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Abstract

This paper is concerned with the solvability and waveform relaxation methods of linear

variable-coefficient differential-algebraic equations (DAEs). Most of the previous works

have been focused on linear variable-coefficient DAEs with smooth coefficients and data,

yet no results related to the convergence rate of the corresponding waveform relaxation

methods has been obtained. In this paper, we develope the solvability theory for the linear

variable-coefficient DAEs on Legesgue square-integrable function space in both traditional

and least squares senses, and determine the convergence rate of the waveform relaxation

methods for solving linear variable-coefficient DAEs.
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1. Introduction

Consider the linear variable-coefficient differential-algebraic equations (also called singular

systems, descriptor systems, implicit or constrained systems)

B(t)ẋ(t) +A(t)x(t) = f(t), ∀ t ∈ Ω ⊆ R, (1.1)

where B(t) and A(t) are r×r complex matrix-valued coefficients, x(t) and f(t) are r-dimensional

complex vector-valued functions, andB(t) is identically singular. The theory for linear constant-

coefficient DAEs has become well developed over the last 30 years; see [7,8]. However, progress

on the linear variable-coefficient DAEs has been less complete. The main idea for studying the

existence and uniqueness of the solution of the DAEs (1.1) is utilizing coordinate changes to

reduce the DAEs (1.1) to the so-called standard canonical form [20],

{

ẏ(t) + C(t)y(t) = g(t),

N(t)ż(t) + z(t) = h(t),

where N(t) is strictly lower triangular. This canonical form approach was continued in [16,25].

However, examples in [6, 9, 10] showed that not all solvable systems could be put into this

canonical form. The stability of the DAEs (1.1) is often studied in the sense of continuous

dependence of the solution on initial value; see [5,12]. The derivation of numerical methods for
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the DAEs (1.1) is closely related to determining all or part of the completion of the original

vector field defined by the DAEs (1.1), i.e., determining the following ODEs derived from the

DAEs (1.1),

ẋ(t) = Q(t)x(t) +
ℓ
∑

i=0

Ri(t)f
(i)(t). (1.2)

The approximate solution computed by numerical methods related to the completion can be

essentially arbitrary off the solution manifold if no restriction is placed on these numerical

methods.

In the solvability theory of the DAEs (1.1) related to the standard canonical form, the

variable-coefficients B(t) and A(t) are assumed 2r-times differentiable, data f(t) is assumed

at least r-times differentiable, and if f(t) is assumed m-times differentiable, r ≤ m ≤ 2r,

the solution x(t) needs to be assumed (m − r + 1)-times differentiable. In this paper, we

study the solvability in a completely new way under weaker smoothness requirements, i.e.,

coefficients B(t) and A(t), data f(t), and solution x(t) are Lebesgue square-integrable. By

using the Fourier transform, the linear variable-coefficient DAEs (1.1) are transformed into the

Fredholm integral equation of the first kind, which is studied by taking advantage of the theory

of compact operator. The solvability of the linear variable-coefficient DAEs (1.1) is discussed

in both traditional and least squares senses. We eventually find the explicit expression of

the solution and the sufficient conditions to guarantee existence and uniqueness of the solution.

Furthermore, we are concerned with the stability of the DAEs (1.1) in the sense of the continuous

dependence of the solution on data f(t) rather than the initial value.

For numerical solution of the linear variable-coefficient DAEs (1.1), we concentrate on the

waveform relaxation methods instead of the methods based on computing the completion (1.2).

The waveform relaxation methods are powerful solvers for numerically computing the solution

of the DAEs on both sequential and parallel computers; see [1–3, 19, 24, 26]. The basic idea

of the above iteration methods is to apply the relaxation technique directly to the DAEs.

Therefore, these methods can be regarded as natural extensions of the classical relaxation

methods for solving systems of algebraic equations with iterating space changing from R
r to the

function space. The waveform relaxation methods were first introduced by Lelarasmee in [18]

for simulating the behavior of very large-scale electrical networks. Lelarasmee proved that

the waveform relaxation method is convergent as long as the splitting function of the system is

Lipschitz continuous. Later, most of the effort has been made on the expansions and applications

of this theory; see [15]. However, there is no precise description about the convergence rate

until Miekkala first obtained the convergence rate of the waveform relaxation method of linear

constant-coefficient ODEs and DAEs; see [21, 22]. Then, Janssen and Vandewalle studied the

convergence rate of different SOR acceleration schemes of the waveform relaxation method

for linear constant-coefficient ODEs in [14]. In addition, Pan and Bai further studied the

monotone convergence rate of the waveform relaxation methods for linear constant-coefficient

ODEs in [23]. The latest result related to the convergence rate of the waveform relaxation

method of linear constant-coefficient DAEs is given by Bai and Yang in [4]. In this paper,

we study the waveform relaxation methods for solving linear variable-coefficient DAEs in both

traditional and least squares sense. The explicit iteration form of the waveform relaxation

methods is first proposed. Moreover, we find the spectral radius of the iteration operator, i.e.,

convergence rate, of the waveform relaxation methods.

The paper is organized as follows. The theories of integral operators are generalized from
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the scaler version to the matrix-type version in Section 2. The solvability of linear variable-

coefficient DAEs (1.1) is discussed in both traditional and least squares senses in Section 3.

Through the application of the theories developed in Section 3, the waveform relaxation methods

are studied in Section 4. And the numerical results in Section 5 shows that the waveform

relaxation methods are feasible and efficient for solving linear variable-coefficient DAEs.

2. Matrix-Type Integral Operators

In this section, we are concerned with the theory of matrix-type integral operators. Here

and in the sequel, we denote Lr
2[0, 1] as the Hilbert space consisting of complex vector-valued

functions with the inner product

(

f(x), g(x)
)

=

∫ 1

0

r
∑

i=1

fi(x)gi(x)dx, ∀ f(x), g(x) ∈ Lr
2[0, 1],

where the integral is in the Lebesgue sense, and the corresponding norm is defined as

‖f(x)‖ =
√

(

f(x), f(x)
)

, ∀ f(x) ∈ Lr
2[0, 1].

And we denote Lr×r
2 [0, 1]2 as the Hilbert space consisting of complex matrix-valued functions

with the inner product

(

K(x, y), G(x, y)
)

=

r
∑

i=1

r
∑

j=1

∫ 1

0

∫ 1

0

Kij(x, y)Gi,j(x, y)dxdy,

∀ K(x, y), G(x, y) ∈ Lr×r
2 [0, 1]2,

where the integral is in the Lebesgue sense, and the corresponding norm is defined as

‖K(x, y)‖ =
√

(

K(x, y),K(x, y)
)

, ∀ K(x, y) ∈ Lr×r
2 [0, 1]2.

For convenience, we also denote

(u, v) =

r
∑

i=1

uivi, ∀ u, v ∈ C
r

as the inner product of the r-dimensional complex vector space Cr, and the corresponding norm

is defined as ‖u‖ =
√

(u, u), ∀ u ∈ C
r.

The matrix-type integral operator K with kernel K(x, y) ∈ Lr×r
2 [0, 1]2 is defined as

Kf(x) =
∫ 1

0

K(x, y)f(y)dy, ∀ f(x) ∈ Lr
2[0, 1].

It is easy to verify that the adjoint of K is of the form

K∗f(x) =

∫ 1

0

K∗(x, y)f(x)dx, ∀ f(x) ∈ Lr
2[0, 1].

Firstly, we prove a useful lemma.
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Lemma 2.1. Let K(x, y) ∈ Lr×r
2 [0, 1]2 be a matrix-valued kernel, then the associated matrix-

type integral operator K is bounded, i.e.

‖Kf(x)‖ ≤ ‖K(x, y)‖‖f(x)‖, ∀ f(x) ∈ Lr
2[0, 1].

