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Abstract

The orthogonal nonnegative matrix factorization (ONMF) has many applications in a

variety of areas such as data mining, information processing and pattern recognition. In

this paper, we propose a novel initialization method for the ONMF based on the Lanc-

zos bidiagonalization and the nonnegative approximation of rank one matrix. Numerical

experiments are given to show that our initialization strategy is effective and efficient.
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1. Introduction

Let m and n be two integers, denote by R
m,n
+ the set of all m × n nonnegative matrices.

The nonnegative matrix factorization (NMF) problem means that for given A ∈ R
m,n
+ and

k ≪ min(m,n), finding W ∈ R
m,k
+ and H ∈ R

k,n
+ such that

A ≈ WH. (1.1)

That is, finding two nonnegative matrices of low rank W and H , such that their product is

an approximation of a given nonnegative matrix A in some distance metrics (in this paper,

the distance metric will be the Frobenius norm ‖.‖F ) [14]. The NMF, or approximation of

a nonnegative matrix, has become a useful tool in a large applications, such as, images pro-

cessing, text mining and space situation alertness. Scientific literature and soft tools [4] on

the subject and variants thereof are rapidly expending. The orthogonal nonnegative matrix

factorization (ONMF), where an orthogonality constraint is imposed on a factor (W or H) in

the decomposition (1.1), was shown to provide a more clear interpretation on a link between

clustering and matrix decomposition [5]. Multiplicative updates for the NMF with preserving

orthogonality were recently proposed in [3]. Numerical experiments on face image data for an

image representation task show that the ONMF algorithm preserves the orthogonality, while
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the goodness-of-fit (GOF) is minimized. In [3], the GOF is compared with standard NMF. As

this is not the point of this paper, we will not describe it in details.

To speed up the convergence of the NMF methods and the minimization of the objective

function, most research papers to date for the NMF algorithms have discussed the need to

investigate good initialization strategies [1]. However, few of them mentioned the initialization

of the ONMF. Therefore, in this paper, we propose a novel initialization algorithm for the

ONMF based on the Lanczos algorithm and nonnegative approximation of rank one matrices

(see [2]). The proposed algorithm has some good features: it can be combined with all ONMF

algorithms and allows a little randomization by free choice of the initial vectors in the Lanczos

process. Moreover, our initialization can preserve some original information from given data.

From our numerical experiments, it is seen that the initialization algorithm work effectively and

efficiently.

The rest of this paper is organized as follows. Section 2 reviews the Lanczos bidiagonalization

process to get a low-rank approximation of a nonnegative matrix. Section 3 presents and

analyzes our algorithm. In section 4, we give some numerical experiments to demonstrate our

algorithms. The last section provides some conclusion.

2. Lanczos Bidiagonalization

Since the ONMF is a constrained low-rank approximation problem of a matrix, we need to

seek an initialization strategy among alternative low-rank factorizations. For such a problem,

the following Eckart-Young theorem [12] is important.

Theorem 2.1. Let A ∈ R
m,n have the singular values decomposition (SVD)

A = PΣQT , Σ = diag(σ1, σ2, · · · , σn) ∈ R
m,n,

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values of A, P ∈ R
m,m and Q ∈ R

n,n are

orthogonal matrices. Then for 1 ≤ r ≤ n, the matrix

Ar = Pdiag(σ1, · · · , σr , 0, · · · , 0| {z }
n−r

)QT (2.1)

is a global minimize of the optimization problem

min
n
‖A−B‖2F |B ∈ R

m,n, rank(B) ≤ r
o

(2.2)

with the corresponding minimum value
Pn

i=r+1 σ
2
i . Moreover, if σr > σr+1, then Ar is the

unique global minimizer.

It follows from Theorem 1 that once the SVD of a matrix A is available, the best rank r

approximation Ar of A is easily computed. When A is large, however, computing the SVD of

A can be costly. If we are only interested in some Ar with r ≪ min(m,n), the computation

of the complete SVD of A is rather wasteful. It is therefore desirable to develop less expensive

alternatives for computing a good approximation of Ar. In this section, we show that we can

obtain a good low-rank nonnegative approximation of a nonnegative matrix A directly from

the Lanczos bidiagonalization process without computing the SVD of A.

