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Abstract

A robust and reliable parameter estimation is a critical issue for modeling in immunol-

ogy. We developed a computational methodology for analysis of the best-fit parameter

estimates and the information-theoretic assessment of the mathematical models formu-

lated with ODEs. The core element of the methodology is a robust evaluation of the first

and second derivatives of the model solution with respect to the model parameter values.

The critical issue of the reliable estimation of the derivatives was addressed in the context

of inverse problems arising in mathematical immunology. To evaluate the first and second

derivatives of the ODE solution with respect to parameters, we implemented the vari-

ational equations-, automatic differentiation and complex-step derivative approximation

methods. A comprehensive analysis of these approaches to the derivative approximations

is presented to understand their advantages and limitations.

Mathematics subject classification: 34K29, 92-08, 65K10.
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1. Introduction

Mathematical immunology represents a rapidly growing field of applied mathematics. The

key features of the immune system that make call for the application of mathematical modeling

tools are: physical complexity, compartmental structure, non-linear response, threshold-type of

regulation, memory or time-lag effects, inter-clonal competition and selection, redundancy [3].

Most mathematical models of immune responses are not obtained from first principles and

therefore the model structure usually has no a priori proof of validity. The key elements of the

data- and science-driven application of mathematical modeling to immunology are:

(i) more than one model may correspond to a particular phenomenon;

(ii) the computational techniques permit, given data of appropriate quality, to discriminate

between rival mathematical models.

Given a number of candidate models, one needs for each model to determine a set of actual

parameters that is in a well-defined sense optimal and to order the resulting set of optimally

parameterized models to indicate which is most appropriate, given the data [3].
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The last decade of research in immunology is characterized by a tremendous advance in the

high-throughput experimental technologies yielding detailed information on the system state

at various levels of resolution. This calls for a need to further advance the computational

techniques for parameter estimation and a multiscale analysis of immunological phenomena. In

our previous studies [4, 8–10, 14–16], we treated parameter estimation problems for models in

immunology formulated by systems of ordinary, delay or partial differential equations, using

different types of experimental data sets. Our experience led us to conclude that there is a set

of rather common features of the parameter estimation problems in immunology:

(i) a lack of uniqueness of the solution to the inverse problem,

(ii) a high sensitivity to the errors in experimental data,

(iii) a poor practical identifiability of some of the model parameters.

The above difficulties, in part, result from an inconsistency between the information content

of the data available and the ad hoc formulated parametric structures of the phenomenological

mathematical models. The primary objective of this study is to propose an efficient computa-

tional technology for treating the parameter estimation problems appearing in mathematical

immunology. Since the parameter estimation problem is essentially an optimization problem,

the numerical accuracy and the computational cost of the evaluation of gradient, Jacobian-

and Hessian matrices of the objective function represent the crucial factors. Therefore, an

accurate and low-cost numerical approximation of the first and second derivatives of a model

solution with respect to the model parameters are the key issues. So far, they have not been

systematically addressed in the context of the inverse modeling in immunology.

In this study, we analyzed the existing approaches to derivative approximation: the conven-

tional finite-differences method and the variational equations technique, which are broadly used

since a long time, and the automatic differentiation (AD) and complex-step derivative approx-

imation (CSD) methods, which came into focus of the numerical community only recently. We

examined the efficiency and limitations of these methods in the context of the parameter esti-

mation problems. The corresponding codes were implemented in Matlab. Note that during last

years several AD packages have been introduced in Matlab [2]. The recently developed Matlab

package PMAD [22] is meant for computing first derivatives of an analytic function by the CSD

method. However, we are interested in developing a consistent and compact software which

should be most efficient for solving the parameter estimation problems arising in immunology.

Most parameter estimation problems in mathematical immunology lead to minimization

of a sum of squares of nonlinear functions subject to certain constraints on the estimated

parameters. To solve the corresponding least-squares problems, we implemented the constrained

Gauss-Newton method. To characterize the uncertainty in the parameter estimates, we used

the variance-covariance and profile-likelihood-based methods. We show that the availability of

the tools for computing accurate numerical derivatives allows one to perform a more thorough

analysis of the parameter estimation problem, e.g. to examine the practical identifiability of the

model parameters and their sensitivity to the data, to refine the model structure according to

the data available.

In the next section we describe the key elements of the computational technology we propose

for solving the parameter estimation problems arising in immunology. The numerical methods

which can be used for approximating the derivatives of a model solution with respect to the

model parameters are described in section 3. The comparative performance of the implemented
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methods is presented in section 4. In addition, we address the more fundamental modeling issues

such as the information-theoretic model ranking and refinement. Some concluding remarks will

be made in the final section.

2. Framework for Parameter Estimation

In this section we briefly outline the computational methodology for the parameter esti-

mation and uncertainty analysis for models in immunology formulated as systems of nonlinear

ordinary differential equations (ODEs). The ODE-based models represent the most numerous

class of systems used in mathematical immunology (see for review [3]). The corresponding

initial value problem (IVP) can be specified as follows: to solve for y(t)

dy

dt
(t) = f(t,y(t),p), t ≥ 0, y(t0) = y0, y ∈ R

n, p ∈ R
np , (2.1)

where y0 is a vector of initial data and p is a vector of the model parameters to be estimated. To

solve numerically the IVP one can use one of the solvers from the Matlab ODE Suite. Recently,

a new code, BV78, was developed to solve ODEs by the Runge-Kutta method based on (7,8)

pair [23]. Notice that the new vectorization facility of BV78 speeds up the time integration

significantly if the user codes the function f in such a matrix form that allows to evaluate f for

k arguments (needed in the Runge-Kutta method used) simultaneously, i.e., if f is coded as an

n-by-k matrix with y ∈ R
n×k.

2.1. Maximum likelihood approach

To estimate the model parameters, one looks for a vector of best-fit parameters p∗ ∈ R
np , for

which the model solution y(t) of (2.1) fits the data in an optimal way. The maximum likelihood

(ML) approach provides a general framework for optimal parameter estimation, uncertainty

analysis and information-theoretic ranking of the parameterized models. The ML formulation

allows one to compute the model parameters by maximizing the likelihood that the data did

arise from the model. To implement the maximum likelihood approach, we assume that (i)

the observational errors, i.e. the residuals defined as a difference between observed and model-

predicted values, are normally distributed; (ii) the errors in observations at successive times

are independent; (iii) the errors in the components of the state vector are independent; (iv)

the variance of observation errors (σ2) is the same for all the state variables and observation

times. For a more general treatment we refer to [5]. Under these conditions, the log-likelihood

function specifying the probability of observing the given data set is given by

ln(L(p;σ)) = −0.5
(

nd ln(2π) + nd ln(σ
2) + σ−2Φ(p)

)

,

where Φ(p) =

nd
∑

j=1

r2j (p) = ||r(p)||22.