Proof. By direct computation, we have

‖Kf(x)‖ =

∥

∥

∥

∥

∥

∥

∥

∥









∫ 1

0

∑r
j=1K1j(x, y)fj(y)dy

...
∫ 1

0

∑r

j=1Krj(x, y)fj(y)dy









∥

∥

∥

∥

∥

∥

∥

∥

=

√

√

√

√

√

r
∑

i=1

∫ 1

0

dx

∣

∣

∣

∣

∣

∣

∫ 1

0

r
∑

j=1

Kij(x, y)fj(y)dy

∣

∣

∣

∣

∣

∣

2

≤

√

√

√

√

√

r
∑

i=1

∫ 1

0

dx

∣

∣

∣

∣

∣

∣

∫ 1

0

r
∑

j=1

|Kij(x, y)||fj(y)|dy

∣

∣

∣

∣

∣

∣

2

≤

√

√

√

√

√

√

r
∑

i=1

∫ 1

0

dx

∣

∣

∣

∣

∣

∣

∣

∫ 1

0





r
∑

j=1

|Kij(x, y)|2




1
2




r
∑

j=1

|fj(y)|2




1
2

dy

∣

∣

∣

∣

∣

∣

∣

2

≤

√

√

√

√

√

r
∑

i=1

∫ 1

0

dx

∫ 1

0





r
∑

j=1

|Kij(x, y)|2


 dy

∫ 1

0





r
∑

j=1

|fj(y)|2


 dy

=

√

√

√

√

r
∑

i=1

r
∑

j=1

∫ 1

0

∫ 1

0

|Ki,j(x, y)|2dxdy ‖f(x)‖

= ‖K(x, y)‖‖f(x)‖.

Since K(x, y) ∈ Lr×r
2 [0, 1]2, ‖K(x, y)‖ is a bounded constant. Therefore, K is a bounded

matrix-type integral operator. 2

With the help of Lemma 2.1, we obtain the following theorem.

Theorem 2.1. Let K(x, y) be a r × r continuous matrix-valued kernel on [0, 1]2. Then the

associated matrix-type integral operator

Kf(x) =
∫ 1

0

K(x, y)f(y)dy, ∀ f(x) ∈ Lr
2[0, 1],

is a compact operator.

Proof. Since K(x, y) is continuous on [0, 1]2, then K(x, y) ∈ Lr×r
2 [0, 1]2. Based on Lemma

2.1, the operator K is bounded, i.e.,

‖Kf(x)‖ ≤ ‖K(x, y)‖‖f(x)‖.

Without loss of generality, we assume that ‖K(x, y)‖ = 1. Taking any uniformly bounded

sequence {f (n)(x)}, s.t. ‖f (n)(x)‖ ≤ 1, and considering the sequence {g(n)(x)} = {Kf (n)(x)},
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then we shall show that there is a convergent subsequence {g(n′)(x)} that converges to a function
in Lr

2[0, 1].

Denote {rk} as the dense countable set of all rational numbers in [0, 1]. Now considering

the vector sequence {g(n)(r1)} ⊂ C
r, direct computation leads to

‖g(n)(r1)‖ =

∥

∥

∥

∥

∫ 1

0

K(r1, y)f
(n)(y)dy

∥

∥

∥

∥

=

(

r
∑

i=1

∣

∣

∣

∣

∫ 1

0

r
∑

j=1

Kij(r1, y)f
(n)
j (y)dy

∣

∣

∣

∣

2
)

1
2

≤
(

r
∑

i=1

∣

∣

∣

∣

∫ 1

0

r
∑

j=1

|Kij(r1, y)||f (n)
j (y)|dy

∣

∣

∣

∣

2
)

1
2

≤
(

r
∑

i=1

∣

∣

∣

∣

∫ 1

0

(

r
∑

j=1

|Kij(r1, y)|2
)

1
2
(

r
∑

j=1

|f (n)
j (y)|2

)
1
2

dy

∣

∣

∣

∣

2
)

1
2

≤
(

r
∑

i=1

∫ 1

0

( r
∑

j=1

|Kij(r1, y)|2
)

dy

∫ 1

0

( r
∑

j=1

|f (n)
j (y)|2

)

dy

)
1
2

=

(

r
∑

i=1

r
∑

j=1

∫ 1

0

|Kij(r1, y)|2dy
)

1
2

‖f (n)(x)‖

≤
(

r
∑

i=1

r
∑

j=1

∫ 1

0

|Kij(r1, y)|2dy
)

1
2

.

Therefore, {g(n)(r1)} is a uniformly bounded sequence in C
r, and this leads to the existence of a

subsequence {g(n,1)(r1)} that converges to a vector b(1) ∈ C
r. Now we examine {g(n,1)(r1)} and

select a subsequence {g(n,2)(r2)} that converges to a vector b(2) ∈ C
r. Repeat the process at all

rational numbers. Finally we consider the sequence of functions {g(n,n)(x)} which converges at

all rational numbers by virtue of its construction.

Reindex {g(n,n)(x)} as {g(n′)(x)}, and define function g(x), s.t.,

g(rk) := lim
n′→∞

g(n
′)(rk), ∀ k ∈ N+.

So that g(x) is well-defined on {rk}. We can also show that g(x) is continuous on {rk}. Based
on the fact that K(x, y) is continuous, we have

∀ ǫ > 0, ∃ δ(ǫ) > 0, ∀ |x1 − x2| < δ(ǫ), x1, x2 ∈ {rk} s.t.,




r
∑

i=1

r
∑

j=1

∫ 1

0

|Kij(x1, y)−Kij(x2, y)|2dy





1
2

< ǫ.
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Therefore,

‖g(x1)− g(x2)‖ = lim
n′→∞

‖g(n′)(x1)− g(n
′)(x2)‖

= lim
n′→∞

‖
∫ 1

0

(Kij(x1, y)−Kij(x2, y)) f
(n′)(y)dy‖

≤





r
∑

i=1

r
∑

j=1

∫ 1

0

|Kij(x1, y)−Kij(x2, y)|2dy





1
2

< ǫ.

Now we define g(x) for arbitrary x ∈ [0, 1]. Let {xk} ⊂ {rk} be a rational sequence, s.t.,

limk→∞ xk = x, we define

g(x) := lim
k→∞

g(xk).

The above g(x) is shown to be well-defined. Suppose that {x̃k} ⊂ {rk} is another rational

sequence converging to x, and suppose that limk→∞ g(x̃k) = g̃(x). Based on the definitions of

g(x) and g̃(x), and the continuity of g(x) on {rk}, we have

∀ ǫ > 0, ∃ K, ∀ k > K, s.t.,

‖g(x)− g(xk)‖ <
1

3
ǫ, ‖g(xk)− g(x̃k)‖ <

1

3
ǫ, ‖g(x̃k)− g̃(x)‖ < 1

3
ǫ.

Therefore,

‖g(x)− g̃(x)‖ ≤ ‖g(x)− g(xk)‖+ ‖g(xk)− g(x̃k)‖+ ‖g(x̃k)− g̃(x)‖ < ǫ.

It means that g(x) = g̃(x). Furthermore, it is easy to show that g(x) is continuous on [0, 1],

then we also have g(x) ∈ Lr[0, 1]. It follows that K is compact. 2

To facilitate our sequential discussion, we introduce a theorem concerned with compact

operator as follows.

Theorem 2.2. ([13]) Let Kn be a sequence of compact operator on a Hilbert space H, such that

for some operator K we have

lim
n→∞

‖K − Kn‖ = 0.

Then K is also compact.

Based on Theorems 2.2 and 2.1 we obtain the following result with respect to matrix-type

integral operator with Lr×r
2 [0, 1]2 kernels.

Theorem 2.3. Let K(x, y) be a matrix-valued kernel in Lr×r
2 [0, 1]2. Then the associated

matrix-type integral operator

Kf(x) =
∫ 1

0

K(x, y)f(y)dy, ∀ f(x) ∈ Lr
2[0, 1],

is a compact operator.
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Now we introduce an important result of compact operators on Lr×r
2 (R2). Let K be a

matrix-type integral operator with Lr×r
2 (R2) kernel K(x, y). Denote {K(n)} as a sequence of

matrix-type integral operator with sequence of kernels {K(n)(x, y)} which are defined as

K(n)(x, y) =

{

K(x, y), −n ≤ x, y ≤ n

0, otherwise.

