3.3 (Convergence). Let the Cauchy data (g1, g2) be consistent. Moreover, Let
α : R+ → R+ be a function satisfying limδ→0 α(δ) = 0 and limδ→0 δ2 α−1(δ) = 0. Given a
sequence δk → 0 and {(gδk

1 , gδk
2 )}k corresponding noisy data satisfying (2.7), the generalized

minimizers (ψk, φk) of Fα(δk) converge in L3/2 × L2 to a generalized minimizer (ψα, φα)∈Ad
of Fα.

Proof. The proof uses classical techniques from the analysis of Tikhonov regular-
ization methods [16] and thus omitted.
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3.3 Stabilized approximation

We conclude this section with a result that guarantees the efficiency of a numerical
approximation scheme for solving (2.4). Indeed, we prove that the generalized mini-
mizers of the functional Fα defined in (3.3) can be approximated by minimizers of the
stabilized functional

Fα,ε(φ) := ‖L(Hε(φ))− (g2 − z)‖2
Y + α

[
β|Hε(φ)|BV + ‖φ− φ0‖2

H1

]
, (3.4)

in the following sense:

Theorem 3.4. If φα,ε are minimizers of Fα,ε then, given a sequence εk→0+, there exists a
subsequence (H(φα,ε), φα,ε) converging in L3/2(Γ2)× L2(Γ2) and the limit minimizes Fα, in
Ad.

Sketch of the proof. The minimizers φα,k of Fα,εk are uniformly bounded in H1.
Moreover, Hεk(φα,k) is uniformly bounded in BV. Then (up to subsequences) these
sequences converge strongly in L3/2 × L2 to a limit (ψ̃, φ̃)∈BV × H1 (notice that from
this convergence follows (ψ̃, φ̃)∈Ad). In order to prove that (ψ̃, φ̃) minimizes Fα,, one
argues with (2.6) and Theorem 3.2.

The existence of minimizers of Fα,ε in H1(Γ2) still has to be cleared:

Lemma 3.2. For any φ0 ∈ H1(Γ2) the functional Fα,ε in (3.4) attains a minimizer.

Proof. Notice that a minimizing sequence {φk} for Fα,ε is bounded in H1(Γ2).
Therefore, up to a subsequence, we have

φk ⇀ φ, in H1, and φk → φ, in L2,

for some φα,ε∈H1(Γ2). On the other hand,

‖Hε(φk)− Hε(φα,ε)‖L3/2(Γ2) ≤ ε−1 meas(Γ2)1/6 ‖φk − φα,ε‖L2(Γ2) → 0 ,

and from Lemma 3.1 (i) follows

|Hε(φα,ε)|BV ≤ lim inf
k

|Hε(φk)|BV .

The lemma follows now from (2.6) and the weak lower semi-continuity of the H1-
norm.

This relation between the minimizers of Fα and Fα,ε is the starting point for the
derivation of a numerical method. This is our main goal in the next section (see Sub-
section 4.2).

4 Numerical realization and experiments

In this section we illustrate the usability of our approach by numerical experiments.
After introducing our model problem, we shortly discuss its discretization and then
report on details concerning the implementation of the level-set method in Section 3.
We conclude with presenting results of some numerical tests.
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4.1 The model problem, its discretization and linearization

Let us consider the following nonlinear Cauchy problem: For a>0, let

Ω := (0, 1)× (0, 1)× (0, a),

and the boundary ∂Ω be composed of three parts ∂Ω = Γ0 ∪ ΓL ∪ Γa, with

Γ0 := (0, 1)2 × {0}, Γa := (0, 1)2 × {a}, and ΓL := ∂Ω \ Γ0 ∪ Γa .

