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Abstract

In this paper, we establish a convergence result of the cyclic reduction (CR) algorithm
for a class of weakly overdamped quadratic matrix polynomials without assumption that
the partial multiplicities of the nth largest eigenvalue are all equal to 2. Our result can
be regarded as a complement of that by Guo, Higham and Tisseur [SIAM J. Matrix Anal.
Appl., 30 (2009), pp. 1593-1613]. The numerical example indicates that the convergence
behavior of the CR algorithm is largely dictated by our theory.
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1. Introduction

The quadratic eigenvalue problems (QEPs) are to find scalars A and nonzero vectors x and
y satisfying Q(A)z = 0 and y*Q(X) = 0, where

Q) = NA+AB+C with A, B,CeC™" (1.1)

is a quadratic matrix polynomial (or the quadratic for the brevity). Vectors x and y are right
and left eigenvectors corresponding to the eigenvalue \. QEPs have extensive applications in
practical engineering problems. We refer to [18] for a good review.

In this paper, we consider the overdamped QEP which belongs to a class of hyperbolic QEPs
with the following definition [6].

Definition 1.1. The quadratic Q(\) s called hyperbolic if A, B, C are all Hermitian, A is
positive definite, and

(2" Bz)? > 4(2* Az)(2*Cx) for all nonzero x € C™.

A hyperbolic QEP can be transformed into an overdamped one [11], so there is no loss of
generality to consider only overdamped problems.
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Definition 1.2. The quadratic Q(X) is called overdamped if it is hyperbolic with positive definite
B and positive semidefinite C.

It is known that an overdamped quadratic has 2n real, nonpositive and semisimple eigenvalues
that can be ordered 0 > Ay > -+ > Ay > Apj1 > -+ > A2, [18]. When the nth largest and the
nth smallest eigenvalues coalesce (i.e. A, = An11), the quadratic is called weakly overdamped
(WO) in the terminology of Markus [16] (see also [8, Sec. 5]). The following lemma collects
some properties of a weakly overdamped quadratic [6, 16].

Lemma 1.1. Let Q(\) be a WO quadratic.

(a) Q(N\) has 2n real eigenvalues that can be ordered 0 > Ay > -++ > Ay = Apg1 > -+ >
Xon. The partial multiplicities)) of A\, are at most 2, and the eigenvalues other than \, are
semisimple.

(b) The associated quadratic matriz equation (QME)

Q(S)=AS>+BS+C=0 (1.2)

admits two extremal solutions (also called solvents in the matriz polynomial theory) S (the
primary) and 52 (the secondary), whose eigenvalues are the n largest and the n smallest roots
of Q(N), respectively.

Recently, Guo, Higham and Tisseur [6] devised an efficient algorithm to detect and solve the
overdamped QEPs. This algorithm was based on the cyclic reduction (CR) (stated in Section
3) with quadratic convergence. They also showed that, for WO QEPs, the convergence of the
CR algorithm became linear with a constant at worst 1/2. We note that their analysis in that
case needs the requirement that the partial multiplicities of the nth largest eigenvalue (i.e. \,)
are all equal to 2. However, we know from Lemma 1.1 that the partial multiplicities of A,, are
at most 2. So one may wonder: (i) Are there any WO quadratics with the partial multiplicities
of A\, containing both 1 and 2?7 (ii) If such WO quadratics exist, what is the behavior of the
CR algorithm for them?

The purpose of this paper is to investigate the above two issues. We give an example in
the Section 3 to show that it does exist the WO quadratic with the partial multiplicities of
An containing both 1 and 2. However, the convergence behavior of the CR algorithm for such
a quadratic is some different with that in [6]. We also try to establish a convergence of the
CR algorithm for general WO quadratics (with no assumption on the partial multiplicities
of A\;,). Unfortunately, the attempt seems not easy since the structure of the corresponding
eigenspace is indefinite. So we instead construct a canonical diagonal quadratic in which the
partial multiplicities of \,, include 1 and 2. Then we extend the diagonal quadratic to a class
of (not all) isospectral? WO quadratics. Since the structure of eigenspace for such extended
quadratics can be made out, we can obtain the convergence theorem of the CR algorithm by
another equivalent doubling algorithm (see [2,6,15,22]). The derived theorem (unlike that
in [6]) indicates that some matrix sequences generated by the CR algorithm no longer converge
to the zero matrix if the partial multiplicities of A, contain 1. Therefore, our result can be seen
as a complement of convergence for the CR algorithm.