In the following, we describe the Lanczos bidiagonalization process presented in [11, 20].
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Let b be a starting vector, for i = 1, 2, · · · , k, compute

β1u1 = b, α1v1 = ATu1, βi+1ui+1 = Avi − αiui, αi+1vi+1 = ATui+1 − βi+1vi. (2.3)

In (2.3), αi and βi should be chosen such that ‖ui‖2 = ‖vi‖2 = 1, so they can be positive

or negative. However, for our application (see next section), we shall choose αi and βi to be

positive.

In compact matrix form (2.3) can be written as

Uk+1(β1e1) = b, AVk = Uk+1Bk+1(:, 1 : k), ATUk = Vk+1B
T
k+1, (2.4)

where Bk+1 ∈ R
(k+1),(k+1) is lower bidiagonal,

Bk+1 =

26664α1

β2 α2

. . .
. . .

βk+1 αk+1

37775 ,

Uk+1 = [u1, u2, · · · , uk+1],

Vk+1 = [v1, v2, · · · , vk+1],

and Bk+1(:, 1 : k) is Bk+1 with the last column deleted.

If we hope to find a few dominant singular value triplets of A, we must compute the SVD

of Bk in (2.4). The singular values of Bk are used as approximations of the singular values of

A, and the singular vectors of Bk are combined with left and right Lanczos vectors {ui}
k
1 and

{vi}
k
1 to form approximations of the singular vectors of A [9].

As we are only interested in finding a low-rank approximation of A, it is expected that a

cheaper and more direct approach is used without computing the SVD of Bk. So it is quite

natural to choose

Jk = UkBkV
T
k (2.5)

as a rank-k approximation of A. It is obvious that if αi > 0, i = 1, · · · , k, then rank(Jk) = k.

Let Aj be defined in (2.1). It was showen in [20] that for any k > j, ||A− Jk||
2
F will approach

||A−Aj ||
2
F when k gets large. Furthermore, [20] gave many examples that illustrate even for a

k that is only slightly larger than j, ||A− Jk||
2
F is already very close to ||A−Aj ||

2
F .

Following the error analysis in [18], it is straightforward to show that in finite precision

arithmetic, (2.4) become

Ûk+1(β̂1e1) = b, ÂV̂k = Ûk+1B̂k+1(:, 1 : k) + Fk, ÂT Ûk+1 = V̂k+1B̂
T
k+1 +Gk+1, (2.6)

where ‖Fk‖ = O(‖A‖F ǫM ) and ‖Gk+1‖ = O(‖A‖F ǫM ) with ǫM the machine epsilon, and

Fi = [f1, f2, · · · , fi], Gi = [g1, g2, · · · , gi].

In (2.6), by adding “ˆ”, we denote the computed version of a quantity.

In [20], the authors further discussed stopping criterion (ωk=‖A − Jk‖F ≤ tol, tol is a

user supplied tolerance) of the Lanczos process and reorthogonalization process to maintain an

adequate level of orthogonality (see [20]). But, for our application, once the low rank k is given,

the orthogonality is not so important.

The following Lanczos bidiagonalization process is that our initialization method described

in next section needs.
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Algorithm 2.1 Lanczos bidiagonalization process in Matlab notation

Inputs: Matrix A ∈ Rm,n
+ , positive vector b ∈ Rm

+ , integer 0 < k < min(m,n).

Outputs: Rank-k matrix U ∈ Rm,k, B ∈ Rk,k
+ , V ∈ Rk,n.

1. β = norm(b); u = b/β; v = ATu; α = norm(v); v = v/α; B(1, 1) = α;

2. U = [u]; V = [v];

3. for j = 2 : k

u = A ∗ v − α ∗ u; β = norm(u); u = u/β; B(j, j − 1) = β; U = [U, u];

v = AT ∗ u− β ∗ v; α = norm(v); v = v/α; B(j, j) = α; V = [V, v].

end

3. Initialization of (W,H)

For convenience, we denote by A ≥ B the componentwise inequality αi,j ≥ βi,j for all

elements of (equisized matrices) A,B. Given any vector or matrix variable X, its “positive

section”, X+ ≥ 0, will be defined to be the vector or matrix of the same size that contains the

same values as X where X has nonnegative elements and 0 elsewhere. The “negative section”

of X will be the matrix X− = X+ − X , where again X− ≥ 0. It follows that any vector or

matrix X can be written as X = X+ −X−, and if X ≥ 0 then X− = 0.

Based on the above Lanczos bidiagonalization process, in this section we present a method

for initialization of (W,H) in the decomposition (1.1) that turns out to be quite effective. Our

strategy is similar to the strategy used in [2], so we first review some results given in [2].