We consider the solution of the Cauchy problem Lϕ = gδ with forward operator L
defined by L(ϕ) := q(u)uν|Γ0 and u being the solution of the nonlinear BVP

−∇ · (q(u)∇u) = 0 in Ω, u = 0 on Γ0 ∪ ΓL, q(u)uν = ϕ on Γa, (4.1)

with nonlinear coefficient q(u) = 1 + u2.
The choice u=0 on the lateral boundary ΓL above is done to simplify the cal-

culations (see Remark 1.1). For solution of the nonlinear mixed BVP (4.1) we con-
sider a finite difference discretization. In order to cope with the nonlinearity, we pro-
pose a simple fix-point iteration: let P(u) denote the stiffness Matrix of the operator
−∇ · (q(u)∇) and b denote the right hand side of the discretization resembling the
non-homogeneous Neumann data. For computing a sequence of iterates we use the
schema

P(un)un+1 = b , (4.2)

which is stopped as soon as the norm of the residual

rk = b− P(un)un,

has reached a required tolerance of 10−8. In each step of the iteration, the linearized
systems (4.2) are solved by a preconditioned conjugate gradient method. Throughout
our numerical tests, the fix-point iteration converged within less then 10 iteration to
the required tolerance.

Following the linearization procedure outlined in Subsection 2.1 we first transform
the nonlinear Cauchy problem (4.1) into a linear one by setting

U(x, y, z) = Q(u(x, y, z)),

with
Q(u) =

∫ u

0
q(v)dv = u +

1
3

u3,

being the primitive of q. The linearized Cauchy problem then reads

Lϕ = gδ, (4.3)

(notice that z in (2.4) vanishes due to the particular choice of g1= f =0 and q(u)=1 + u2)
where the operator L is now defined by

Lϕ = Uν,

and U solves the system

−∆U = 0 in Ω, U = 0 on Γ0 ∪ ΓL, Uν = ϕ on Γa.
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4.2 Implementation of the level-set approach

Let us shortly discuss how minimizers of the functional Fα can be found numerically.
As shown in Subsection 3.3, generalized minimizers of (3.3) can be approximated by
minimizers of the stabilized functional Fα,ε defined in (3.4). In our numerical experi-
ments, we choose

Hε(x) = 2−1[erf(
x
ε
) + 1

]
,

where
erf(x) := 2/

√
π

∫ x

0
exp(−t2)dt,

denotes the error function.‡ Let φα,εn be a minimizer of Fα,εn for a sequence εn→0+.
Then one can find a subsequence (Hε(φα,εn), φα,εn) converging in L3/2(Γ2)× L2(Γ2) and
the limit minimizes Fα in Ad. In the sequel we only discuss how to find minimizers
of the stabilized functional.

For the derivation of a method, let us start from the necessary first order conditions
for a minimum of (3.4)

0 =− H′
ε(φ)L(Hε(φ))∗

[
L
(

Hε(φ)
)− gδ

]

+ α
[

βH′
ε(φ)∇ · ∇Hε(φ)

|∇Hε(φ)| + (I − ∆)(φ− φ0)
]

= : Rα,ε(φ) . (4.4)

Here L∗ denotes the adjoint of the operator L with respect to the H1/2 − H−1/2 duality
pairing.

For finding a solution of (4.4) a simple fixed point iteration was proposed in [20].
Here, we use a different approach based on the ideas of the Gauß-Newton method.
For β=0, we define the update δφk = φk+1 − φk by

[H′
ε(φk)L(Hε(φk))∗L(Hε(φk))H′

ε(φk) + α(I − ∆)]δφk = −Rα,ε(φk). (4.5)

In case β 6=0, one can add an additional term accounting for the BV regularization to
the Gauß-Newton matrix. In our numerical experiments however, we could always
set β=0. After space discretization, the linear systems (4.5) can be solved, e.g., by the
conjugate gradient method.