Here nd is the number of measurements, Φ(p) is an ordinary least-squares function, rj : R
np →

R, usually called a residual, is, in general, a twice continuously differentiable function, and we

assume that nd ≥ np, see [4, 5] for further details.

The problem of maximizing the likelihood function is equivalent to that of minimizing Φ(p),

provided that σ2 is assigned the value σ∗
2

= Φ(p∗)/nd, which follows from the optimality
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condition ∂(ln(L(p∗;σ)))/∂σ2 = 0. Here p∗ = argminpΦ(p). If constraints on the model

parameters are imposed, one needs to deal with a constrained nonlinear least-squares problem

min
p∈R

np
Φ(p) subject to cj(p) ≥ 0, j = 1, · · · , nc, (2.2)

where cj(p) is a twice continuously differentiable function, c(p) ∈ R
nc .

2.2. Constrained Gauss-Newton method

To solve numerically the constrained minimization problem (2.2), we implemented the con-

strained Gauss-Newton method in the code GN NLS. The Gauss-Newton method is the simplest

of the methods for minimizing the nonlinear objective function Φ(p) that exploits the structure

in the gradient ∇Φ(p) and the Hessian ∇2Φ(p). It can be viewed as a modified Newton’s

method with line search. Below we describe the main issues of the implemented constrained

Gauss-Newton method.

Let p̃ ∈ R
np be an approximation to the solution of problem (2.2). One term of the Taylor

expansion of the residual ri and the constrain cj at p̃ reads

ri(p̃+ d) ≈ ri(p̃) +
(∂ri(p̃)

∂p1
, · · · , ∂ri(p̃)

∂pnp

)

d,

cj(p̃+ d) ≈ cj(p̃) +
(∂cj(p̃)

∂p1
, · · · , ∂cj(p̃)

∂pnp

)

d.

Hence the approximating linear problem at a point pk can be written as

min
d∈R

np
||J(pk)d+ r(pk)||22 subject to Q(pk)d+ c(pk) ≥ 0, (2.3)

where the Jacobian matrices J(pk) ∈ R
nd×np and Q(pk) ∈ R

nc×np are defined as

Ji,j(pk) =
∂ri(pk)

∂pj
, Ql,j(pk) =

∂cl(pk)

∂pj
,

i = 1, · · · , nd, l = 1, · · · , nc, j = 1, · · · , np.

While in the unconstrained Gauss-Newton method the search direction dk at a point pk is

computed as

dk = −
(

J(pk)
T J(pk)

)−1

J(pk)
T r(pk), (2.4)

in the constrained Gauss-Newton method the search direction dk is computed as a minimizer

of the linear approximating problem at a point pk

dk = arg min
d∈R

np
‖J(pk)d+ r(pk)‖22 subject to Q(pk)d+ c(pk) ≥ 0. (2.5)

Problem (2.5) is a quadratic programming (QP) problem. In Matlab a QP problem of the form

min
d

1

2
dTBd+ gTd subject to Ad ≤ b (2.6)

can be solved by the code quadprog. In our case,

B = JT J ∈ R
np×np , g = JT r ∈ R

np×1, A = −Q ∈ R
nc×np , b = c ∈ R

nc×1. (2.7)
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As soon as a search direction dk is computed, we have to decide how far to move along that

direction. For this, we implemented the line search algorithm for the strongWolfe conditions [19]

(Chapter 3, Algorithms 3.5 and 3.6). Namely, we compute

pk+1 = pk + skdk,

where sk ∈ R
+ is the step length which should satisfy the strong Wolfe conditions

Φ(pk + skdk) ≤ Φ(pk) + α1sk∇Φ(pk)
Tdk, (2.8a)

|∇Φ(pk + skdk)
Tdk| ≤ α2|∇ΦT

k dk|, 0 < α1 < α2 < 1. (2.8b)

2.3. Computing confidence intervals for the estimated parameters

To estimate the confidence in the identified parameters we implemented two approaches:

the variance-covariance matrix based technique and the profile-likelihood-based method.

2.3.1. Variance-covariance analysis

The variance-covariance method is based upon a parabolic approximation of the objective func-

tion around the best-fit parameter estimate p∗ [6]. The 100 · θ% confidence interval (CI) for

the parameter of interest, e.g. for pk, is approximated by the standard interval

CIpk
= [p∗k − σpk

w(θ, nf ), p∗k + σpk
w(θ, nf )], k = 1, · · · , np, (2.9)

where p∗k is the best-fit parameter estimate, σpk
is the standard deviation for pk, w(θ, nf ) is the

100 · θ percentage point of the Student’s t-distribution with nf = nd − np degrees of freedom.

An estimate of the standard deviation of pk is given by the corresponding diagonal element

Ξk,k of the covariance matrix Ξ,

σpk
=

√

Ξk,k(p∗), Ξ(p∗) =
2Φ(p∗)

nf
H−1(p∗) ∈ R

np×np , (2.10)

where H ∈ R
np×np is the Hessian matrix with its (k,m)-th element equal to

Hk,m(p) =
∂2

∂pk∂pm
Φ(p) = 2

nd
∑

j=1

(∂rj(p)

∂pk

∂rj(p)

∂pm
+ rj(p)

∂2rj(p)

∂pk∂pm

)

. (2.11)

The accuracy of the confidence intervals computed by the variance-covariance method de-

pends on how consistent the local parabolic approximation of the objective function in the

vicinity of the best-fit parameters is. If the objective function is far from being parabolic, other

methods need to be applied to assess the validity of the variance analysis. For many inverse

problems in mathematical immunology the Hessian matrix H appears to be nearly singular

and, hence, the CIs obtained are not reliable, cf. examples in section 4. In such cases, other

methods should be used, in particular, those which do not involve the Hessian evaluation.

2.3.2. Profile-likelihood-based method

The profile-likelihood-based approach provides a method for computing the confidence intervals

of the maximum likelihood parameter estimates by following ’a global’ behavior of the objective

function, cf. e.g. [25]. To compute the approximations to the 100 · θ% CIs of the estimates,
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we proceed as follows. Let p∗ be the vector of the computed best-fit values of the model

parameters. For a parameter of interest, p∗k, we search for the interval [pmin
k , pmax

k ] of maximal

width and containing p∗k such that

| ln(L(p̃))− ln(L(p∗))| ≤ 1

2
X 2

1,θ whenever pk ∈ [pmin
k , pmax

k ]. (2.12)

In (2.12), L(p∗) stands for the likelihood function,

ln(L(p∗;σ∗)) = −0.5
(

nd ln(2π) + nd ln(σ
∗
2

) + σ∗
−2

Φ(p∗)
)

, σ∗
2

=
Φ(p∗)

nd
,

L(p̃) := max
p∈S(pk)

L(p), S(pk) :=
{

[p1, p2, ..., pk−1, p, pk+1, ..., pnp
]|p fixed

}

,
(2.13)

and X 2
1,θ is the θ-th quantile of the X 2-distribution for 1 degree of freedom.