Lemma 3.1. For any matrix C ∈ R
m,n of rank one, rank(C+) ≤ 2, rank(C−) ≤ 2.

Lemma 3.2. Assume C ∈ R
m,n has unit rank, so that C = uvT for some u ∈ R

m, v ∈ R
n. Let

also û± := u±/‖u±‖, v̂± := v±/‖v±‖ be the normalized positive and negative sections of u and

v, and σ± = ‖u±‖‖v±‖ and η± = ‖u±‖‖v∓‖. Then the unordered singular value expansions of

C+ and C− are

C+ = σ+û+v̂
T
+ + σ−û−v̂

T
−, C− = η+û+v̂

T
− + η−û−v̂

T
+. (3.1)

Furthermore, the maximum singular triplet of C+ is (σ+, û+, v̂+) if

σ+ = max
�
‖u+‖‖v+‖, ‖u−‖‖v−‖

�
;

otherwise it is (σ−, û−, v̂−). Similarly, the maximum singular triplet of C− is (η+, û+, v̂−) if

η+ = max
�
‖u+‖‖v−‖, ‖u−‖‖v+‖

�
;

otherwise it is (η−, û−, v̂+).

Lemma 3.3. Given C ∈ R
m,n having unit rank. If C contains both positive and negative

elements, then rank(C+) = rank(C−) = 2. If C ≥ 0 (resp. C ≤ 0) then rank(C+) = 1 (resp.

rank(C−) = 1 ).

Lemma 3.4. If C ∈ R
m,n satisfying rank(C) = 1, then C+ = argminG∈R

m,n
+ ‖C −G‖F .
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From these lemmas, we know that the best (in terms of the Frobenius norm) nonnegative

approximation of the unit rank matrix C = uvT would be C+.

Now we derive our initialization algorithm. From now on, we assume that the given matrix

A is nonnegative. In Algorithm 2.1, we always take a positive vector b as the starting vector and

set αi > 0, βi > 0. Since A is nonnegative, the vectors u1 and v1 are nonnegative. However,

this can not guarantee that Jk of (2.5) produced from Algorithm 2.1 is nonnegative. So we

has to use a modification of Jk that will finally produce a nonnegative approximation of the

nonnegative matrix A. For this, rewrite Jk as

Jk = UkBkV
T
k = [u1, u2, · · · , uk]

26664α1

β2 α2

. . .
. . .

βk αk

3777526664v1v2...
vk

37775 ,

= [u1, · · · , uk]

26664α1

α2

. . .

αk

3777526664v1v2...
vk

37775+ [u1, · · · , uk]

26664 0

β2 0
. . .

. . .

βk 0

3777526664v1v2...
vk

37775 ,

=
kX

i=1

αiCi +
k−1X
i=1

βi+1Di,

(3.2)

where Ci = uiv
T
i and Di = ui+1v

T
i are rank one matrices.

Let Ci = Ci+ − Ci− and Dj = Dj+ − Dj−. Define {σj(Ci+),mj(Ci+), nj(Ci+)} and

{µl(Dj+), xl(Dj+), yl(Dj+)} as the singular triplets of Ci+ and Dj+ by nonincreasing order,

respectively. Then we have

Jk =
kX

i=1

αiuiv
T
i +

k−1X
i=1

βi+1ui+1v
T
i ,

=
kX

i=1

αiCi +
k−1X
i=1

βi+1Di,

= α1C1 +
kX

i=2

αiCi+ −
kX

i=2

αiCi− +
k−1X
i=1

βi+1Di+ −
k−1X
i=1

βi+1Di−,

= α1C1 +
kX

i=2

αiσ1(Ci+)m1(Ci+)n1(Ci+)
T +

k−1X
i=1

βi+1µ1(Di+)x1(Di+)y1(Di+)
T + E,

where

E =
kX

i=2

αi

�
σ2(Ci+)m2(Ci+)n2(Ci+)

T − Ci−

�
+

k−1X
i=1

βi+1

�
µ2(Di+)x2(Di+)y2(Di+)

T −Di−

�
.

Thus, we can choose initial value of (W,H) such that

WH = α1C1 +
kX

i=2

αiσ1(Ci+)m1(Ci+)n1(Ci+)
T +

k−1X
i=1

βi+1µ1(Di+)x1(Di+)y1(Di+)
T

= Jk − E.