1) The partial multiplicities of an eigenvalue of Q(X) are the sizes of the Jordan blocks in which it appears in
a Jordan matrix of Q(X) [5].

2) The term “isospectral” is in the sense that the eigenvalues and all their partial multiplicities are common
to isospectral matrix polynomial [13].
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The rest of this paper is organized as follows. We give some preliminaries in the next section.
We review the CR algorithm in Section 3 and present a WO quadratic to show some different
convergence of the algorithm if the partial multiplicities of A, are not all 2. In Section 4,
we describe the main convergence theorem of the CR algorithm for a class of WO quadratics
without any assumption on the partial multiplicities of A\,,. Section 5 is dedicated to the proof
of the main theorem and Section 6 is devoted to the validation of the obtained convergence
theorem via numerical experiments. At last, we conclude the paper by discussion in Section 7.

Throughout this paper, the matrix inequality My > My(M; > M) for Hermitian matrices
M; and Ms means that matrix M; — My is positive semidefinite (definite). The notation
M @& N stands for [% O]. I, := I and 0, := 0 denote the identity and zero matrices of order n,
respectively. 0x(1 < k < n) and 0,,,x; denote the zero matrices with the dimension k& x k and
m X [, respectively.

2. Preliminaries

In this section, we introduce some required concepts from matrix polynomial theory (see,
e.g., [5, Chap. 1] and [13]).

Definition 2.1. Let L(A\) = \"1, +Z;;01 N A; be a monic matriz polynomial of degree T. The

nonzero vectors ¢g ¢1, -+, ¢ determined by

> L )iy =0 (k2020 (2.1)
p=0""

are called a Jordan chain of length k + 1 for L(\) corresponding to Ao, where LP)(\) denotes
the pth derivative of L(\) with respect to A.

Definition 2.2. A Jordan matriz denotes the block diagonal matriz with diagonal blocks being
Jordan blocks. Given the Jordan matriz J of a quadratic matriz polynomial Q(X) in (1.1).
Denote by X an nx2n matriz whose columns are formed by nonzero eigenvectors associated with

each diagonal entry of J. We call the pair (X, J) forms a Jordan pair if [}?{J] is nonsingular.

Definition 2.3. A Jordan triple of a quadratic matriz polynomial Q(N) in (1.1) is a set of
matrices (X, J,Y) for which (X,J) is a Jordan pair, Y is a 2n x n matriz, and the matric

equation
X 0
7= L)

holds for the nonsingular leading coefficient matriz A in Q(N).
The Jordan triple has a close relation with coefficient matrices of Q(\) [13, Thm. 1].

Lemma 2.1. Let (X, J,Y) be a Jordan triple of a quadratic matriz polynomial Q(X) in (1.1).
Denote T'; = X J'Y, i = 1,2,3. The coefficient matrices of Q(\) can be defined recursively:

A=T]', B=—-AT,A, C=—AT3A+ BTB.

Moreover, if C is nonsingular, it can also be formulated as C = —(XJ 1Y)~ =: 71“:}.
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3. The CR Algorithm for WO QEPs

The cyclic reduction is a very efficient algorithm for solving some nonlinear matrix equa-
tions (see [1,17]). Attractive properties of the CR algorithm include its quadratic convergence
rate, low computational cost per iteration (compared with Newton’s method [10,23]) and nice
numerical reliability. The iteration scheme of the CR algorithm for WO QEPs is as follows [6]:

So=B, Ay= A, By= B, Cy=C,

Sk+1 = Sk — A By, ' C,

A1 = —ARB; M Ay, (3.1)
Biy1 = By — AyB, 'Oy, — OB, ' Ay,

Crsr = —CuB, 'Oy

Guo, Higham and Tisseur [6] showed that the matrix sequences in (3.1) satisfied
Ay <0, C,<0, Bpe>p> Ag+pu 2 Cr, k>0 (3.2)

with some positive real constant p. So the iterative process (3.1) is well defined for WO QEPs.
The convergence of the CR algorithm in this case is given in [6, Thm 4.6, Cor 4.7]).