Using the relationship between the maximum likelihood and the least-squares objective

function, the expression (2.12) is equivalent to

| ln(Φ(p̃))− ln(Φ(p∗))| ≤ 1

nd
X 2

1,θ,

whenever pk ∈ [pmin
k , pmax

k ] and Φ(p̃) = min
p∈S(pk)

Φ(p).
(2.14)

Hence, to compute CIpk
we search for pmin

k and pmax
k such that

Φ(p̃) ∈ [Φ(p∗), Φ(p∗)eX
2

1,θ/nd ] whenever pk ∈ [pmin
k , pmax

k ]. (2.15)

In [25], an algorithm, based on the computation of the Hessian matrix H , is proposed to

estimate CIs by the profile-likelihood-based method. Since H might be singular, we did not

implement this algorithm. Instead, we suggest the following approach to estimate CIs by the

profile-likelihood method. We fix pk = p∗k + δ with |δ| small compared to p∗k and solve the

minimization problem (2.2) with the code GN NLS for the remaining np − 1 parameters. Then

we increase (if δ > 0) or decrease (if δ < 0) pk, solve (2.2), and repeat this procedure until

pk reaches a value for which inequality (2.14) is violated. In this way we estimate the upper

(if δ > 0) or the low (if δ < 0) boundary of CIpk
. Although this approach is rather time

consuming, it is robust and it allows one to analyze the sensitivity of the objective Φ(p) to the

model parameters.

3. Numerical Derivatives

Numerical algorithms for solving the parameter estimation problems require the evaluation

of the gradient, the Jacobian- and the Hessian matrices of the objective function associated with

the underlying problem and, therefore, the corresponding first- and second-order derivatives of

the model solution y(t;p) with respect to the parameters p. The methods for accurate and

inexpensive computations of the first and second derivatives of y(t;p) play a crucial role in the

development of accuracy and cost efficient parameter estimation problems.

A widely spread finite-difference (FD) approximation of derivatives suffers from the so-

called step-size dilemma: choosing a small step size to minimize the truncation error can cause

subtractive cancelation error to dominate. As a result, this approximation often does not allow

one to get an accuracy which is required.
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Another broadly used approach to estimate the first derivatives of y(t;p) with respect to p

is to solve the variational equations (VEs), obtained by differentiating (2.1) with respect to p,

d

dt

( ∂y

∂pi

)

=
∂f

∂y

( ∂y

∂pi

)

+
∂f

∂pi
,

∂y

∂pi
(t0) = y0,i, i = 1, 2, · · · , np, (3.1)

together with (2.1). To computed the second derivatives of y, we further differentiate (3.1),

d

dt

( ∂2y

∂pj∂pi

)

=
∂2f

∂y2

( ∂y

∂pj

)( ∂y

∂pi

)

+
∂f

∂y

( ∂2y

∂pj∂pi

)

+
∂2f

∂pj∂pi
, (3.2a)

∂2y

∂pj∂pi
(t0) = y0,i,j , (3.2b)

i, j = 1, · · · , np, and solve (2.1) appended by (3.1) and (3.2). We name the system (3.2) as

DVEs. The main drawbacks of this approach are: (i) coding of the right hand side of the VEs

and DVEs requires significant effort; (ii) the corresponding IVPs might be expensive to solve.

In recent years, two techniques for accurate approximation of derivatives gained interest in

computational practice - automatic differentiation techniques (AD) [19] and the complex-step

derivative approximation (CSD) [24]. Theoretically, AD gives exact results in infinite precision

arithmetic. In terms of accuracy the CSD approximation to the first derivatives is competitive

with AD: it is free from the step size dilemma, the truncation error can be eliminated almost

completely by choosing a very small step size. However, the published results indicated that the

CSD approximations to the second derivatives are sensitive to the step size, though, compared

to FD, this sensitivity seems to be weaker so that cancelation error can be reduced.

To evaluate the first and second derivatives of y(t;p) with respect to p, we implemented

the variational equations-, automatic differentiation and complex-step derivative approximation

methods. We compared these three approaches to understand their advantages and limitations.

As a basic code for implementing the AD and CSD methods, we used the code BV78 [23]. Below

we describe the corresponding implementation details.

3.1. Automatic differentiation

Automatic differentiation techniques allow one to compute derivatives analytically [19]. To

approximate the derivatives of y(t;p) with respect to p using this approach, we apply the for-

ward mode of AD directly on the numerical integrator implemented in the code BV78. Namely,

we differentiate (once or twice, depending on the order of the derivatives required) each line

of the Runge-Kutta scheme, which involves the computed approximation to y(t;p), except the

formulas determining the integration step size. The latter needs to be clarified. In case of a con-

stant step size, the resulting numerical scheme for approximate derivatives is exactly the original

Runge-Kutta scheme applied to the VEs (3.1) or to the DVEs (3.2), cf., e.g. [21]. However, the

Runge-Kutta scheme in BV78 is a variable step size algorithm. The step size is determined by

the error in the computed solution and hence it depends on the model parameters. If, applying

the AD formally, we differentiate the step size with respect to p, the resulting scheme is not the

Runge-Kutta scheme anymore and, hence, its stability and convergence properties will change.

For this reason, we did not differentiate the step size and left the step-size selection scheme

unchanged. The difference between the obtained numerical scheme and the one used by the

code BV78 to solve the VEs (and the DVEs) together with (2.1) is that in the first case the step

size is adjusted to the error in the computed solution of (2.1), while in the later case the step

size is adjusted to the error in the computed solution and its derivatives. The scheme obtained
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by AD allows one to compute accurate (up to machine precision) derivatives of the numerical

solution to (2.1). These derivatives closely approximate the derivatives of the exact solution

as the step size of time integration tends to zero. Hence, one can control the accuracy of the

computed derivatives by assigning certain tolerances on the computed solution.

The corresponding AD-modifications of BV78, named by ode78 ad1 and ode78 ad2, can be

used to evaluate the first, respectively, the first and second derivatives of y(t;p) with respect to

p. To use ode78 ad1 and ode78 ad2, the user has to code, together with the function f(y(p),p),

the first, respectively, the first and second derivatives of f(y(p),p) with respect to p, as in the

case with the VEs and DVEs approaches.

3.2. Complex-step derivative approximation

If F (x) is a real function of a real variable and it is also analytic, we can expand it as a

Taylor series about a real point x as

F (x+ ih) = F (x) + ihF ′(x)− h2

2
F ′′(x) − i

h3

6
F ′′′(x) + · · · . (3.3)

Hence,

F ′(x) =
ℑ(F (x+ ih))

h
+O(h2), F (x) = ℜ(F (x + ih)) +O(h2). (3.4)

The first equality in (3.4) is called the complex-step derivative approximation. Since this

estimate for the first derivative does not involve a difference operation (on the contrary to FD),

it is not subject to subtractive cancelation errors and hence a very small step h can be used.