(3.3)
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Define Ê = A−Jk = A− (WH+E), R = A−WH = Ê−E. and set ωk = ‖A−Jk‖F < tol

(tol is a user supplied tolerance). We have

Proposition. Given A ∈ R
m,n
+ , and suppose that the pair (W,H) is initialized by (3.3). Then

the Frobenius norm of R = A−WH is bounded by

‖E‖F ≤ ‖R‖F ≤ ‖Ê‖F + ‖E‖F ≤ tol + ‖E‖F .

Though the upper bounds are loose, it indicates that the residual is bounded. Of far greater

interest is that, in practice, by applying our initial strategy only few iterations can drive the

residual down to a magnitude that is very close to the one we would have obtained has we applied

the underlying ONMF algorithms with random initialization but for many more iterations.

The two major computational steps of our initial strategy are

(i) running k-step of Lanczos bidiagonalization process to get the matrix Jk of (2.5),

(ii) computing the nonnegative approximation matrices (W,H) from (3.3).

Note that from Lemma 3.2, it is not necessary for us to do really SVD to {Ci+} and {Di+}.

Thus, from the above analysis, we can deduce the overall cost for our initialization strategy on

dense matrix A is O(kmn).

The preceding results constitute the theoretical foundation of our initialization method,

which can be implemented as in the following algorithm.

Algorithm 3.1. Lanczos based initialization algorithm in Matlab notation.

Inputs: Matrix A ∈ Rm,n
+ , positive vector b, integer 0 < k < min(m,n).

Outputs: Rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ .

1. Run Algorithm 2.1 to get rank-k matrices U ∈ Rm,k, V ∈ Rk,n.

2. Initialize W (:, 1) = U(:, 1);H(1, :) = V (:, 1)′;

for i = 2 : k

3. uu = U(:, i); vv = V (:, i); vv1 = V (:, i− 1);

4. uup = pos(uu);uun = neg(uu); vvp = pos(vv); vvn = neg(vv);

5. vvp1 = pos(vv1); vvn1 = neg(vv1);

6. nuup = norm(uup);nvvp = norm(vvp);nuun = norm(uun);

7. nvvn = norm(vvn);nvvp1 = norm(vvp1);nvvn1 = norm(vvn1);

8. termp = nuup ∗ nvvp; termn = nuun ∗ nvvn;

9. termp1 = nuup ∗ nvvp1; termn1 = nuun ∗ nvvn1;

10. if (termp>=termn) W (:, i) = B(i, i) ∗ uup/nuup; H(i, :) = vvp′/nvvp;

else W (:, i) = uun/nuun; H(i, :) = vvn′/nvvn;

end

11. if (termp1>=termn1) W (:, i) = W (:, i) + uup/nuup;

H(i, :) = H(i, :) + vvp1′/nvvp1;

else W (:, i) = W (:, i) + uun/nuun; H(i, :) = H(i, :) + vvn1′/nvvn1.

end

end

In Algorithm 3.1, functions pos and neg extract the positive and negative sections of

their argument. [Ap] = pos(A) returns Ap = (A >= 0). ∗ A, and [An] = neg(A) returns
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An = (A < 0). ∗ (−A).

The ONMF is the NMF with orthogonality on either the factor W or H [6, 7] in the de-

composition (1.1). For example, the objective functions for one-side ONMF with respect to the

factor W is symbolically written as

F = min ‖ A−WH ‖2F , s.t WTW = I, W ≥ 0, H ≥ 0, (3.4)

where I is the identity matrix.

By introducing the Lagrangian multiplier, the approximate solution to the constrained op-

timization problem (3.4) can be found. The multiplicative update rules for (3.4) are computed

as follows [7]:

W = W. ∗ ((AHT )./(WWTAHT ))η, (3.5)

H = H. ∗ (WTA)./(WTWH). (3.6)

Where η is a constant, .∗ and ./ denote elementwise multiplication and division. Thus we obtain

the ONMF algorithm which constraints orthogonality of the factor W , which will be called the

ONMFWη algorithm.

ONMFWη algorithm (ONMF algorithm with factor W orthogonally constrained)

Inputs: Matrix A ∈ Rm,n
+ , positive vector b ∈ Rm

+ , integer 0 < k < min(m,n)

and coefficient η.

Outputs: Rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ .

1. Choose randomly rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ ;

2. Update W and H with update rule (3.5) and (3.6) until convergence.

Similarly, the objective functions for one-side ONMF with respect to the factor H is sym-

bolically written as

F = min ‖ A−WH ‖2F , s.t HHT = I, W ≥ 0, H ≥ 0. (3.7)

The multiplicative update rules for (3.7) are

W = W. ∗ (AHT )./(WHHT ), (3.8)

H = H. ∗ ((WTA)./(WTAHTH))η. (3.9)

Also, we can obtain the ONMF algorithm which constraints orthogonality of the factor H ,

which is called the ONMFHη algorithm.

ONMFHη algorithm (ONMF algorithm with factor H orthogonally constrained)

Inputs: Matrix A ∈ Rm,n
+ , positive vector b ∈ Rm

+ , integer 0 < k < min(m,n)

and coefficient η.

Outputs: Rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ .

1. Choose randomly rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ ;

2. Update W and H with update rule (3.8) and (3.9) until convergence.

By combining the initialization strategy (algorithm 3.1) described in previous section with

the update rules (3.5), (3.6), we can deduce an algorithm for the ONMF which constraints

orthogonality of the factor W . This algorithm is called the LanIN ONMF Wη algorithm.
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Algorithm 3.2. ( LanIN ONMF Wη algorithm).

Inputs: Matrix A ∈ Rm,n
+ , positive vector b ∈ Rm

+ , integer 0 < k < min(m,n) and

coefficient η.

Outputs: Rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ .

1. Run Algorithm 2.1 and Algorithm 3.1 to get rank-k matrices B ∈ Rk,k
+ , W ∈

Rm,k
+ , H ∈ Rk,n

+ .

2. Initialize d = norm(W (:, 1));D = [d];W (:, 1) = W (:, 1)/d;

for i=2: k

d = norm(W (:, i));W (:, i) = W (:, i)/d;

D = [D, d];

end

H = diag(D) ∗B ∗H ;

3. Update W and H with update rule (3.5) and (3.6) until convergence.

Similar to Algorithm 3.2, we deduce an algorithm in which the factor H is constrained to

be orthogonal, and we call this algorithm the LanIN ONMF Hη algorithm.

Algorithm 3.3. ( LanIN ONMF Hη algorithm).

Inputs: Matrix A ∈ Rm,n
+ , positive vector b ∈ Rm

+ , integer 0 < k < min(m,n) and

coefficient η.

Outputs: Rank-k nonnegative matrices W ∈ Rm,k
+ and H ∈ Rk,n

+ .

1. Run Algorithm 2.1 and Algorithm 3.1 to get rank-k matrices B ∈ Rk,k
+ , W ∈

Rm,k
+ , H ∈ Rk,n

+ .

2. Initialize c = norm(H(1, :));C = [c];H(1, :) = H(1, :)/c;

for i=2: k

c = norm(H(i, :));H(i, :) = H(i, :)/c;

C = [C, c];

end

W = W ∗B ∗ diag(C);

3. Update W and H with updating rules (3.8) and (3.9) until convergence.

4. Numerical Experiments

From previous sections, we can see that our initialization method can readily be combined

with all existing ONMF algorithms. Moreover, our initialization method may have a little

random since the starting vector b can be randomly chosen and multiple runs are allowed.

Table 4.1: Example 2: Comparison the objective value and orthogonality between our strategy and the

original algorithms without initialization.

k iterations objective value orthogonality

ONMFW0.5 10 600 149.9801 0.6848

LanIN ONMFW0.5 10 600 147.9692 0.6718

ONMFW1 5 200 105.5465 0.6193

LanIN ONMFW1 5 200 105.4855 0.5129
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Fig. 4.1. Example 1: Comparison of objective function (left) and orthogonality of W (right) for CBCL

images between LanIN ONMFW0.5 algorithm and ONMFW0.5 algorithm.

By choosing different starting vector b > 0 in Lanczos process, our algorithms may produce

different (W,H). However, in the following experiments, we always take b = (1, 1, · · · , 1)T .

The objective function, orthogonality measure for W and H are chosen as (||A − W ∗ H ||F ),

(||eye(k)−WT ∗W ||2) and (||eye(k)−HT ∗H ||2), respectively. All computation is done using

Matlab version 7 on an Gennuine Intel(R) CPU @1.86G HZ, 1.5 EMS memory computer. In

all experiments, we fill in the zeros with random values in the space: [0:average/100].