Theorem 3.1. Let Q(X\) be weakly overdamped with eigenvalues Ay > -+ > Ay = Apgq > -+ >
Xon, and the partial multiplicities of A, be all equal to 2. Let SV and S® be the primary and
secondary solvents of Q(S) = 0, respectively, and X, be a semisimple eigenvalue of S and

S®2) . Then for any matriz norm || - ||, the iterates { By} and {Si} generated by (3.1) satisfy
timsup /15— 31 < 2, limsup {/1Bx - BJ < 2,
k— oo 2 k—o00 2

where S = —S@" A is nonsingular and B = A(S®W — §@) > 0 is singular. Moreover, {Ay}
and {Cy.} are both O(27F) with

. 1
lim sup /|| Ax||[|Ck|| < =.
k—o00 4

Theorem 3.1 shows that the matrix sequences {Si}, {Axr}, {Br} and {C}} are convergent.
In particular, both {Ax} and {Cy} converge to the zero matrix linearly. We note that the
assumption on the partial multiplicities of A, all equaling to 2 is necessary in the above theorem.
On the other hand, when the partial multiplicities of A\, are all equal to 1, an example given
in [6, Sec. 4] shows that the matrices sequences defined in (3.1) converge quadratically. However,
in this case, the limit of {A;} and {C%} may not be the zero matrix. So what interest us is
the convergence of the CR algorithm when the partial multiplicities of A\, include both 1 and
2. The next example shows that such quadratic has some different convergence behavior from
Theorem 3.1.

Example 3.1. Consider the quadratic

1 0 2 0 1 0
_ 2A B _ 2
Q) =A2A+AB+C =\ [O 1]+A{O a+1}+|:0 J’

where o > 1 is a real constant. It is easy to see that Q(\) is weakly overdamped with eigenvalues
{-1,—1,—1, -0} and the partial multiplicities of —1 are 1 and 2. It is also not difficult to see



Convergence of the Cyclic Reduction Algorithm for Overdamped Quadratics 143

that SV = —I, and S = diag(—1, —0) are the primary and secondary solvents of Q(S) = 0,
respectively. By direct computation, we get from iterates (3.1)

1
S 0 F=T 0
Ak - 0 - 1 s Bk = 0 o'2k+1 )
M (02 +1) ) (02" +1)

o

1 0 2k 41 0
ok
Ck = [ 02k ‘| N Sk = [ 2(;C o+ %‘| .

r ) (o2 +1)

It is clear that {Sy} converges with constant 1/2 (i.e. ||Sg+1—Skll1 = 5[|Sk— Sk—1[l1 for k > 1).
However, unlike Theorem 3.1, {C)} does not converge to the zero matrix if o > 1.

The remainder of the paper is to investigate the convergence of the CR algorithm for WO
QEPs without any assumption on the partial multiplicities of A,. An accustomed idea is to
directly employ some canonical form (such as the Kronecker form in [2]) to the general quadratic
Q(A) with the partial multiplicities of A, containing both 1 and 2. However, such a strategy
seems ineffectual for our case as the structure of the corresponding eigenspace is indefinite. So
in this paper, we only focus on deriving the convergence of the CR algorithm for a class of WO
quadratics Q(\) isospectral with Q()).

4. The Convergence of the CR Algorithm for a Class of WO QEPs

In this section, we first construct a class of WO quadratics @()\) and then give the main
convergence theorem of the CR algorithm for @()\)

Our construction of @()\) starts with the following diagonal quadratic Q4(\) with A, =
Ant1 = —1 (otherwise, a technique of scaling can always be used to shift the spectrum such

that A\, = A\pp1 = —1[6,8])
Qa(A) = NI + A[(Z1 + Imy) @ (B2 + A1) ® (Az + Iny) @ 21
+ 21 DXA DA D]

= NI, +AB+C, (4.1)
where X1 (X2) is an my x mq (I x I) diagonal matrix with its diagonal elements o; (0;) greater
than 1, mqy > ¢ >0 (m1+1 >4 >m1+1), Az (A1) is an ma x ma (I x 1) diagonal matrix
with its diagonal elements 6, (6;) less than 1, ma > s >0 (ma+1 > j > mo+ 1)), I, is an
identity matrix of order r, and n = my + mo + [ + r. To remove the assumption on the partial

multiplicity of A,, we suppose that m; and mo do not equal zero simultaneously and r > 1.
It is obvious that the eigenvalues of Q4(\) form a 2n x 2n matrix

J=[-S1® -5 1,1 @& ®J &I, &—A1D—-As],

where J; (r > i > 1) are 2 x 2 Jordan blocks associated with the eigenvalue —1.
The Jordan chains (see Definition 2.1) of Q4(A) form an n x 2n matrix