Since any finite interval [a, b] can be normalized to [0, 1], previous Lemma 2.1 and Theorems

2.1 and 2.3 can be applied to [a, b], such as [−n, n] for any given positive integer n. Obvi-

ously, {K(n)} is a sequence of compact operators on Lr×r
2 [−n, n]2. Hence, {K(n)} can also be

considered as a sequence of compact operators on Lr×r
2 (R2). Based on the fact that

lim
n→∞

‖K − K(n)‖

≤ lim
n→∞

√

√

√

√

r
∑

i=1

r
∑

j=1

∫ ∞

−∞

∫ ∞

−∞
|Ki,j(x, y)−K

(n)
i,j (x, y)|2dxdy = 0

and Theorem 2.2, we have the following theorem.

Theorem 2.4. Let K(x, y) be a matrix-valued kernel in Lr×r
2 (R2). Then the associated matrix-

type integral operator

Kf(x) =
∫ ∞

−∞
K(x, y)f(y)dy, ∀ f(x) ∈ Lr

2(R),

is a compact operator.

3. Solvability of Linear Variable-Coefficient DAEs

In this section, we consider the solvability of the linear variable-coefficient DAEs (1.1) in

complex vector-valued function space Lr
2(R) with the help of the Fourier transform. Due to the

definition of space Lr
2(R), value of function on a single point is no longer essential. Hence, the

initial (or boundary) condition of the DAEs (1.1) is ignored. For the application of the Fourier

transform, we need to extend B(t), A(t), f(t), and x(t) to the whole real axis R by defining

ξ(t) =

{

ξ̃(t) t ∈ Ω,

0 otherwise,
here ξ̃(t) = B(t), A(t), f(t), x(t),

and assuming the existence of the Fourier transform of ξ(t).

Definition 3.1. ([13]) An operator U acting on a Hilbert space H is said to be unitary if it is

• isometric, i.e., ‖Uf‖=‖f‖, ∀ f ∈ H;

• U has an inverse on all of H given by U∗, the adjoint of U .

We choose the kernel 1√
2π
e−ıωt such that the Fourier transform of a function f(t) is defined by

Ff(t) = 1√
2π

∫ ∞

−∞
e−ıωtf(t)dt = f̃(ω),

then the above Fourier transform is a unitary operator mapping the space Lr
2(R) into itself;

see [13]. Furthermore, we have the following lemma.



On Solvability and Waveform Relaxation Methods for DAEs 703

Lemma 3.1. ([11]) Suppose that f̃(ω) and g̃(ω) are the Fourier transforms of f(t) and g(t)

respectively, then the following properties are satisfied

• F(f(t)g(t)) = 1√
2π

∫∞
−∞ f̃(ω′)g̃(ω − ω′)dω′;

• F ḟ(t) = ıωf̃(ω).

3.1. Traditional Solution

By performing the Fourier transform on both sides of the linear variant-coefficient DAEs

(1.1) and applying Lemma 3.1, we obtain

1√
2π

∫ ∞

−∞
ıω′B̃(ω − ω′)x̃(ω′)dω′ +

1√
2π

∫ ∞

−∞
Ã(ω − ω′)x̃(ω′)dω′ = f̃(ω),

which can be formulated as a Fredholm integral equation of the first kind

∫ ∞

−∞

1√
2π

(

ıω′B̃(ω − ω′) + Ã(ω − ω′)
)

x̃(ω′)dω′ = f̃(ω). (3.1)

Equivalently, Eq. (3.1) can be considered as a linear operator equation of the first kind,

K̃x̃ = f̃ , (3.2)

where K̃ is a linear integral operator with kernel

K̃(ω, ω′) =
1√
2π

(

ıω′B̃(ω − ω′) + Ã(ω − ω′)
)

.

Denote K̃∗ as the adjoint of operator K̃, i.e.,

(K̃∗◦)(ω′) =

∫ ∞

−∞
K̃∗(ω, ω′) ◦ dω.

Assume that the kernel K̃(ω, ω′) ∈ Lr×r
2 (R2), according to Theorem 2.4, the corresponding

operator K̃ is a linear compact operator mapping Lr
2(R) into itself, so is the adjoint K̃∗. Due

to E. Schmidt’s theory of singular functions in [17], there exists a singular system for compact

operator K̃. In addition, since the Hilbert space Lr
2(R) is separable, all orthogonal subsets of

Lr
2(R) are finite or countable. Therefore, the corresponding singular system can be presented

as {σ̃i, ṽi, ũi}Li=1 such that

K̃ṽi = σ̃iũi, K̃∗ũi = σ̃iṽi,

here L is a positive integer (finite or infinite), σ̃i > 0 (if L is infinite, we have limi→∞ σ̃i = 0),

and ṽi, ũi ∈ Lr
2(R). Furthermore, sequences {ṽi} and {ũi} are both orthonormal sets in Hilbert

space Lr
2(R), but not necessarily complete. Based on the above singular system, we have

span{ũi} = range(K̃) = null(K̃∗)⊥, span{ṽi} = range(K̃∗) = null(K̃)⊥,

which lead to the following orthogonal sums

Lr
2(R) = null(K̃∗)⊥ ⊕ null(K̃∗) = range(K̃)⊕ null(K̃∗)

= null(K̃)⊥ ⊕ null(K̃) = range(K̃∗)⊕ null(K̃).
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In general, the range of K̃ and that of K̃∗ are not closed, i.e., range(K̃) ⊂ range(K̃) and

range(K̃∗) ⊂ range(K̃∗) in most cases.

Denote P1 as the orthogonal projector of Lr
2(R) onto null(K̃). Any given vector φ ∈ Lr

2(R)

can be written into the unique orthogonal decomposition

φ = φ⊥ + φ(0) = (I − P1)φ+ P1φ ∈ null(K̃)⊥ ⊕ null(K̃).

Therefore, the acting of operator K̃ on φ is as follows

K̃ : Lr
2(R) → range(K̃)

φ = φ⊥ + φ(0) 7→ K̃(φ⊥).

Denote Lr
2(R)/null(K̃) as the quotient space of Lr

2(R) mod null(K̃), and φ(Q) ∈ Lr
2(R)/null(K̃)

is of the form

φ(Q) = φ⊥ + null(K̃), here φ⊥ ∈ null(K̃)⊥.

Furthermore, any φ(q) ∈ φ(Q) can be considered as a representative of φ(Q), thus φ(q) and φ(Q)

can be considered as the same.

Denote P2 as the orthogonal projector of Lr
2(R) onto null(K̃∗). Any given vector ψ ∈ Lr

2(R)

can be written into the unique orthogonal decomposition

ψ = ψ⊥ + ψ(0) = (I − P2)ψ + P2ψ ∈ null(K̃∗)⊥ ⊕ null(K̃∗).

Therefore, the acting of operator K̃∗ on ψ is as follows

K̃∗ : Lr
2(R) → range(K̃∗)

ψ = ψ⊥ + ψ(0) 7→ K̃∗(ψ⊥).

Denote Lr
2(R)/null(K̃∗) as the quotient space of Lr

2(R) mod null(K̃∗), and ψ(Q) ∈ Lr
2(R)/null(K̃∗)

is of the form

ψ(Q) = ψ⊥ + null(K̃∗), here ψ⊥ ∈ null(K̃∗)⊥.

Furthermore, any ψ(q) ∈ ψ(Q) can be considered as a representative of ψ(Q), thus ψ(q) and ψ(Q)

can be considered as the same.

Since null(K̃) and null(K̃∗) are invariant subspaces of Lr
2(R) for operator K̃ and its adjoint

K̃∗ respectively, there is a natural interpretation of K̃ as a operator with respect to quotient

spaces, i.e.,

K̃(Q) : Lr
2(R)/null(K̃) → (range(K̃) + null(K̃∗))/null(K̃∗) ⊆ Lr

2(R)/null(K̃∗)

φ(Q) = φ⊥ + null(K̃) 7→ ψ(Q) = K̃(φ⊥) + null(K̃∗)

or equivalently φ(q) 7→ ψ(q).