The iteration (4.5) can be stopped as soon as the norm of Rα,ε is sufficiently small.
The parameter α can then be chosen by a discrepancy principle, i.e., one solves the
minimization problem (3.4) for a sequence of decreasing values αn. Arguing that the
minima for different values of α will be close together and that the residual Rαn+1,ε
will be reduced sufficiently by only one step of the iteration when started at the mini-
mizer for αn, one can alternatively replace the two nested iterations of determining the

‡This definition of the operator Hε is slightly different from the one given in Subsection 3.1. It is worth
noticing that the theoretical results derived in Section 3 also hold with this definition.
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optimal α and finding the minimizer by a single iteration. The resulting scheme corre-
sponds to the iteratively regularized Gauß-Newton method [16]. For our test problem,
we obtain the following algorithm:

Algorithm

Step 1: choose φ0∈H1(Γ2) and set k=0;
Step 2: loop

• evaluate the residual rk :=L(Hε(φk)) − gδ; the action of L on Hε(φk) is given by
L(Hε(φk))=(Uk)ν|Γ0 , where Uk solves

∆Uk = 0 in Ω (Uk)|Γ0 = 0, (Uk)ν|Γa = Hε(φk), Uk|ΓL = 0;

• if ‖rk‖<τδ stop;

• evaluate Wk :=L(Hε(φk))∗rk; where L(Hε(φk))∗rk=−Vk|Γa , where Vk solves the problem

∆Vk = 0 in Ω Vk|Γ0 = rk, (Vk)ν|Γa = 0, Vk|ΓL = 0;

• set Zk :=H′
ε(φk)Wk + αk(I − ∆)φk;

• compute the update δφk by solving the linearized system

[A∗k Ak + αk(I − ∆)]δφk = −Zk, Ak := H′
ε(φk)L(Hε(φk)),

with the method of conjugate gradients, where the action of the operators L and L∗ is defined
as above;

• update the level-set function φk+1=φk + δφk and set k=k + 1.

Note that calculating Zk=Rα,ε(φk) as well as each step of the conjugate gradient method
requires the solution of two mixed BVPs.

4.3 First numerical experiment: ”almost” exact data

As data for the linearized Cauchy problem we consider the ones simulated by the
finite difference method for the nonlinear problem. This justifies the title of this sub-
section.

In order to estimate the discretization error, we solve the linearized forward prob-
lem with the finite difference and the Fourier transform based method and take δ :=
‖gDFT − gFD‖ as a measure for the noise level. Here, gDFT and gFD denote the data
generated by the two different methods. We also compared the data simulated by the
finite difference method with the ones generated by the DFT method with N replaced
by 2N, which gave similar values for the noise level δ. The data are then additionally
perturbed by random noise of size δ.

In this numerical test, we set a=1/π in the model problem of Subsection 4.1 and
aim to reconstruct a binary valued coefficient (the unknown Neumann data) possess-
ing several – large/small, convex/concave, round/edgy – features, cf. Fig. 1 (a). The
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corresponding Cauchy data is (0, g), where g is the measured heat flux (Neumann
data on Γ0) depicted in Fig. 1 (b).

The data g are generated by a finite difference solution of the nonlinear Cauchy
problem (4.1) on a 100× 100× 100 grid. For solution of the inverse problem, we apply
the Gauß-Newton level-set method introduced in Subsection 4.2.

(a) (b)
Figure 1: Setup of the first numerical experiment: (a) True solution (Neumann data on Γa); (b) Measured
heat flux (Neumann data on Γ0).

Throughout our numerical experiments we use ε=0.1. As initial level-set function
we choose the parabola

φ0(x, y) = 0.12 − (x− 0.5)2 + (y− 0.5)2.

The initial zero level-set hence is a circle with center (0.5, 0.5) and radius 0.1 (see top-
left picture in Fig. 2). The evolution of the 0.5-level-sets of the iterates Hε(φk) is shown
in Fig. 2. The corresponding evolution of the level-set functions φk is depicted in Fig.
3.

We conclude this first experiment presenting a comparison between our method
and the iterated Tikhonov method. Its worth noticing that the iterated Tikhonov
method corresponds to the choice Hε(x) = x, i.e. no projection. The approximation
obtained after 100 iterative steps and its corresponding 0.5-level-set is shown in Fig.
4. Comparing the results in the bottom-right picture in Fig. 2 with the results in Fig. 4
one notices that method is clearly more advantageous.

4.4 Second numerical experiment: noisy data

In this second experiment we consider the same basic setup as in Subsection 4.3. This
time however, we artificially introduce noise to the Cauchy data g shown in Fig. 1 (b)
and aim to solve (4.3) with Cauchy data (0, gδ).