Fundamental results on the complex-step approximation to the first derivatives can be found,

e.g., in [17, 22, 24] and the references therein.

The following approximation of the second derivative of an analytic function F (x) by the

CSD method has been proposed in the literature [1, 12, 20],

∂2F (x)

∂xj∂xk
≈ 1

2hjhk
ℑ[F (x+ ihjej + hkek)− F (x+ ihjej − hkek)] =: Hj,k, (3.5)

where ej is the vector with jth element equal to one and other elements equal to zero, and

the step sizes hj and hk can be either equal or different. To the best of our knowledge, no

formulas avoiding subtraction for approximating second derivatives by the CSD method have

been suggested in the literature. Clearly, the differencing operation in (3.5) may reduce the

accuracy of this formula by several orders of magnitude.

Another drawback of approximation (3.5) is that in general, Hi,j 6= Hj,i, i.e., the Hessian H

for F (x) is not symmetric. In [1], it was suggested to use (H +H ′)/2. However, this approach

does not necessarily guarantee a more accurate approximation of the Hessian.

An optimal choice of the step sizes hj and hk in (3.5) is important to get a higher accuracy.

As follows from (3.5), hj can be very small since it contributes to truncation error only, while

very small hk leads to a high subtractive cancelation error. A number of selection schemes have

been proposed. In [1] it was recommended to use hj ≪ hk and the specific implementation

was based on hj = 10−35, hk =
√
ǫ, ǫ = 2−52. In [12] the following values were chosen:

hj = hk =
√
ǫ. In [20] an ”optimal” step size was considered to be hj = hk = ǫ1/5. Our results

clearly indicate that the use of the pair (hj , hk) equal to (ǫ1/5pj , ǫ1/5pk) is preferable if pj is

not too small, otherwise the pair (pj , ǫ
1/5pk) can be used. We further refer to [20] for a detailed

analysis of the approximation (3.5).
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Table 4.1: Quantitative dynamics of human peripheral blood T lymphocytes following stimulation with

phytohemagglutinin in vitro. At various times, lymphocytes labeled with a fluorescent dye (CFSE)

were characterized by flow cytometry analysis. The total numbers of dead lymphocytes, Di, and the

distribution of lymphocytes with respect to the number of divisions they have undergone, N i
j , j =

0, 1, · · · , 7, were followed from day 3 to day 7 at the indicated times ti, i = 0, 1, · · · , 4.

Time Total

hours number of Numbers of cells w.r.t. the number of divisions (j) they undergone

ti dead cells N i
j

Di 0 1 2 3 4 5 6 7

72 1.6× 104 29358 22876 43372 39970 5208 98 14 0

96 2.4× 104 16050 12600 22650 57025 96350 46950 2500 25

120 6.0× 104 14476 14784 25344 58652 141460 156290 32076 440

144 1.2× 105 13500 12150 24150 55000 137850 188950 69450 2150

168 1.3× 105 13509 12198 21603 51927 140560 232160 96102 3420

The corresponding CSD-modifications of BV78, named by ode78 csd1 and ode78 csd2, deal

with complex functions f and y and allow one to estimate the first, respectively the first and

second derivatives of y(t,p) with respect to p. To compute the derivative ∂y(p∗)/∂pj , we set

p = p∗; p(j)=p(j)+ eps ∗ p(j) ∗ complex(0,1); (3.6)

in ode78 csd1 and evaluate a (complex) solution y(p) of the given model. Then

y(p∗) ≈ ℜ(y(p)), ∂y(p∗)

∂pj
≈ ℑ(y(p))

eps ∗ p(j) . (3.7)

In (3.6), eps= 2−52 ≈ 2.2×10−16 is the floating-point relative accuracy in Matlab. To evaluate

the second derivatives, we implemented formula (3.5) with (hj , hk) equal to (ǫ1/5pj , ǫ1/5pk) if

pj > 10−10 and (pj , ǫ
1/5pk) otherwise. Since the computed solution is complex, we modified the

error control so that the integration step size is adjusted according to the error in the modulus

of all the variables involved in its determination in the original code.

4. Results

We analyzed the computational efficiency of the derivatives approximation schemes outlined

above to understand their performance in the context of parameter estimation problems in im-

munology. Two representative models are considered, the first represents a basic mathematical

tool for the kinetic parameters analysis of the cell proliferation CFSE assay [14] and the other

describes the dynamics of antiviral cytotoxic T lymphocytes (CTL) in hepatitis B infection [8].

These models were calibrated using experimental and clinical data, respectively.

Model 1. This system models the rates of change of the population sizes of live T lympho-

cytes having undergone j divisions (Nj) and dead but not disintegrated lymphocytes (D) [14],

dN0

dt
(t) = −(α+ β)N0(t), (4.1a)

dNj

dt
(t) = 2αNj−1(t)− (α + β)Nj(t), j = 1, · · · , 7, (4.1b)

dD

dt
(t) =

7
∑

j=0

βNj(t)− δD(t), t ≥ t0. (4.1c)
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Table 4.2: Clinical data on the virus-CTL dynamics in blood during the acute phase of HBV infection.

Time Virus population T lymphocytes population

days density HBV-DNA (copy/ml) density (cell/ml)

ti Vi Ei

70 7.2 × 108 77

77 6.1 × 109 97

84 6.1 × 109

91 1.83 × 109

98 1.4 × 108

105 2.5 × 105 2273

119 1059

140 584

Here, for simplicity the model assumes that the per capita proliferation and death rates of lym-

phocytes, α and β, do not depend on the number of divisions the lymphocytes have completed,

which naturally define the generation or division-age (compartmental) structure of the cell pop-

ulation. The first term on the right of equations for Nj(t) represents the cell birth (influx from

the previous generation cell compartment due to division), while the last term represents cell

loss (outflux from the current generation compartment) due to division and death. In the equa-

tion for dead cells, δ denotes the specific decay rate of dead lymphocytes due to disintegration

and phagocytosis. The initial conditions Nj(t0) and D(t0) are defined by the experimental data

presented in Table 4.1 at time t0 = 72 hours. The objective is to estimate the model parameters

p = [α, β, δ] ∈ P so that the model solution with the estimated parameters best fits the data

in Table 4.1. Here P is a 3-D(imensional) space of nonnegative real numbers.