Obviously, operator K̃(Q) is bijective and invertible. In this manner, the linear operator Eq.

(3.2) can be considered as the following linear operator equation of the first kind,

K̃(Q)x̃ = f̃ , (3.3)

here x̃ and f̃ are treated as representatives of the corresponding vectors in quotient spaces

Lr
2(R)/null(K̃) and Lr

2(R)/null(K̃∗) respectively.
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Similarly, a natural interpretation of K̃∗ as a operator with respect to quotient spaces can

be demonstrated as

K̃∗(Q) : Lr
2(R)/null(K̃∗) →

(

range(K̃∗) + null(K̃)
)

/null(K̃) ⊆ Lr
2(R)/null(K̃)

ψ(Q) = ψ⊥ + null(K̃∗) 7→ φ(Q) = K̃∗(ψ⊥) + null(K̃)

or equivalently ψ(q) 7→ φ(q),

and operator K̃∗(Q) is again bijective and invertible.

The natural definitions of inner products for Lr
2(R)/null(K̃) is as

(φ
(q)
1 , φ

(q)
2 )q := (φ⊥1 , φ

⊥
2 ), ∀ φ(q)1 , φ

(q)
2 ∈ Lr

2(R)/null(K̃),

the corresponding norm is defined as

‖φ(q)‖q =
√

(φ(q), φ(q))q, ∀ φ(q) ∈ Lr
2(R)/null(K̃),

and for Lr
2(R)/null(K̃∗) is as

(ψ
(q)
1 , ψ

(q)
2 )q := (ψ⊥

1 , ψ
⊥
2 ), ∀ ψ(q)

1 , ψ
(q)
2 ∈ Lr

2(R)/null(K̃∗),

the corresponding norm is defined as ‖ψ(q)‖q =
√

(ψ(q), ψ(q))q, ∀ ψ(q) ∈ Lr
2(R)/null(K̃∗). The

quotient spaces Lr
2(R)/null(K̃) and Lr

2(R)/null(K̃∗) are Hilbert spaces with respect to the above

definitions of inner products.

Since quotient spaces (range(K̃) + null(K̃∗))/null(K̃∗) and (range(K̃∗) + null(K̃))/null(K̃)

are not necessarily complete, the inverse operators (K̃(Q))−1 and (K̃∗(Q))−1 are not necessarily

bounded.

Due to the linearity and compactness of operator K̃ and its adjoint K̃∗, operator K̃(Q) and

its adjoint K̃∗(Q) are both linear compact operators. The corresponding singular system of

operator K̃(Q) is {σ̃(q)
i , ṽ

(q)
i , ũ

(q)
i }Li=1, here

σ̃
(q)
i = σ̃i, ṽ

(q)
i ∈ ṽi + null(K̃), and ũ

(q)
i ∈ ũi + null(K̃∗).

Furthermore, sequences {ṽ(q)i } and {ũ(q)i } are complete orthonormal sets in Hilbert spaces

Lr
2(R)/null(K̃) and Lr

2(R)/null(K̃∗) respectively. Based on the above singular system, we obtain

the explicit expression of the operator K̃(Q),

K̃(Q)(◦) =
L
∑

k=1

σ̃kũ
(q)
k (◦, ṽ(q)k )q,

which can be verified as

K̃(Q)ṽ
(q)
i =

L
∑

k=1

σ̃kũ
(q)
k

(

ṽ
(q)
i , ṽ

(q)
k

)

q
= σ̃iũ

(q)
i

(

ṽ
(q)
i , ṽ

(q)
i

)

q

= σ̃iũ
(q)
i (ṽi, ṽi) = σ̃iũ

(q)
i ,

K̃∗(Q)ũ
(q)
i =

L
∑

k=1

σ̃kṽ
(q)
k

(

ũ
(q)
i , ũ

(q)
k

)

q
= σ̃iṽ

(q)
i

(

ũ
(q)
i , ũ

(q)
i

)

q

= σ̃iṽ
(q)
i (ũi, ũi) = σ̃iṽ

(q)
i .
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Since sequences {ṽ(q)i } and {ũ(q)i } are complete orthonormal sets, x̃ ∈ Lr
2(R)/null(K̃) and f̃ ∈

Lr
2(R)/null(K̃∗) can be written into the following unique linear combinations respectively,

x̃ =

L
∑

i=1

αiṽ
(q)
i , f̃ =

L
∑

i=1

(f̃ , ũ
(q)
i )qũ

(q)
i .

In addition,

f̃ = K̃(Q)x̃ = K̃(Q)
L
∑

i=1

αiṽ
(q)
i =

L
∑

i=1

αiσ̃iũ
(q)
i ,

due to the uniqueness of the linear combination of f̃ , we have

αiσ̃i = (f̃ , ũ
(q)
i )q = (f̃ , ũi) ⇒ αi =

(f̃ , ũi)

σ̃i
.

Hence

‖x̃‖ =
L
∑

i=1

∣

∣

∣

∣

∣

(f̃ , ũi)

σ̃i

∣

∣

∣

∣

∣

2

.

In order to guarantee the existence of x̃ ∈ Lr
2(R), we assume that

L
∑

i=1

∣

∣

∣

∣

∣

(f̃ , ũi)

σ̃i

∣

∣

∣

∣

∣

2

<∞, i.e.,

{

(f̃ , ũi)

σ̃i

}

∈ l2.

By direct verification of Eq. (3.2), we have

K̃x̃ = K̃ ((I − P1)x̃+ P1x̃)

= K̃
(

L
∑

i=1

αi(I − P1)v
(q)
i +

L
∑

i=1

αiP1ṽ
(q)
i

)

= K̃
(

L
∑

i=1

(f̃ , ũi)

σ̃i
vi +

L
∑

i=1

αiP1ṽ
(q)
i

)

=

L
∑

i=1

(f̃ , ũi)ũi = (I − P2)f̃ .

Therefore, we need the condition (I − P2)f̃ = f̃ to guarantee the satisfaction of Eq. (3.2), i.e.,

condition f̃ ∈ null(K̃∗)⊥.

Based on the above analysis, we see that

x̃ = (I − P1)x̃ + P1x̃

=

L
∑

i=1

(f̃ , ũi)

σ̃i
vi +

L
∑

i=1

αiP1ṽ
(q)
i

is a vector in Lr
2(R) solves Eq. (3.2). Since the set of all solutions of the linear operator Eq.

(3.2) is closed and convex, then there is a unique solution with the smallest norm of the form

(I − P1)x̃ =

L
∑

i=1

(f̃ , ũi)

σ̃i
vi.
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Meanwhile, x̃ as a representative of a vector in quotient space Lr
2(R)/null(K̃) solves Eq. (3.3).

Since K̃(Q) is bijective, we have

x̃ = (K̃(Q))−1f̃ =
L
∑

i=1

ṽ
(q)
i

(f̃ , ũi)

σ̃i
. (3.4)

i.e., (K̃(Q))−1 has the following explicit expression

(K̃(Q))−1(◦) =
L
∑

i=1

ṽ
(q)
i

(◦, ũi)
σ̃i

. (3.5)

By acting the inverse Fourier transform F−1 on both sides of Eq. (3.4), we obtain the explicit

expression of the solution of the linear variable-coefficient DAEs (1.1)

x = F−1(K̃(Q))−1Ff ∈ Lr
2(R),

and the corresponding solution with the smallest norm

x = F−1(I − P1)(K̃(Q))−1Ff.

Suppose there is a perturbation on f̃ , say, f̃ǫ = f̃ + ǫũ
(q)
n , ǫ > 0, then the perturbation on x̃

is as the following form

‖x̃ǫ − x̃‖q = ‖(K̃(Q))−1(f̃ǫ − f̃)‖q
= ǫ‖(K̃(Q))−1ũ(q)n ‖q

= ǫ‖ ṽ
(q)
n

σ̃n
‖q =

ǫ

σ̃n
.