In a first test, 1% random noise is added to the ’exact’ data g and the iterative
scheme described in Subsection 4.2 is applied. In a second test, the data is perturbed
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Figure 2: First numerical experiment: 0.5-level-sets of the iterates Hε(φk) for k=0,1,2,4,6,8,10,13 (top-left
to bottom-right).

with 5% random noise. The stop criteria is reached after a small number of iterations.
The obtained results are depicted in Fig. 5. As expected, the reconstruction becomes
more and more unstable as the noise level increases. Fine structures can no longer
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Figure 3: First numerical experiment: Level-set function φk for k=0,4,8,13.

be identified as the noise level increases. However, some large structures and basic
features of the solution can still be recovered even in the presence of high levels of
noise, what is unusual for exponentially ill-posed problems of this kind.

It is worth noticing that the preconditioning strategy tremendously improves the
performance of the level-set method introduced in [20]. In [20,31], this level-set method
was implemented for exponentially ill-posed problems and several hundreds of it-
erations were needed to reach the stop criteria, while here only a few iterations are
required. For further discussion on this issue we refer to [15].

Figure 4: First numerical experiment: Results obtained with the iterated Tikhonov-Morosov method after
100 iterations.
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Figure 5: Second numerical experiment: Top pictures show reconstruction results for 1% random white
noise and bottom pictures for 5% noise.

5 Conclusions

In this article a Tikhonov regularization method based on a level-set approach for
solving nonlinear elliptic Cauchy problems in 3D is considered. A framework for the
level-set approach is established and convergence analysis for the Tikhonov method
is developed (convergence and stability results).

Further we discuss the numerical realization of a related level-set method. Dif-
ferent numerical experiments illustrate relevant features of the method, like: rates of
convergence, adaptability to identify non-connected inclusions, robustness with re-
spect to noise.

The numerical method analyzed in this article can be extended in a straightforward
way to arbitrary elliptic Cauchy problems possessing a solution with similar structure,
i.e. whenever the assumption that q(u)uν|Γ2 is a piecewise constant function assuming
one of only two possible values (not necessarily zero and one) is valid. The proposed
method relates to evolution flows of Hamilton-Jacobi type.

The method derived in this article can be extended to the case where the unknown
parameter is a piecewise constant function assuming a finite number of constant val-
ues. This is possible in different ways, e.g., by utilizing multiple levelset functions [35]
or by using a more general function Hε.

If more general than piecewise constant solutions are sought for, one can omit the
H1 regularization of the levelset function and search for x=Hε(φ) directly; in this case
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the method collapses with Tikhonov’s method with BV regularization [1]. The use of
the reparametrization however allows us to incorporate the additional a-priori knowl-
edge here, that the solution is piecewise constant. In case the solution of the inverse
problem is unique, which was the case in our numerical example, both methods con-
verge to the same solution.

Most of the analysis presented in Section 3 was formulated in [20] for operators
L continuous in the L1-topology. The results in [20] cannot be directly applied to
(CPl), since L1 is not embedded in [H1/2

00 ]′ (see Subsection 2.2). We used Lemma 3.1
to improve the convergence results in [20] to operators that are continuous in the L3/2-
topology. This allowed the application and analysis of this level-set type method for
(CPnl). It is worth noticing that Lemma 3.1 still holds for Lp with 1≤p<2. Therefore,
the analytical results in Section 3 can be extended to any linear inverse problem mod-
eled by operators continuous in the Lp-topology.
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Appendix: An existence result for (CPnl)

Proposition 5.1. Let Ω⊂R3 and Γi be defined as in Section 1. Moreover, let the operator P
be defined as in (1.1), where q : IR → [qmin, qmax]⊂(0, ∞) is a C∞–function. There exists a
dense subset M⊂H1/2(Γ1)× H1/2

00 (Γ1)′ such that the nonlinear problem



P(u) = 0, in Ω,
u = g1, on Γ1,
q(u)uν = g2, on Γ1,

(CPnl)

is consistent for (g1, g2)∈M. Moreover, the complement of M is also a dense subset of H1/2(Γ1)×
H1/2

00 (Γ1)′.