Taking the coefficient η = 0.5 and η = 1, we do several experiments to compare the ONMF

algorithms with the initialization ( LanIN ONMFWη and LanIN ONMFHη) with those without

the initialization ( ONMFWη and ONMFHη).

Example 1. Consider the CBCL images (http://cbcl.mit.edu/ cbcl/software-datasets/FaceDa

ta2.html), which is a 361 × 2429 matrix. Figs. 4.1 and 4.2 depict the experiment results with

the LanIN ONMFW0.5 algorithm and ONMFW0.5 algorithm. The parameter (rank) k is 10 and

iteration number is 600. Naturally, we select W = rand(361, k), H = rand(k, 2429) as initial

pair (W,H) in ONMFW0.5 algorithm.

Fig. 4.2. Example 1: Approximation on CBCL images using ONMFW0.5 algorithm (left) and LanIN

ONMFW0.5 algorithm (right).
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Fig. 4.3. Example 2: Comparison of objective function (left) and orthogonality of W (right) for CBCL

images between LanIN ONMFW1 algorithm and ONMFW1 algorithm.

Example 2. We use the same data set as in Example 1, and we compare the ONMFW1

algorithm with LanIN ONMFW1 algorithm. The parameter (rank) k is 5 and the iteration

number is 200. We select W = rand(361, k), H = rand(k, 2429) as initial pair (W,H) in the

ONMFW1 algorithm. Figs. 4.3 and 4.4 present the results.

It is observed from Figs. 4.1–4.4 and Table 4.1 that the objective function value and the

Fig 4.4. Example 2: Progress of approximations on CBCL images (from 16th to 20th images) using:

ONMFW1 algorithm (left) and LanIN ONMFW1 algorithm (right). Row correspond to 0, 20, 50, 80,

100 and 200 iterations using k = 5.
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Fig 4.5. Example 3: Comparison of objective function (left) and orthogonality of H (right) for Kuls

images between LanIN ONMFH0.5 algorithm and ONMFH0.5 algorithm.
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Fig 4.6. Example 4: Comparison of objective function (left) and orthogonality of H (right) for Kuls

images between LanIN ONMFH1 algorithm and ONMFH1 algorithm.

orthogonality using initialization can converge much faster than that without the initialization.

The approximation images of the LanIN ONMFW0.5 and LanIN ONMFW1 also are seen to

contain more original image information than those of the ONMFW0.5 and ONMFW1.

Example 3. In the third example, the data set is Kuls illuminated faces in [15] (it is a

4096×20matrix). Fig. 4.5 depicts the results with LanIN ONMFH0.5 algorithm and ONMFH0.5

algorithm. The parameter (rank) k is 3 and iteration number is 600. Also, we select W =

rand(4096, k), H = rand(k, 20) as initial pair (W,H) in ONMFH0.5 algorithm.

Example 4. In this example, we use same data set as in Example 3. The difference here is that

we compare the ONMFH1 algorithm with LanIN ONMFH1 algorithm. The parameter (rank)

k is 3 and the iteration number is 300. We select W = rand(4096, k), H = rand(k, 20) as initial

pair (W,H) in the ONMFH1 algorithm. Fig. 4.6 presents the results of the two algorithms.

It is seen from above experiments that aided with our initialization method, the objective

function values and the orthogonality can converge much faster and the approximation images
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Fig 4.7. Example 4: Left: original Kuls images; center: approximation on Kuls images using

ONMFH1 algorithm; right: approximation on Kuls images using LanIN ONMFH1 algorithm.

can also get more original information from the original images. It implies that our initialization

strategy works effectively and efficiently.

5. Conclusion

Based on the Lanczos bidiagonalization process and nonnegative approximation of rank-one

matrix, we derive an effective initialization algorithm for the orthogonal nonnegative factoriza-

tion of a nonnegative matrix. This algorithm can readily be combined with the existing ONMF

algorithms and contains a little random because of free choice of the starting vector b. It is

seen from the numerical experiments that our initialization strategy combines with the exist-

ing ONMF algorithms can converge much faster and works better than the ONMF algorithms

without the initialization.

It is easy to know from the above discussion that the initialization strategy can also ap-

ply to other nonnegative matrix factorization, for example, the orthogonal nonnegative tri-

factorizations proposed in [5]. It is a decomposition with orthogonality on both of the factors

W and H . Similarly, the initialization method is applicable when a nonnegative symmetric A

needs a nonnegative symmetric decomposition.
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