If the singular system is infinite, i.e., L = ∞, we have

lim
n→∞

‖x̃ǫ − x̃‖q = lim
n→∞

ǫ

σ̃n
= ∞,

which leads to the fact that operator (K̃(Q))−1 is unbounded, or equivalently discontinuous.

Therefore, Eq. (3.3) is ill-posed1) , which means that the solution of the linear variable-

coefficient DAEs (1.1) with the smallest norm is an ill-posed problem. If the singular system is

finite, i.e., L <∞, we have

lim
ǫ→0

‖x̃ǫ − x̃‖q = lim
ǫ→0

ǫ

σ̃n
= 0, ∀ n = 1, 2, . . . , L,

this means operator (K̃(Q))−1 is continuous. Therefore, Eq. (3.3) is well-posed, which means

that the solution of the linear variable-coefficient DAEs (1.1) with the smallest norm is a well-

posed problem.

Now we summarize all the previous results in the form of a theorem.

1) The notion of an ill-posed problem, or more correctly that of a well-posed problem, was introduced by

Hadamard more than a century ago. Within the context of the theory of partial differential equations Hadamard

termed a problem well-posed if it has a solution (existence), it does not have more that one solution (uniqueness),

and this solution depends continuously on the data of the problem (stability). The last of the previous three

conditions is motivated by the fact that in applications the data will be measured quantities and therefore always

contaminated by errors.
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Theorem 3.1. Consider the linear variable-coefficient DAEs (1.1) on Hilbert space Lr
2(R).

Assume that the kernel K̃(ω, ω′) ∈ Lr×r
2 (R2), f̃ ∈ null(K̃∗)⊥ and

{

(f̃ ,ũi)
σ̃i

}

∈ l2, then the

solution of the DAEs (1.1) is of the following form

x = F−1(K̃(Q))−1Ff ∈ Lr
2(R), (3.6)

and the unique solution with the smallest norm is

x = F−1(I − P1)(K̃(Q))−1Ff. (3.7)

Furthermore, if L is infinite, the DAEs (1.1) is ill-posed; if L is finite, the DAEs (1.1) is

well-posed.

Remark 3.1. We end this subsection with two remarks.

• In fact, the linear system of the DAEs (1.1) is analogous to the linear system of algebraic

equations in the sense of linearity and compatibility. Specifically, the solution (3.6) of

the DAEs (1.1) is analogous to the solution of compatible linear system of algebraic

equations, and the solution (3.7) of the DAEs (1.1) with the smallest norm is analogous

to the solution of compatible linear system of algebraic equations with the smallest norm.

• The quantity L in Theorem 3.1 is imposed for classification of compact operator. If L is

finite, the compact operator K̃ is degenerate. Similar to the operator K̃(Q), the explicit

expression of the operator K̃ is of the form

K̃(◦) =
L
∑

k=1

σ̃kũk(◦, ṽk)

=

L
∑

k=1

σ̃kũk(x)

∫ ∞

0

ṽ∗k(y) ◦ dy

=

∫ ∞

0

L
∑

k=1

σ̃kũk(x)ṽ
∗
k(y) ◦ dy,

i.e., K̃ is an integral operator with finite sum kernel K̃(x, y) =
∑L

k=1 σ̃kũk(x)ṽ
∗
k(y), which

is called a degenerate kernel. In this case, the corresponding linear operator equation of

the first kind is well-posed. If L is infinite, we obtain an ill-posed linear operator equation

of the first kind. There are great challenges with numerical solution of problem of this

kind.

3.2. Least Squares Solution

Due to the Theorem 3.1, a solution of the form (3.6) of the linear variable-coefficient DAEs

(1.1) exists if the Fourier transform of data f(t) satisfies f̃ ∈ null(K̃∗)⊥ and
{

(f̃ ,ũi)
σ̃i

}

∈ l2.

However, this is not always the case in many applications. Hence there is a demand to broaden

our notion of solution, which can be done by enlarging the class of data f(t) such that a type of

least squares solution exists. A vector x ∈ Lr
2(R) is called a least squares solution of the linear

variable-coefficient DAEs (1.1) if

‖B(t)ẋ(t) +A(t)x(t) − f(t)‖ = inf
y∈L

r
2(R)

‖B(t)ẏ(t) +A(t)y(t) − f(t)‖. (3.8)
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Since the Fourier transform is unitary, performing the Fourier transform on both sides of

Eq. (3.8) leads to the following equivalent least squares problem,

‖K̃x̃− f̃‖ = inf
ỹ∈L

r
2(R)

‖K̃ỹ − f̃‖, (3.9)

where K̃ is defined as the same in Subsection 3.1. Assume that the kernel K̃(ω, ω′) ∈ Lr×r
2 (R2),

then the corresponding operator K̃ is a linear compact operator mapping Lr
2(R) into itself with

singular system {σ̃i, ṽi, ũi}Li=1 defined as the same in Subsection 3.1.

Since any given f̃ ∈ Lr
2(R) can be written into the unique orthogonal decomposition as the

following

f̃ = f̃⊥ + f̃ (0) = (I − P2)f̃ + P2f̃ ∈ null(K̃∗)⊥ ⊕ null(K̃∗),

then f̃ and f̃⊥ both can be considered as the representative of a same vector in quotient space

Lr
2(R)/null(K̃∗). In addition, the least squares problem (3.9) is equivalent to the following linear

operator equation of the first kind,

K̃x̃ = f̃⊥ = (I − P2)f̃ ∈ null(K̃∗)⊥.

By assuming that
∑L

i=1

∣

∣

∣

(f̃ ,ũi)
σ̃i

∣

∣

∣

2

< ∞, i.e.,
{

(f̃ ,ũi)
σ̃i

}

∈ l2, similar to the analysis in Subsection

3.1, we have

x̃ = (K̃(Q))−1f̃⊥ =

L
∑

i=1

ṽ
(q)
i

(f̃⊥, ũ
(q)
i )q

σ̃i

=
L
∑

i=1

ṽ
(q)
i

(f̃⊥, ũi)

σ̃i
=

L
∑

i=1

ṽ
(q)
i

(f̃ , ũi)

σ̃i

=

L
∑

i=1

ṽ
(q)
i

(f̃ , ũ
(q)
i )q
σ̃i

= (K̃(Q))−1f̃ ,

which is a solution of the least squares problem (3.9). By acting the inverse Fourier transform,

we obtain a solution of the least squares problem (3.8) as the following

x = F−1(K̃(Q))−1Ff.

Now we consider the uniqueness of solution, note that the least squares problem (3.9) is

equivalent to

K̃x̃− f̃ ∈ null(K̃∗)⊥,

i.e.,

K̃∗K̃x̃ = K̃∗f̃ .

Based on the above linear operator equation, we see that there is a unique least squares solution

if and only if

{0} = null(K̃∗K̃).
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Nevertheless, the above condition is not satisfied in most cases. Note that the set of all least

squares solutions is closed and convex, hence there is a unique least squares solution with the

smallest norm of the following form

(I − P1)x̃ = (I − P1)(K̃(Q))−1f̃ =

L
∑

i=1

(f̃ , ũi)

σ̃i
vi. (3.10)

Obviously, the operator (I−P1)(K̃(Q))−1 associates a given function f̃ ∈ range(K̃)+null(K̃∗) ⊆
Lr
2(R) with the unique least squares solution which has the smallest norm. We denote this

operator by K̃†, which is defined as

K̃† : range(K̃) + null(K̃∗) ⊆ Lr
2(R) → null(K̃)⊥

f̃ 7→ K̃†f̃ = (I − P1)(K̃(Q))−1f̃ .