Model 2. This system describes the rate of changes of the population densities of the

hepatitis B virus (HBV) V (t) and virus-specific cytotoxic T lymphocytes (CTLs) E(t) in the

acute immune response to the infection [8],
dV

dt
(t) = βV (t)(1 − V (t)/K)− γV (t)E(t), (4.2a)

dE

dt
(t) = bV (t)E(t)/(θ + V (t))− αE(t) + C, t ≥ 0, (4.2b)

V (0) = 10, E(0) = C/α. (4.2c)

Here the per capita parameters have the following biological meaning: β is the replication rate

of viruses, γ is the rate of virus clearance due to CTLs, K is the virus carrying capacity, b is

the rate of CTL stimulation, θ is the viral load saturation in CTL expansion rate, α is the CTL

death rate and C is the rate of CTL influx from thymus. The clinical data on hepatitis B virus

infection, presented in Table 4.2, were used to estimate the model parameters p = [β, γ, K, b,

θ, α, C] ∈ P , where P is a 7-D space of real numbers such that β ≥ 0, γ ≥ 0, K > 0, b ≥ 0,

θ ≥ 0, α > 0, C ≥ 0.

To avoid dealing with very large and small numbers, we rewrite this model, using the

logarithmic transformation Ṽ (t) = ln(V (t)) and Ẽ(t) = ln(E(t)). From now on we will use the

transformed system omitting the tilde sign for simplicity,

dV

dt
(t) = β(1− exp(V (t))/K)− γ exp(E(t)), (4.3a)

dE

dt
(t) = b exp(V (t))/(θ + exp(V (t)))− α+ C/ exp(E(t)), t ≥ 0, (4.3b)

V (0) = ln(10), E(0) = ln(C/α). (4.3c)
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Fig. 4.1. The relative error (4.4) of the first (left) and second (right) derivatives computed using the

implemented VEs, DVEs (∗), CSD (⋄) and AD (+) approaches versus the relative tolerance of the time

integrator. The error of the computed solution (◦) is shown for comparison. p = [0.3, 10−8, 0.2].

4.1. Accuracy and computational expense of numerical derivatives

Due to the availability of the closed-form solution to model (4.1), we estimate the accuracy

of the computed derivatives using all the approaches described in the previous section. Next,

we compare the CPU time needed to evaluate the derivatives for both illustrative models.

First derivatives. To estimate the accuracy of the numerical derivatives obtained by the

VEs, the AD and CSD approaches, we computed the maximal absolute relative error at the

time tfinal = 168 hours,

EV E = max
|D −DV Es|
(I + |D|) , EAD = max

|D −DAD|
(I + |D|) , (4.4a)

ECSD = max
|D −DCSD|
(I + |D|) , (4.4b)

where the elements of the matricesD,DV E , DAD, DCSD ∈ R
n×np are the analytical first deriva-

tives of the model solution with respect to the model parameters, respectively, the derivatives

computed by the VEs, the AD and CSD methods, I ∈ R
n×np is a matrix of ones, and the

maximum is taken with respect to all entries of the matrices.

Since the integration step size in the implemented VEs and CSD approaches is adjusted to

the error in the computed solution and its first derivatives, although in different ways, we expect

that EV E ≈ ECSD, while the accuracy of the AD approach might be poorer (since the step size

is adjusted to the error in the computed solution only). Indeed, for a number of vectors of the

model parameters, we obtained that EV E and ECSD have the same order of magnitude, while

the order of EAD was either equal to the one of EV E or lower by one. For example, using the

relative and absolute tolerances 10−12, respectively, 10−14 for the time integration, we obtained

that EV E , ECSD ∈ (10−15, 10−14) and EAD ∈ (10−14, 10−13). Fig. 4.1 (left) demonstrates the

computed relative error of the three approaches versus the value of the relative tolerance (the

absolute tolerance used is two orders less) for a particular vector of the model parameters.

Table 4.3 presents the CPU time required to evaluate derivatives ∂y(p)/∂p by the VEs,

the AD and CSD methods with (v+) and without (v−) the vectorization facility. Recall that



70 T. LUZYANINA AND G. BOCHAROV

Table 4.3: The CPU time (seconds) required to solve numerically the indicated problems. The time

measurements were obtained by 1000 runs of each problem and then dividing the total time by 1000.

Computations were carried out on PC Intel Core 2 CPU 2.16 GHz.

Problem VEs-approximation AD-approximation CSD-approximation IVP for

of first derivatives of first derivatives of first derivatives original model

Code used BV78 ode78 ad1 ode78 csd1 BV78

Vectorization v+ v− v+ v− v+ v− v+ v−

CPU time

model (4.1) 0.018 0.081 0.021 0.049 0.024 0.088 0.0051 0.018

model (4.3) 0.024 0.051 0.026 0.032 0.066 0.21 0.0047 0.014

we evaluate n × np derivatives, i.e., 27 and 14 derivatives for models (4.1), respectively, (4.3).

For comparison, we give the CPU time required to solve the IVP for the considered models.

Although this table presents the CPU time estimates for two particular models, the results are

representative enough to make some general conclusions, presented below.

• If the number of parameters np is small (e.g. np = 3 for model (4.1)), the three methods

with the vectorization facility are equally expensive. If np is moderate or large (e.g. np = 7

for model (4.3)) the CSD method is several times slower. The reason is that an ODE

system is simulated np times to compute np derivatives of the solution vector by the CSD

method, while with the VEs and AD methods it is solved only once. However, in the

implemented VEs and AD the explicit coding of the derivatives ∂f(p)/∂p by the user is

needed. The trade-offs between the CSD and AD methods are discussed, e.g. in [1,17,22].

• If the vectorization facility is not used, the AD method is significantly faster for any

number of parameters.

• The vectorization facility of the implemented AD method does not decrease the compu-

tational time significantly in case of nonlinear models (e.g. model (4.3)). This is due to

manipulations with 3-D arrays appearing in coding the right hand side of the model and

its derivatives. For convenience in programming, the input and output arguments of this

function, corresponding to derivatives, are not vectors, but the Jacobian matrices. When

one wishes to use the vectorization facility, these matrices have to be replaced by 3-D

arrays.

Second derivatives. As with the first derivatives, we evaluated the maximal absolute values

of the relative errors (4.4) using matrices D,DDVE , DAD, DCSD ∈ R
(n×np)×np for the sec-

ond derivatives of the solution to model (4.1) with respect to p. The DVEs-approach is the

most accurate one since in the AD-approximation the step size is adjusted to the error in the

computed solution only and the CSD-approximation of the second derivatives suffers from can-

celation error. For this reason, we compare the errors EAD and ECSD versus EDV E . For a

number of vectors of the model parameters values, we obtained that EAD/EDV E ∈ (1, 102),

while ECSD/EDV E ∈ (1, 1011). For example, using the relative and absolute tolerances 10−12,

respectively, 10−14, we obtained that EDV E ∈ (10−15, 10−12), EAD ∈ (10−14, 10−12), while

ECSD ∈ (10−12, 10−2). Fig. 4.1 (right) depicts the computed EDV E , ECSD and EAD versus

the value of the relative tolerance for a particular vector of the model parameters. The above

results suggest that the implemented CSD-approach does not provide in general a reliable ap-

proximation to the second derivatives.
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Table 4.4: The CPU time (seconds) required to solve the indicated problems. The time measurements

were obtained by 1000 runs of each problem and then dividing the total time by 1000. Computations

were carried out on PC Intel Core 2 CPU 2.16 GHz.