Xg= [0, plmomsd) = L LoD, o{5h, el
T d)ial)a ¢£;1)7 Ag_l)v Tty (%7:11)7 ¢(_61)a M) ¢(_6m2+l)]7 (42)
where {p(=0)} L ({p(=0:)3m2 ) are eigenvectors corresponding to the eigenvalues in —¥

and —X3 (—A; and —Ay), {@(71)}?31, {qbg(;l)}’f and {(2)1(_71) Loare my + mg + r linearly

i=1
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independent eigenvectors corresponding to —1, {qbgf 1)}§“=1 are r generalized eigenvectors corre-
sponding to —1. It follows from [5, Prop. 1.15] that the columns of X, form a canonical set of
Jordan chains (see [5, Chap. 1.6]), i.e, (X4, J) is a Jordan pair of Qq(A). Let (Xg, J, Yy) be a
Jordan triple of Q4(\). By Lemma 2.1, the coefficient matrices can be formulated as

I,=T;', B=-T4, C=-T4 +Bl4B (4.3)

with Fdi = XdJin,i = 1, 2, 3.

To extend Q4(\) to a class of isospectral WO quadratics, we keep J unchanged and give
the transformation X = P7'X, and Y = YyP~T with any nonsingular matrix P € R"*". By
Lemma 2.1 again, we can define the quadratic

Q) = NA+AB+C, (4.4)
where
A=T]', B=-AT3A, C=—-AT3A+ BT\B (4.5)

with I'; = XJ'Y (i = 1,2,3). Since the uniqueness of the Jordan triple of the matrix polynomial
can not be guaranteed (see [3, Chap. 1]), the obtained Q(\) could not cover all WO quadratics
isospectral with Qq(\). Here we still keep coefficient matrices the same with (1.1) to avoid the
notational clutter. A direct comparison of (4.3) with (4.5) yields the relations

A=pPTp, B=pPTBpP, C=PICP. (4.6)

Remark 4.1. The construction process of @()\) guarantees that two extremal solvents S()
and S@ of Q(S) = AS? 4+ BS +C = 0 have a clear definition and they do exist. Also \,, = —1
is semisimple in S, i = 1,2. Indeed, it is clear that

SO = [, @A @A @] and S = —[2, ® %y ® I, @ I,]

are the extremal solvents of Qq(S) = S? + BS+C = 0, and A, = —1 is semisimple in §(i),
i =1,2. By (4.6), the two extremal solvents of Q(S) = 0 have the form

S = p~1gWp and $@ = p-15@p,

and )\, = —1 is semisimple in S@, i =1,2.

The convergence theorem of the CR algorithm for Q()) is as follows:

Theorem 4.1. Let Q(N\) be a weakly overdamped quadratic given by (4.4). Let SO and S
be the primary and secondary solutions of Q(S) = 0, respectively. Then for any matriz norm
|| - 1I, the CR matriz sequences generated by (3.1) satisfy

, (4.7)

N~

limsup /| 4x — BP0y, 11 L, © 0,)P]| <
k—o0

— 1
limsup 4/|Ck — BP~1(Im, & 0, )P < =, (4.8)
k—o0 2

~ — 1
limsup \/||Sk — S| < =, limsup \/||Bx — B| < =, (4.9)
k—o0 k—o0 2

where P is given by (4.6), B= A(SM — S®3)) > 0 is singular and S=-5@"4 s nonsingular.

o=~
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Remark 4.2. Theorem 4.1 shows some different convergence from Theorem 3.1, i.e. the matrix
sequence {Ay} (or {Cx}) no longer converges to the zero matrix unless mo (or m;y) equals zero.
The case m; = mg = 0 implies that the partial multiplicities of A,, are all 2. In this case,
Theorem 4.1 is reduced to Theorem 3.1. So Theorem 4.1 can be seen as a complement of the
convergence for the CR algorithm. We will also see from the proof of Theorem 4.1 that the
convergence recovers quadratic if the partial multiplicities of A\, are all 1. This is also reflected
from the example in [6, Sec. 4].

5. Proof of Theorem 4.1

This section is dedicated to the proof of Theorem 4.1. The key of the proof is to make out
the structure of the eigenspace. We will describe the doubling algorithm in subsection 5.1 and
then explore the structure of the eigenspace in subsection 5.2. The proof of Theorem 4.1 will
be given in subsection 5.3.