The operator K̃† is called the Moore-Penrose generalized inverse of K̃, which is an analog to

the Moore-Penrose generalized inverse of a matrix. By acting the inverse Fourier transform, we

obtain the solution with the smallest norm of the least squares problem (3.8) as the following

x = F−1K̃†Ff.

According to Eq. (3.10), the operator K̃† can be written explicitly as

K̃†(◦) =
L
∑

i=1

ṽi
(◦, ũi)
σ̃i

. (3.11)

As we argued in Subsection 3.1, the operator K̃† is continuous if L is finite. Then, the least

squares problem (3.9) is well-posed, which means that the solution of the least squares problem

(3.8) with the smallest norm is a well-posed problem. In addition, the operator K̃† is discon-

tinuous if L is infinite. Then, the least squares problem (3.9) is ill-posed, which means that the

solution of the least squares problem (3.8) with the smallest norm is an ill-posed problem.

In summary, we have the following theorem.

Theorem 3.2. Consider the least squares solution of the linear variable-coefficient DAEs (1.1)

on Hilbert space Lr
2(R). If the kernel K̃(ω, ω′) ∈ Lr×r

2 (R2) and
{

(f̃ ,ũi)
σ̃i

}

∈ l2, then the solution

of the least squares problem (3.8) is of the following form

x = F−1(K̃(Q))−1Ff ∈ Lr
2(R), (3.12)

and the unique least squares solution with the smallest norm is

x = F−1K̃†Ff. (3.13)

Furthermore, if L is infinite, the solution of the least squares problem (3.8) is ill-posed; if L is

finite, the solution of the least squares problem (3.8) is well-posed.

4. The Waveform Relaxation Methods

In this section, we discuss the waveform relaxation methods for the linear variable-coefficient

DAEs (1.1) in the sense of traditional solution and least squares solution.
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4.1. The Waveform Relaxation Methods in the Sense of Traditional Solution

For the linear variable-coefficient DAEs (1.1), we split the variable-coefficients B(t) and A(t)

into

B(t) =MB(t)−NB(t), A(t) =MA(t)−NA(t),

respectively. Then the corresponding waveform relaxation method is defined as

MB(t)ẋ
(k+1)(t) +MA(t)x

(k+1)(t)

= NB(t)ẋ
(k)(t) +NA(t)x

(k)(t) + f(t), ∀ t ∈ Ω ⊆ R. (4.1)

Since we choose function space Lr
2(R) for our discussion of the above waveform relaxation

method (4.1), the initial condition of the method in (4.1) is no longer vital. For the application

of the Fourier transform, we extend MB(t), NB(t), MA(t), NA(t), f(t) and x
(k)(t) to the whole

real axis R by defining

ξ(t) =

{

ξ̃(t) t ∈ Ω,

0 otherwise,
here ξ̃(t) =MB(t), NB(t),MA(t), NA(t), f(t), x

(k)(t),

and assuming the existence of the Fourier transform of ξ(t).

By performing the Fourier transform on both sides of the waveform relaxation method (4.1)

and applying Lemma 3.1, we obtain a Fredholm integral equation of the first kind

∫ ∞

−∞

1√
2π

(

ıω′M̃B(ω − ω′) + M̃A(ω − ω′)
)

x̃(k+1)(ω′)dω′

=

∫ ∞

−∞

1√
2π

(

ıω′ÑB(ω − ω′) + ÑA(ω − ω′)
)

x̃(k)(ω′)dω′ + f̃(ω). (4.2)

Equivalently, the above integral equation can be written into the following operator iteration

scheme

K̃M x̃
(k+1) = K̃N x̃

(k) + f̃ , (4.3)

where K̃M and K̃N are linear integral operators with kernels

K̃M (ω, ω′) =
1√
2π

(

ıω′M̃B(ω − ω′) + M̃A(ω − ω′)
)

,

K̃N(ω, ω′) =
1√
2π

(

ıω′ÑB(ω − ω′) + ÑA(ω − ω′)
)

,

respectively. It is easy to verify that

K̃ = K̃M − K̃N ,

i.e., the iteration scheme (4.3) is a splitting iterative method of the linear operator Eq. (3.2) in

Subsection 3.2.

Assume that the kernels K̃M (ω, ω′), K̃N(ω, ω′) ∈ Lr
2(R

2), then the linear integral operators

K̃M and K̃N are compact on Hilbert space Lr
2(R). Therefore, there exists a singular system of

operator K̃M , {σ̃i,M , ṽi,M , ũi,M}LM

i=1 such that

K̃M ṽi,M = σ̃i,M ũi,M , K̃∗
M ũi,M = σ̃i,M ṽi,M ,
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here LM is a positive integer (finite or infinite). Furthermore, sequences {ṽi,M} and {ũi,M}
are both orthonormal sets in Hilbert space Lr

2(R), but not necessarily complete. Based on the

above singular system, we have the following orthogonal sums

Lr
2(R) = null(K̃∗

M )⊥ ⊕ null(K̃∗
M ) = range(K̃M )⊕ null(K̃∗

M )

= null(K̃M )⊥ ⊕ null(K̃M ) = range(K̃∗
M )⊕ null(K̃M ).

Assume that range(K̃N ) ⊆ range(K̃M ), then K̃N x̃
(k) ∈ range(K̃M ) ⊆ null(K̃∗

M )⊥, and there

exists a function ϕ ∈ Lr
2(R) such that

K̃Mϕ = K̃N x̃
(k),

where ϕ can be explicitly written as

ϕ = (I − P1,M )ϕ+ P1,Mϕ

=

LM
∑

i=1

(K̃N x̃
(k), ũi,M )

σ̃i,M
ṽi,M + P1,Mϕ,

where P1,M denotes the orthogonal projector of Lr
2(R) onto null(K̃M ). Hence, we have

∥

∥

∥

∥

∥

{

(K̃N x̃
(k), ũi,M )

σ̃i,M

}∥

∥

∥

∥

∥

= ‖(I − P1,M )ϕ‖ ≤ ‖ϕ‖ ≤ ∞,

i.e.,
{

(K̃N x̃(k),ũi,M )
σ̃i,M

}

∈ l2. Assume that f̃ ∈ null(K̃∗
M )⊥ and

{

(f̃ ,ũi,M )
σ̃i,M

}

∈ l2, then we obtain

K̃N x̃
(k) + f̃ ∈ null(K̃∗

M )⊥

and
{

(K̃N x̃(k)+f̃ ,ũi,M )
σ̃i,M

}

∈ l2. According to Theorem 3.1, the operator Eq. (4.3) is solvable.

Therefore, the iteration scheme (4.3) is well-defined.

Similar to Subsection 3.1, we define the following bijective operator with respect to quotient

spaces Lr
2(R)/null(K̃M ) and Lr

2(R)/null(K̃∗
M ),

K̃(Q)
M : Lr

2(R)/null(K̃M ) → (range(K̃M ) + null(K̃∗
M ))/null(K̃∗

M ) ⊆ Lr
2(R)/null(K̃∗

M )

φ(Q) = φ⊥ + null(K̃M ) 7→ ψ(Q) = K̃M (φ⊥) + null(K̃∗
M )

or equivalently φ(q) 7→ ψ(q),

and the adjoint of K̃∗(Q)
M is defined accordingly,

K̃∗(Q)
M : Lr

2(R)/null(K̃∗
M ) → (range(K̃∗

M ) + null(K̃M ))/null(K̃M ) ⊆ Lr
2(R)/null(K̃M )

ψ(Q) = ψ⊥ + null(K̃∗
M ) 7→ φ(Q) = K̃∗

M (ψ⊥) + null(K̃M )

or equivalently ψ(q) 7→ φ(q).

The inner product for quotient spaces is defined in the same way as in Subsection 3.1, for

Lr
2(R)/null(K̃M ),

(φ
(q)
1 , φ

(q)
2 )q := (φ⊥1 , φ

⊥
2 ), ∀ φ(q)1 , φ

(q)
2 ∈ Lr

2(R)/null(K̃M ),
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and for Lr
2(R)/null(K̃∗

M ),

(ψ
(q)
1 , ψ

(q)
2 )q := (ψ⊥

1 , ψ
⊥
2 ), ∀ ψ(q)

1 , ψ
(q)
2 ∈ Lr

2(R)/null(K̃∗
M ).