Problem DVEs-approximation AD-approximation CSD-approximation

of second derivatives of second derivatives of second derivatives

Code used BV78 ode78 ad2 ode78 csd2

Vectorization v+ v− v− v+ v−

CPU time

model (4.1) 0.056 0.41 0.19 0.22 0.71

model (4.3) 0.40 0.85 0.12 1.1 3.1

The CPU time required to compute the second derivatives of y(p) by the implemented

methods is presented in Table 4.4 for both illustrative models. Note that we did not implement

the vectorization facility for the AD method since it is a rather tedious task in the case of

second derivatives. We observe that the implemented AD is almost as fast as the CSD method

with the vectorization if the number of parameters np is small (model (4.1)), otherwise the AD

is much faster (model (4.3)). The reason is the same as in the case of the first derivatives: an

ODE system is simulated (np + 2n2
p) times to compute (np + n2

p) first and second derivatives

of the solution by the CSD method, while with the AD method the system is solved only once.

As in the first derivatives case, the AD method is significantly faster than the CSD and DVEs

methods when the vectorization facility is not used. The DVEs approach with vectorization can

be cheaper or more expensive than the AD depending on the complexity of the approximated

derivatives.

4.2. Constrained optimization

In this section we illustrate the performance of the code GN NLS for both mathematical

models and compare it with the code lsqnonlin from the Matlab Optimization Toolbox. The

latter code solves (2.2) by the trust-region-reflective algorithm. Our experience suggests that

the efficiency of GN NLS depends on the problem under study, for some problems the code

lsqnonlin gives better results, for others GN NLS is preferable. We note that the constraints

pj ≥ 0 should be replaced by the constraints pj ≥ τ with 0 < τ ≪ 1 to avoid the zero divisor

in (3.7) if the CSD method is used to compute derivatives. We set τ = 10−15 in the examples

below, i.e., the constraints used for the minimization problem (2.2) are c = p− 10−15 ≥ 0.

Model (4.1) Case 1. We scale the model solution and the data (Table 4.1) by the factor

10−5 to avoid dealing with very large numbers. Starting with the initial guess

α = 0.1, β = 0.1, δ = 0.1,

we obtain the following maximum likelihood estimates

α∗ ≈ 2.13× 10−2, β∗ ≈ 3.35× 10−3, δ∗ ≈ 10−15, Φ(p∗) ≈ 6.15,

∇Φ(p∗) ≈ [8× 10−4, − 4× 10−2, 30]T .
(4.5)

We observe that the best-fit value δ∗ is close to the lower bound. A relatively large value of

∂Φ(p∗)/∂δ indicates that the zero value of this derivative is attained for δ < 0.

The CPU time required to solve the minimization problem for the above model (as well

as for model (4.3)) is given in Table 4.5. The table values indicate that the computational
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Table 4.5: The CPU time (seconds) required to solve the indicated minimization problems by the code

GN NLS with the approximation of the first derivatives of the objective by the indicated methods.

Method Model (4.1) Model (4.3)

Case 1 Case 2 Case 1 Case 2

v+ v− v+ v− v+ v− v+ v−

VEs 0.72 3.4 2.3 11 0.61 1.2 2.5 4.8

AD 0.94 3.1 3.3 7.6 0.66 0.82 2.8 3.4

CSD 1.0 3.7 3.4 13 1.8 5.2 7.3 21

cost of solving the minimization problem depends on the method used to approximate the first

derivatives of the objective function with respect to the model parameters. The GN NLS with

the VEs-approximation and the vectorization is the cheapest one, but it requires maximum

user effort - to code the derivatives ∂f(y(p),p)/∂p in a matrix form. If we avoid the use of the

vectorization (and hence reduce the user effort), then the GN NLS with the AD-approximation

is preferable. The use of the CSD-approximation leads to the most expensive computations,

however its implementation requires much less effort from the user. For the code lsqnonlin

with the user provided Jacobian of residuals (approximated by the three methods used) a similar

CPU time is required to find the best-fit values (4.5).

Case 2. If the following parameter values are used for the starting point

α = 0.3, β = 0.4, δ = 0.3,

then again the values corresponding to the minimum point (4.5) are obtained. On the contrary,

the code lsqnonlin turned out to be inefficient so that the solution was not found in 15 min.

Note that the starting point in the above case is located rather far from the minimum point.

Case 3. If the starting point for the minimization procedure is

α = 0.1, β = 0.3, δ = 0.1,

then the code GN NLS gets stack as soon as the model parameters at the computed minimum

(and the objective function) reach the values [6.06× 10−3, 3.88, 6.06× 10−3] (and 23.3). The

underlying reason is that the time integration of the model with these parameter values becomes

too expensive (the step size is less than 10−9) due to the stiffness of the ODE system. In such

cases the code should be interrupted by the user and started with another initial guess. The

code lsqnonlin found the the best-fit solution (4.5) in a few seconds.

Model (4.3) Case 1. If the starting point is located not far from a minimum of Φ(p),

β = 0.2, γ = 6× 10−4, K = 1010, b = 0.1, θ = 107, α = 0.03, C = 0.2,

then the following best-fit parameters are computed by the code GN NLS

β∗ ≈ 0.273, γ∗ ≈ 6.18× 10−4, K∗ ≈ 1.48× 1010, b∗ ≈ 0.151,

θ∗ ≈ 1.24× 107, α∗ ≈ 3.49× 10−2, C∗ ≈ 0.228, Φ(p∗) ≈ 0.790.
(4.6)

The code lsqnonlin computes another solution to the minimization problem:

β∗ ≈ 0.272, γ∗ ≈ 5.64× 10−4, K∗ ≈ 1.00× 1010, b∗ ≈ 0.160,

θ∗ ≈ 1.00× 107, α∗ ≈ 3.88× 10−2, C∗ ≈ 0.188, Φ(p∗) ≈ 0.871.



Critical Issues in the Numerical Treatment of Parameter Estimation Problems 73

10
9

10
10

10
11

10
12

10
13

10
14

10
15

1

1.5

2

2.5

3

K

Φ

10
0

10
5

10
10

1

2

3

4

θ

Φ

0.25 0.27 0.29 0.31 0.33

1

2

3

4

β

Φ

Fig. 4.2. The dependence of the minimized function Φ(p̃) on the estimated parameters K (left), θ

(middle) and β (right). Here p̃ = argminΦ(p̃) ∈ R
np−1 for fixed K, respectively, θ or β. The bold

circles indicate the location of the computed minimum.

The objective function at this minimum has a larger value than the one obtained by GN NLS.