Proof. From Subsection 2.1 we know that problem (CPnl) admits a solution u for
the Cauchy data (g1, g2) iff the BVP




−∆U = 0, in Ω,
U = Q(g1), on Γ1,
Uν = g2, on Γ1,

(CPl)

admits a solution U for the Cauchy data (Q(g1), g2) and, in this case, U=Q(u). Since
Q is continuous and invertible, it is enough to prove that (CPl) is solvable for a dense
subset of H1/2(Γ1) × H1/2

00 (Γ1)′. Moreover, due to the superposition principle, it is
enough to prove that:
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i) For a fixed g1∈H1/2(Γ1), the set of data g2 for which (CPl) admits a solution is
dense in [H1/2

00 (Γ1)]′;
ii) For a fixed g2∈[H1/2

00 (Γ1)]′, the set of data g1 for which (CPl) admits a solution is
dense in H1/2(Γ1).

We prove only first case, the proof of the second one being analogous. Let us assume
(without loss of generality) that g1=0. We define

M := {g2 ∈ [H1/2
00 (Γ1)]′; (0, g2) is consistent for (CPl)} . (5.1)

If M were not dense in [H1/2
00 (Γ1)]′, the Hahn-Banach’s theorem would guarantee the

existence a nonzero continuous linear functional Λ∈H1/2
00 (Γ1) such that 〈Λ, g2〉=0 for

all g2∈M.§ Therefore, the mixed BVP



−∆v = 0, in Ω,
v = Λ, on Γ1,
vν = 0, on Γ2,

has a unique solution v∈H1(Ω). Likewise, given an arbitrary test function ϑ∈C∞
0 (Γ2),

the mixed BVP 


−∆w = 0, in Ω,
w = 0, on Γ1,
wν = ϑ, on Γ2,

has a unique solution w∈H1(Ω). Since wν|Γ1∈M, it follows from integration by parts

0 =
∫

Ω
∆w v−

∫

Ω
w ∆v =

∫

Γ1∪Γ2

wν v =
∫

Γ1

Λ wν +
∫

Γ2

ϑ v =
∫

Γ2

ϑ v .

Since ϑ∈C∞
0 (Γ2) is arbitrary, v|Γ2=0 follows. Therefore, v|Γ2=vν|Γ2=0 and −∆v=0 in

Ω. From the uniqueness of solutions of (linear) Cauchy problems we conclude that
v=0 in Ω, contradicting the choice of Λ.

It remains to prove that the complement of M is also a dense subset of H1/2(Γ1)×
H1/2

00 (Γ1)′. It is enough to consider two cases:

i) For a fixed g1∈H1/2(Γ1), the set of data g2 for which (CPl) does not admit a
solution is dense in [H1/2

00 (Γ1)]′;
ii) For a fixed g2∈[H1/2

00 (Γ1)]′, the set of data g1 for which (CPl) does not admit a
solution is dense in H1/2(Γ1).

As before, we prove only the first case. Let us assume (without loss of generality) that
g1=0, and let M be the set defined in (5.1). Notice that M is the range of the linear
continuous trace operator

γn : H = {w ∈ H1
0(Ω ∪ Γ2) , ∆w = 0} → [H1/2

00 (Γ1)]′,

§Here 〈·, ·〉 denotes the canonical duality paring between H1/2
00 (Γ1) and [H1/2

00 (Γ1)]′.
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defined by γn(w) := wν|Γ1 . Notice that H is a Hilbert space when considered with the
H1 inner product.

Assume by contradiction that MC is not dense in [H1/2
00 (Γ1)]′. Thus, there must

exist a ρ>0 such that Bρ(0)⊂M. Since M is a linear space, we conclude that M is
open. However, since M is dense, we must have M = [H1/2

00 (Γ1)]′, and γn is onto.
However, γn is injective (due to the uniqueness of solutions for (CPl)). Therefore, it
follows from the open mapping theorem that γ−1

n is bounded, contradicting the ill-
posedness of (CPl) [6].
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