5.1. The doubling algorithm

Different structure-preserving doubling algorithms have been studied in [2-4,7,9,12,20-22].
For general WO quadratics Q(A) in (1.1), the doubling algorithm is as follows [6]

Ay=A, Hy=B, Dy=0, Cy =C,

Apy1 = Ap(Dy, — Hy) "t Ay,

Hyi1 = Hy, + Cr(Dy — Hy) Ay, (5.1)
Cry1 = Cx(Dy — Hy,) *Ch,

Dyy1 = Dy — Ap(Dy, — Hk)_lck.

It is clear that the CR algorithm (3.1) can be recovered from the doubling algorithm (5.1) by
letting
B, =H,— Dy and Sy=H"'. (5.2)

It follows from (3.2) that By > 0 for k¥ > 0, thus the doubling algorithm (5.1) for Q(X) is well

defined. Let
Ay 0

Dy I
M, = d L= .
b [Hk I} ane S [C’k o] (5:3)
for k > 0. The doubling algorithm can also be described in block matrices [2, 6]
MLy = (Mg ' Lo)* (5.4)

for k£ > 0.
The next lemma shows that the doubling algorithm, when applied to WO quadratics @ (N,
really acts on the diagonal quadratic Q4(X).

Lemma 5.1. Let

MO = 735 I‘| and L() = a 0
be the initial block matrices associated with Qq(\). Let
Ao 0 Dy I
My = d Ly=
0 [H I] and Lo [co 0}
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be the initial block matrices associated with @()\) When the doubling algorithm (5.1) is applied
to Qa(\) and Q(N), we have for k > 0

A, = PTAP, C,=PTC,P, D,=PTD,P, H,=PTH,P, (5.5)
My = Db MyDp,, Ly = D} LyDp,,

where My, and Ly, are defined by (5.3),

0 P T

with nonsingular P in (4.6).

Proof. 'We prove the lemma by induction. It is easy to see from (4.6) and (5.1) that (5.5)
is true for k = 0 with Ao =1, C’o = C’ Do =0 and HO = B. By the definition of Mo, Lo, My
and Lo, (5.6) holds for k = 0.

Suppose that (5.5) and (5.6) are true for k = i > 0. We are going to show that they are
true for i 4+ 1 too. By the doubling iterates (5.1), we have

A1 = PTA;(D; — H)) ' AP = PT 4, P,
Hiy1 = PTH,P + PTCy(D; — H;) "' A;,P = PTH; . P,
Ciy1 = PTCy(D; — Hy))'C;P = PTCi 1 P,
Diy1 = PT'D;P — PTA(D; — H;)"'C;P = P'D; 1 P

and
A 0 PTA; P 0
M, = i+l = Ll = DL M1 D
i [HM —1I, -PTH;.,,P —PTP-T Pl
Diy1 I, PTD;,P PTP-T T =
Liy1 = = ~ =Dp Li+1Dp,.
1 [Cm 0} PTC; 1P 0 A
So (5.5) and (5.6) hold for all 4+ 1 > 0. The proof is complete. O
By the use of (5.4) and (5.6), we have
— p— k — /\— =
MLy = (My'Lo)* = Dj, 1 (My 'Lo)* Dp, = D3} (M;7'Ly) Dp,, (5.7)

i.e., the doubling algorithm on @ (\) is really on Qq(\) via a similarity transformation.
To obtain the convergence of the CR algorithm for Q()), we need to make out the structure
of the eigenspace for M(;lLO. To this purpose, let

L[ e -Sefme—l O @0 @0, el 5.8)
Y 0 Iy, @A B Do 1|’ '
oo [FrE oo N
Oml@ol@omz@lr Iml@ AI@ A2@ -1
and X; and Xy be two n x 2n matrices by rearranging columns of Xy (see (4.2)) corresponding

to J, and J,, respectively. Since )\J/W\O —EO is a linearization of Q4()) and (X3, Jy,) (or (Xg, Jy))
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is a Jordan pair of Q4(\), we then have, by [5, Thm 1.20] and Lemma 5.1, two basic equalities
X, 17 X X, 17" X
Pl ML | S0 = | S0 | De(MytLo)DRt | S | =,
[&A 0 J&A h@i pe(Mo " Lo)Dp, | i 7 1= o
-1 —1
X <17 | Xw X 1 1| X
M;i L = Dp,(M; Lo)D =Ju.
[Xﬁ,Jw] o [XwJJ [Xﬁ,Jw] P Mo Lo)Dpy | 7, =

If we denote

~ X- _ X
V= v d W= © 5.10
[XﬁJJ o [Xwa] ’ (5:10)
the structure of matrices
V =Dp!V and W =Dp'W (5.11)

i.e., the structure of the eigenspace for o) can be derived by exploring the structure o
i the struct f the ei for My 'L be derived b loring the struct f
matrices V and W.