Case 2. If we start rather far from the minimum (4.6) using the following parameter values:

β = 0.3, γ = 0.01, K = 105, b = 0.2, θ = 104, α = 0.01, C = 0.1,

then the code GN NLS gives a few warnings in the beginning of the minimization procedure,

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.772813e-017.

> ... In quadprog at 271

Nevertheless, the optimal solution (4.6) is computed. On the contrary, the code lsqnonlin

failed to generate results in 15 min. The above warning is due to a badly scaled or nearly singular

matrix which is involved in the QP algorithm (quadprog code). This matrix depends on the

Jacobian of the residuals via the matrixB = JTJ in (2.6). The elements ofB indicate sensitivity

of Φ(p) to the parameters. The reason for the difficulties in computing the minima of the

objective function for model (4.3) is illustrated in Fig. 4.2. Here Φ(p̃) with p̃ = argminΦ(p̃) ∈
R

np−1 for fixed K, respectively, θ or β is shown. As we see, Φ(p) is parabolic only in a very

small neighborhood of the computed minimum and the sensitivity of Φ(p) to the variation in

the parameters K and θ is rather low within broad ranges of these parameters.

4.3. Computing confidence intervals for the estimated parameters

Model (4.1) Using the variance-covariance method with the second derivatives evaluated by

either the AD or the CSD method, we obtained the following estimates to the 95% confidence

intervals (similar up to 3 significant digits) for the best-fit model parameters

CIα = [1.59, 2.66]× 10−2, CIβ = [0, 8.49× 10−3], CIδ = [0, 3.58× 10−2]. (4.7)

The profile-likelihood-based method gives

CIα = [1.81, 2.49]× 10−2, CIβ = [1.38, 6.55]× 10−3, CIδ = [0, 1.87× 10−2]. (4.8)

We observe that the ranges for CIs (4.8) are more narrow than the ones computed by the first

approach. Contrary to the variance-covariance method, the profile-likelihood-based method

computes nonsymmetric approximation to the CIs with respect to the best-fit parameter values.
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Model (4.3) Computing the estimates to the 95% confidence intervals for the best-fit model

parameters by the variance-covariance method with the Hessian matrix of the objective Φ(p∗)

evaluated by the AD method, we get the following warning concerning the Hessian

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 6.338546e-030.

In this example the objective function is not a parabolic surface in the vicinity of the best-fit

shown in Fig. 4.2. Hence, the variance-covariance approximation of the CIs,

CIβ = [2.53, 2.92]× 10−1, CIγ = [0, 1.42× 10−3], CIK = [0, 4.51× 1010],

CIb = [4.26× 10−2, 2.60× 10−1], CIθ = [0, 8.41× 107], CIα = [0, 8.28× 10−2],

CIC = [0, 7.23× 10−1],

can be subject to a large bias. If we estimate the CIs using the CSD method to evaluate the

Hessian of the objective function, then we get additional warning that the Hessian is not a

positive-definite matrix since two of its eigenvalues are negative (−6 × 10−12,−2 × 10−13). In

fact, two eigenvalues of the Hessian are close to zero (10−13, 6 × 10−16) and therefore their

computed approximate values can be negative. The computed ranges to the CIs with the CSD

method are similar to the ones presented above up to 3 significant digits.

Using the profile-likelihood-based method, we computed the following estimates to the CIs

CIβ = [2.64, 2.85]× 10−1, CIγ = [0.347, 1.32]× 10−3, CIK = [7.15× 109, ∞],

CIb = [1.01, 2.02]× 10−1, CIθ = [4.75, 7.55× 107], CIα = [1.25, 5.73]× 10−2,

CIC = [0.0382, 5.37]× 10−1.

(4.9)

Interestingly, all the CIs, except for CIK , computed by the profile-likelihood-based method are

more narrow than the CIs computed by the variance-covariance method.

4.4. Sensitivity of the parameter estimates to the observation data

To evaluate the sensitivity of the estimated parameters to the data, the following relation

between the data variations ∆d ∈ R
nd and the corresponding parameter deviations ∆p ∈ R

np

can be used,

S∆p = ∆d, where Si,j(p
∗) =

∂Yi(p
∗)

∂pj
, S(p∗) ∈ R

nd×np ,

is the sensitivity coefficient matrix [7] and Yi is the i-th element of the vector Y ∈ R
nd ,

Y := [y1(t1,1), y1(t1,2), · · · , y1(t1,k1
), y2(t2,1), · · · , y2(t2,k2

), · · · , yn(tn,kn
)],

which consists of the elements of the model solution y(p∗) computed at the time points of the

corresponding data measurements. Here we assume that the data corresponding to different

elements of y can be measured at different times and that
∑n

i=1 ki = nd. Hence, each row

of S corresponds to np derivatives of a certain component of the vector of the model solution

computed at a certain sampling time.

The spectral condition number

τ := max
i,j=1,...,np

σi

σj
, (4.10)
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with {σi}np

i=1 standing for the square roots of the eigenvalues of the matrix STS indicates

the influence of measurement errors on the identified parameters: the parameter estimation

procedure via minimization of the objective function Φ(p) is more stable for smaller values of

τ . The values of τ computed for models (4.1) and (4.3) are τ ≈ 350 and τ ≈ 1021, respectively.

One can conclude that small variations in the data will not cause large changes in the identified

parameters of model (4.1) and, therefore, the corresponding minimization problem is well-posed.

On the contrary, the minimization problem for model (4.3) is unstable and hence ill-posed.

4.5. Fisher Information Matrix

It often happens in parameter estimation problems in immunology that some of the pa-

rameters cannot be identified robustly using the existing experimental data set(s). One of the

methods to evaluate the information content of the data and the number of estimable parame-

ters is to compute the eigenvalues of the Fisher Information Matrix (FIM) [13]

F (p) = S(p)TΣS(p) ∈ R
np×np . (4.11)

Here S ∈ R
nd×np is the sensitivity coefficient matrix and Σ ∈ R

nd×nd is the variance-covariance

matrix of the data set used for parameter estimation. Since we deal with only one set of the

experimental data for each illustrative model and assumed that the variance of the observation

errors (σ2) is the same for all the state variables and observation times, see section 2.1, the

matrix Σ is the diagonal matrix with all diagonal elements equal to σ∗
2

= Φ(p∗)/nd.

The number of large eigenvalues of F corresponds to the number of reliably estimable

parameters, see, e.g., [26]. For model (4.1) the eigenvalues of F (p∗) range in between 102−104,

while for model (4.3) 5 eigenvalues are of the order 100− 107 and 2 eigenvalues are of the order

10−16, 10−13. The latter implies that two parameters of this model cannot be identified by the

data set available, i.e. the model structure is not consistent with the information content of the

data. In this case the model structure needs to be refined using information-theoretic criteria

as presented in the next section.