Furthermore, the corresponding singular system of operator K̃(Q)
M is denoted as {σ̃i,M , ṽ(q)i,M , ũ

(q)
i,M}LM

i=1.

We consider {x̃(k)} as the sequence generated by the operator equation in the iteration

scheme (4.3) with the smallest norm, hence we have

x̃(k+1) = G̃x̃(k) + Φ̃f̃ , (4.4)

where G̃ = (I − P1,M )(K̃(Q)
M )−1K̃N and Φ̃ = (I − P1,M )(K̃(Q)

M )−1, or equivalently,

x(k+1) = Gx(k) +Φf,

where G = F−1(I − P1,M )(K̃(Q)
M )−1K̃NF and Φ = F−1(I − P1,M )(K̃(Q)

M )−1F . Since operators

I − P1,M and K̃N are bounded, the iteration operator G̃ in (4.4) is bounded if and only if

(K̃(Q)
M )−1 is bounded, which is equivalent to K̃(Q)

M being degenerate, i.e., K̃M being degenerate.

Therefore, the integer LM needs to be finite.

Now we discuss the convergence property of the iteration scheme (4.3) with the assumption

that LM <∞. By defining ε(k+1) = x̃(k+1) − x̃(k) and applying (3.5), we obtain

ε(k+1) = G̃ε(k)

= (I − P1,M )

LM
∑

j=1

ṽ
(q)
i,M

(K̃Nε
(k), ũj,M )

σ̃j,M

=

LM
∑

j=1

ṽj,M
(K̃Nε

(k), ũj,M )

σ̃j,M
.

Due to the fact that {x̃(k)} ⊂ null(K̃M )⊥, each error function ε(k) can be uniquely expanded by

sequence {ṽi,M}, i.e., there exists a unique column vector α(k) = (α
(k)
1 , . . . , α

(k)
LM

)T such that

ε(k) = ṼMα
(k) =

LM
∑

i=1

α
(k)
i ṽi,M ,

here ṼM = (ṽ1,M , . . . , ṽLM ,M ), thus we have

LM
∑

j=1

α
(k+1)
j ṽj,M =

LM
∑

j=1

ṽj,M
(K̃N

∑LM

i=1 α
(k)
i ṽi,M , ũj,M )

σ̃j,M

=

LM
∑

j=1

ṽj,M

∑LM

i=1 α
(k)
i (K̃N ṽi,M , ũj,M )

σ̃j,M
,

By comparing the coefficient of ṽj,M on both sides, we have

α(k+1) = GTα(k),

where G = (gi,j)LM×LM
, gi,j =

(K̃N ṽi,M ,ũj,M )
σ̃j,M

. Moreover, we have

ε(k+1) = ṼMα
(k+1) = ṼMG

Tα(k) = ṼMG
T Ṽ ∗

M ṼMα
(k) = ṼMG

T Ṽ ∗
M ε(k),
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where Ṽ ∗
M is defined as

Ṽ ∗
M =







(◦, ṽ1,M )
...

(◦, ṽLM ,M )






.

Therefore, we obtain the decomposition of the iteration operator in (4.4), i.e., G̃ = ṼMG
T Ṽ ∗

M .

Furthermore, we can prove that ρ(G̃) = ρ(G). To see this, let (λ, v) = (λ, ṼMβ) be an eigenpair

of iteration operator G̃, here β = (β1, . . . , βLM
)T , then we have

ṼMG
T Ṽ ∗

Mv = λv ⇔ ṼM (GT − λI)Ṽ ∗
Mv = 0 ⇔ ṼM (GT − λI)β = 0 ⇔ (GT − λI)β = 0,

this means that G̃ and GT have the same spectral set, which leads to the same spectral radius.

Moreover, since the Fourier transform is unitary, we have ρ(G) = ρ(G̃) = ρ(GT ) = ρ(G).

Then we obtain the following theorem addressing the convergence property of the waveform

relaxation method (4.1).

Theorem 4.1. Consider the linear variable-coefficient DAEs (1.1) on Hilbert space Lr
2(R) with

the facts that the kernel K̃(ω, ω′) ∈ Lr×r
2 (R2), f̃ ∈ null(K̃∗)⊥ and

{

(f̃ ,ũi)
σ̃i

}

∈ l2. Let

B(t) =MB(t)−NB(t), A(t) =MA(t)−NA(t),

be splittings of variable-coefficients B(t) and A(t) such that the kernels K̃M (ω, ω′), K̃N (ω, ω′) ∈
Lr
2(R

2), range(K̃N ) ⊆ range(K̃M ), f̃ ∈ null(K̃∗
M )⊥ and

{

(f̃ ,ũi,M )
σ̃i,M

}

∈ l2, then the waveform

relaxation method (4.1) can be written into the explicit operator form

x(k+1) = Gx(k) +Φf,

where G = F−1(I − P1,M )(K̃(Q)
M )−1K̃NF and Φ = F−1(I − P1,M )(K̃(Q)

M )−1F . Furthermore, if

the operator K̃M is degenerate, i.e., LM < ∞, the spectral radius of the iteration operator is

ρ(G) = ρ(G).

4.2. The Waveform Relaxation Methods in the Sense of Least Squares Solution

In order to derive the waveform relaxation methods in the sense of least squares solution,

we consider the least squares problem (3.9) which is equivalent to the following linear operator

equation of the first kind,

K̃∗K̃x̃ = K̃∗f̃ .

Assume that range(K̃M ) = range(K̃), then we have null(K̃∗
M ) = null(K̃∗), which leads to

K̃∗
M K̃x̃ = K̃∗

M f̃ .

By substituting the splitting of operator K̃ = K̃M − K̃N into the above equation, we obtain

K̃∗
M (K̃M − K̃N )x̃ = K̃∗

M f̃ .

Thus we can define the following iteration scheme,

K̃∗
M K̃M x̃

(k+1) = K̃∗
M K̃N x̃

(k) + K̃∗
M f̃

= K̃∗
M (K̃N x̃

(k) + f̃),
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which is equivalent to

‖K̃M x̃
(k+1) − (K̃N x̃

(k) + f̃)‖ = inf
ỹ∈L

r
2(R)

‖K̃M ỹ − (K̃N x̃
(k) + f̃)‖, (4.5)

or equivalently,

∥

∥

∥MB(t)ẋ
(k+1)(t) +MA(t)x

(k+1)(t)− (NB(t)ẋ
(k)(t) +NA(t)x

(k)(t) + f(t))
∥

∥

∥

= inf
y∈L

r
2(R)

∥

∥

∥
MB(t)ẏ(t) +MA(t)y(t) − (NB(t)ẋ

(k)(t) +NA(t)x
(k)(t) + f(t))

∥

∥

∥
. (4.6)

Assume that the kernels K̃M (ω, ω′), K̃N(ω, ω′) ∈ Lr
2(R

2), then the linear integral operators

K̃M and K̃N are compact on Hilbert space Lr
2(R). Assume that

{

(f̃ ,ũi,M )
σ̃i,M

}

∈ l2, together with

the fact range(K̃N ) ⊆ range(K̃M ), then we can prove that
{

(K̃N x̃(k)+f̃ ,ũi,M )
σ̃i,M

}

∈ l2. According to

the Theorem 3.2, the least squares problem in (4.5) is solvable. Therefore, the iteration scheme

(4.5) is well-defined.

We consider {x̃(k)} as the sequence generated by the least squares problem in the iteration

scheme (4.5) with the smallest norm, hence we have

x̃(k+1) = G̃x̃(k) + Φ̃f̃ , (4.7)

here G̃ = K̃†
M K̃N and Φ̃ = K̃†

M , or equivalently,

x(k+1) = Gx(k) +Φf,

here G = F−1K̃†
M K̃NF and Φ = F−1K̃†

MF . The iteration operator G̃ in (4.7) is bounded if and

only if K̃†
M is bounded, which is equivalent to K̃M being degenerate. Therefore, the integer LM

needs to be finite.