4.6. Model refinement

The comprehensive analysis of the best-fit parameters presented above allows us to propose

an iterative model refinement procedure. For example, the estimated 95% CIK and Fig. 4.2

(left) indicate that the objective function Φ for model (4.3) practically does not depend on K

for K > 1011. This suggests to investigate whether the term −β exp(V (t))/K in the first model

equation is significant for the given data set. To this end, we set K = ∞, so that the first

equation in (4.3) becomes
dV

dt
(t) = β − γ exp(E(t)). (4.12)

Estimating the remaining 6 parameters of the simplified model, we found that, although the

value of the objective at the computed minimum is 34% larger (Φ(p∗) ≈ 1.06), the values of

the best-fit parameters,

β∗ ≈ 0.279, γ∗ ≈ 1.08× 10−3, b∗ ≈ 0.115, θ∗ ≈ 4.54× 104, α∗ ≈ 0.0310, C∗ ≈ 0.0695,

are located inside the 95% CIs for the parameters of the original model computed by the

profile-likelihood-based method (4.9).
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To decide which model is preferable, one can apply the information-theoretic criteria for

model assessment and ranking. We evaluate the Akaike indicator, characterizing the information

complexity of the models and measuring the information loss for a particular model [11]. The

Akaike criterion is based upon the Kullback-Leibler notion of the directed distance between

the given model and an ‘ideal model’ of the data. It makes use of the maximum likelihood

estimation to evaluate the information loss associated with the specific model for the given

data set. Because our interest is in the relative size of the indicators, we considered the revised

Akaike indicators obtained by discarding extraneous terms (see [5] for technical details),

µ = nd ln(Φ(p
∗)) + 2(np + 1) +

2(np + 1)(np + 2)

nd − np − 2
. (4.13)

The model with a larger value of µ is less consistent with the unknown true model of the data

than the model characterized by a smaller µ. The value of Akaike index equals approximately

85 and 52 for the original and simplified models, respectively. Therefore, the simplified model

is closer to the true model of the data as indicated by the smaller value of the information loss.

The variance-covariance method applied to the simplified model to compute the 95% CIs

still leads to the warning of the computational procedure as in the case of the original model.

However, the reciprocal condition number estimate of the computed Hessian has a larger value,

rcond(H) ≈ 10−20. The computed, by the profile-likelihood-based method, estimates to the

95% CIs for the best-fit parameters are

CIβ = [2.68, 2.92]× 10−1, CIγ = [0.564, 1.65]× 10−3, CIb = [0.836, 1.53]× 10−1,

CIθ = [0.001, 7.67× 107], CIα = [0.40, 7.36]× 10−2, CIC = [0.0336, 6.80]× 10−1.
(4.14)

We observe that the value of the estimated parameter θ is still rather uncertain. The spectral

condition number for the simplified model is τ ≈ 1019 and there exists one very small (10−14)

eigenvalue of the FIM, both indicating that the parameter estimation problem is still ill-posed.

If we fix θ at the value of the low or upper boundary of CIθ in (4.14), say θ = 0.001, and

estimate the remaining 5 parameters, we obtain

β∗ ≈ 0.281, γ∗ ≈ 1.31× 10−3, b∗ ≈ 0.143, α∗ ≈ 6.16× 10−2, C∗ ≈ 8.25× 10−3,

and Φ(p∗) ≈ 1.51. We observe that all the estimated values are inside the CIs (4.14) and,

except the parameter α, belong to the CIs (4.9). The estimate for α is located slightly outside

of the CIb in (4.9). The value of the Akaike index is µ ≈ 38. Hence, the model with the fixed

θ = 0.001 is closer to the true model of the data. This conclusion holds true for any value of θ

from the interval CIθ in (4.14) since the value of the objective function is maximal at the ends

of this interval.

The variance-covariance method applied to the model with θ = 0.001 to compute the 95%

CIs suggests that

CIβ = [2.58, 3.04]× 10−1, CIγ = [0.412, 2.21]× 10−3, CIb = [0.777, 2.08]× 10−1,

CIα = [0.0479, 1.18]× 10−1, CIC = [0, 2.37]× 10−2.

Note that the Hessian of the objective is not singular in the case of 5 estimated parameters

and hence the results of the variance-covariance method can be considered as accurate. The

spectral condition number for the simplified model with θ = 0.001 is τ ≈ 106 and the eigenvalues

of the FIM range in between 101 − 107.
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Fig. 4.3. Comparison of the clinical data (circles) and the solutions of the three considered variants

of model (4.3) corresponding to the best-fit values of their parameters. Solid, dashed and dot-dashed

curves correspond, respectively, to the solution of the original model (4.3), the simplified model and

the simplified model with θ = 0.001.

Overall, one conclude that the considered data set does not allow one to estimate reliably

the parameters K and θ of model (4.3). If we set K = ∞ and take θ from CIθ in (4.14),

then the minimization problem becomes well-posed and the remaining model parameters can

be robustly identified. Fig. 4.3 shows the consistency of the data set and the best-fit solution

of the three considered variants of model (4.3). Although the best-fit solution of the reduced

version of the model does not fit the data as good as the original model, the fitting quality

seems still to be satisfactory.

5. Conclusions

We developed a computational methodology for analysis of the best-fit parameter estimates

and the information-theoretic assessment of the mathematical models formulated with ODEs.

The core element of the methodology is a robust evaluation of the first and second derivatives

of the model solution with respect to the model parameter values. The critical issue of the

reliable estimation of the derivatives was addressed in the context of inverse problems arising

in mathematical immunology. To evaluate the first and second derivatives of the ODE solution

with respect to parameters, we implemented the variational equations-, automatic differentia-

tion and complex-step derivative approximation methods. A comprehensive analysis of these

approaches to the derivative approximations is presented to understand their advantages and

limitations.

We showed that depending on the specific aspects of the model (e.g. the functional forms

used to parameterize the reaction terms in the equations, the number of state variables, number

of parameters, completeness of the data set) the researcher in mathematical immunology has

to be equipped with a broad range of tools to select the most efficient one for a given inverse

modeling problem. A robust and reliable parameter estimation is a critical issue for modeling in

immunology. Indeed, it has been proposed that small variations in multiple parameters account

for wide variations in HIV infection outcome [18]. Understanding the feedback regulation of

immune responses and relating multiple sets of experimental data, using nested models [9],

requires the availability of the computational technologies to perform a comprehensive model

assessment including parameter estimation, uncertainty analysis, model ranking. In this study

we described in detail a thorough application of the modeling and analysis tools to representative



78 T. LUZYANINA AND G. BOCHAROV

inverse problems of the dynamics of T cell proliferation and antiviral immune response in HBV

infection. Further research is urgently needed to address similar computational problems for

distributed parameter systems in immunology, including spatio-temporal ones - an area of

challenge and complexity.
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