Now we discuss the convergence of the iteration scheme (4.5) with the assumption that

LM <∞. By applying (3.11), we obtain

ε(k+1) = G̃ε(k) =
LM
∑

j=1

ṽj,M
(K̃Nε

(k), ũj,M )

σ̃j,M
.

By denoting α(k) = (α
(k)
1 , . . . , α

(k)
LM

)T as the unique column vector such that

ε(k) = ṼMα
(k) =

LM
∑

i=1

α
(k)
i ṽi,M ,

here ṼM = (ṽ1,M , . . . , ṽLM ,M ). Similar to the Subsection 4.1, we have

α(k+1) = GTα(k),

where G = (gi,j)LM×LM
, gi,j =

(K̃N ṽi,M ,ũj,M )
σ̃j,M

, we can prove that ρ(G) = ρ(G).

Thus we summarize the following convergence theorem of the waveform relaxation method

(4.6).
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Theorem 4.2. Consider the least squares solution of the linear variable-coefficient DAEs (1.1)

on Hilbert space Lr
2(R) with the facts that the kernel K̃(ω, ω′) ∈ Lr×r

2 (R2) and
{

(f̃ ,ũi)
σ̃i

}

∈ l2.

Let

B(t) =MB(t)−NB(t), A(t) =MA(t)−NA(t),

be splittings of variable-coefficients B(t) and A(t) such that the kernels K̃M (ω, ω′), K̃N (ω, ω′) ∈
Lr
2(R

2), range(K̃M ) = range(K̃) and
{

(f̃ ,ũi,M )
σ̃i,M

}

∈ l2, then the waveform relaxation method

(4.6) can be written into the explicit operator form

x(k+1) = Gx(k) +Φf,

here G = F−1K̃†
M K̃NF and Φ = F−1K̃†

MF . Furthermore, if the operator K̃M is degenerate,

i.e., LM <∞, the spectral radius of the iteration operator is ρ(G) = ρ(G).

5. Numerical Results

In actual computation, it is infeasible to perform an infinite time simulation on computer.

Therefore, we choose a small linear system of differential-algebraic equations with variable

coefficients, and take long time simulation to illustrate the behavior of waveform relaxation

method.

Consider the initial value problem

(

a t
ea t 0

0 0

)(

ẋ1
ẋ2

)

+

(

2
ea t

sin(b t)
ea t

sin(b t)
ea t

2
ea t

)

(

x1
x2

)

=

(

2
e2 a t − a2 t

e2 a t +
sin(b t)2

ea t (a2 t2+1)
sin(b t)
e2 a t + 2 sin(b t)

ea t (a2 t2+1)

)

, (5.1)

with the initial conditions x1(0) = 1 and x2(0) = 0. Here, the real part of the constant a is

positive, and the constant b is real. In our tests, b is chosen to be b = 1. The exact solutions of

(5.1) are x⋆1(t) = e−a t and x⋆2(t) =
sin(b t)
a2 t2+1 . The single SOR waveform relaxation (SSORWR)

method is employed to solve this problem, i.e., the splittings of the corresponding coefficients

are given by

MB =

(

a t
ea t 0

0 0

)

, NB =

(

0 0

0 0

)

,

MA =
1

τ

(

2
ea t 0

0 2
ea t

)

−
(

0 0

− sin(b t)
ea t 0

)

,

NA =
1− τ

τ

(

2
ea t 0

0 2
ea t

)

+

(

0 − sin(b t)
ea t

0 0

)

.

We solve the DAEs (5.1) on time interval Ωt = [0, T ], where T = △t× ℓt, △t = 0.01 is the

time stepsize and ℓt represents the number of time steps. Here, we choose the parameter τ = 1,

and the constant a = 1
T
. In Figs. 5.1 and 5.2, we plot the error ǫ

(k)
2 of the second component

of the iterate after 0, 1, 2 and 3 iteration steps for ℓt = 5000 and ℓt = 80000, respectively. In

both figures, we see that the errors decrease rapidly along the whole time interval Ωt during the

iteration process. Moreover, The upper bound of the error decreases monotonously after every
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Fig. 5.1. The error ǫ
(k)
2 after k iterations for 5000 time steps and τ = 1: (a) k = 0; (b) k = 1; (c) k = 2;

(d) k = 3.

Table 5.1: Number of iterations of the SSORWR method for different τ and time intervals.

NTS 5000 10000 20000 40000 80000

Interval [0, 50.0] [0, 100.0] [0, 200.0] [0, 400.0] [0, 800.0]

τ = 0.25 93 93 93 93 93

τ = 0.50 40 40 40 40 40

τ = 0.75 22 22 22 22 22

τ = 1.00 11 11 11 11 11

τ = 1.25 11 11 11 11 11

τ = 1.50 22 22 22 22 22

τ = 1.75 57 59 59 59 59

iteration. We remark that the situation for ǫ
(k)
1 of the first component of the iterate is similar.

Hence, we can expect that the SSORWR method is convergent on an infinite time interval.

In Table 5.1, we show the number of iterations of the SSORWR method based on different

τ ’s and different time intervals. The stopping criterion is defined as

sup
t∈Ωt

{

|ǫ(k)1 |, |ǫ(k)2 |
}

< 10−6.

The SSORWR method converges for all the different cases. We see that the number of

iterations of the SSORWR method keeps all most the same while the length of time interval

increases 15 times for different τ ’s, i.e., the length increases from 50 to 800. Fig. 5.3 shows the
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Fig. 5.2. The error ǫ
(k)
2 after k iterations for 80000 time steps and τ = 1: (a) k = 0; (b) k = 1; (c)

k = 2; (d) k = 3.
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Fig. 5.3. Number of iterations versa parameter τ in the case of 20000 time steps.
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Fig. 5.4. Convergence history for different τ in the case of 20000 time steps.

curve of number of iterations versa parameter τ in the case of 20000 time steps. Obviously, the

optimal parameter is around 1. In Fig. 5.4, the convergence history of the SSORWR method for

different τ is plotted in the case of 20000 time steps. The scale of the residual is logarithmic. We

see that the SSORWR method is linearly convergent for all τ ’s. We remark that the situation

for other cases, i.e., different number of time steps, is similar.
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EMS Publishing House, Zürich, Switzerland, 2006.

[17] R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1999.

[18] E. Lelarasmee, A. Ruheli and A.L. Sangiovanni-Vincentelli, The waveform relaxation method

for time-domain analysis of large scale integrated circuits, IEEE Trans. Computer-Aided Design

Integrated Circuits Systems, CAD-1 (1982), 131-145.

[19] F.L. Lewis, A survey of linear singular systems, Circuits Systems Signal Process., 5 (1986), 3-36.

[20] D.G. Luenberger, Dynamic equations on descriptor form, IEEE. Trans. Automat. Control, AC-22

(1977), 312-321.

[21] U. Miekkala, Dynamic iteration methods applied to linear DAE systems, J. Comput. Appl. Math.,

25 (1989), 133-151.

[22] U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value prob-

lem, SIAM J. Sci. Stat. Comput., 8 (1987), 459-482.

[23] J.-Y. Pan and Z.-Z. Bai, On the convergence of waveform relaxation methods for linear initial

value problems, J. Comp. Math., 22 (2004), 681-698.

[24] J.-Y. Pan, Z.-Z. Bai and M.K. Ng, Two-step waveform relaxation methods for implicit linear

initial value problems, Numer. Linear Algebra Appl., 12 (2005), 293-304.

[25] L.R. Petzold and C.W. Gear, ODE methods for the solution of differetial/algebraic systems,

Sandia Reports, 82-8051, 1982.

[26] J. Wang and Z.-Z. Bai, Convergence analysis of two-stage waveform relaxation method for the

initial value problems, Appl. Math. Comput., 172 (2006), 797-808.