5.2. The structure of matrices V and W

We first give the following lemma which reveals the structure of X; and X,;. The proof will
be shown in Appendix A.

Lemma 5.2. Let ®,,,,, ®;, VU, and ¥y, be m1 x my, I X I, I X I and ma X mg nonsingular
diagonal matrices. Let ®,, @, and V,,, be r X r, ma X ma and my X my nonsingular matrices.
Suppose that ©,.(j = 1,2,3), @ and ¥i(k = 0,1) are all arbitrary real matrices with the

respective dimension mi X r, Mo X T, r X T, My X M1, T X Mg, Mg X my and v X my. The
structure of Xy and Xy are as follows:
[ (I)ml (I)O \Ilml (I)lr_
o 4 v,
X; = b, W T, B (5.12)
L o 0.0 Ty D3, |
I q)ml q)O (I)lr \Ilml i
D, i v,
Xo = : 5.13
By Byl Ty Uy, (5.13)
L q)l (I)ST \Ill (I)r_

The next lemma indicates that X3 and X,; have more concise structure, i.e. the blocks ®

and ¥y in (5.12) and (5.13) are really zero matrices. It also gives the inverse structure of the

nonsingular sub-block .

Lemma 5.3. Matrices V and W in (5.10) have the following block forms:

|

~

Vi
Vs

Va

~

Vi

)

W W\1 Yz&
Wy Wy
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where V1 and W3 are nonsingular n X n matrices with

. o
Vit = ! o1 : (5.14)
-0 1091 ot
vt »
Wil = ¥ =1 . (5.15)
e e 20 " o1

Proof. Since @y, @r, Pry, Uiy ¥y, ¥pp, and @, in (5.12) and (5.13) are all nonsingular
block matrices , we can define

R
~ [}
V1 = ! —1 9
(I)m2
I 0,102, @
r -1
Vo )
—~ |\
W3 = _ _ ! _
—\Ilmi‘llo‘llmll \I/mz
I 2 PR et P!

Since 171171 = ‘71‘71 = I, and W3/V[73 = /W\3W3 = 1I,. So ‘71 and /W\g are nonsingular with
inverses ‘71 and W:g, respectively. It then suffices to show that &g and ¥ are zero matrices. As
mentioned in Remark 4.1, S = —[Lm, ® A1 Ay ® I] and S@ = 351 @3 @ I, ®I,] are
the extremal solvents of Q4(S) = 0. By the proof of Theorem 4.6 in [6], we also have

WaWw; ' =80, Ut =383, (5.16)

However, a direct computation shows

Y1 (Iml — 21)(1)0(1);12
—_ Yy
Vo1 = I, )
I,
I,
P A
Walls = = (I, — Do) W0} A, ’
I
where
cI)ml z1 (I)O lI/ml
5 @3 = VA
V2= S R e
q)l (I)r \Ill (I)r

Hence by the nonsingularity of I,,, — 31 and I,,,, — Ag, ®¢ and ¥y are zero matrices. So the
inverses of V4 and W3 have the form (5.14) and (5.15). O
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Based on Lemma 5.3, we can describe the structure of V and W as follows:

gk (5.17)
VaiVy
I q)ml \I/ml (I)lr 1
P, 3 0,
(I)m2 \I/mQ cI)Q'r
e AT L., 2 SO LT
7q)m121 *\Ilml *q)lr ,
—®;3 - A
—CI)m2 _\I/mg A2 _@27“
L & -9, -0y D, — B3, |
W= [Kk%] (5.18)
Wo i Wy
I (I)m1 cI)l'r' \I/m1 |
P, v,
D, Gy, Wi,
| (I)l ,,,,,,,,, (I)ST ,,,,,,,,, \I’l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (I)T
B —<I>m121 _(I)lr ‘IITI’M
— 93 YAV
(I)mg _@27“ _‘Ilmg AQ
L 7@1 q)r q)3r *\Ijl 7@7“ J

Moreover, (5.17) and (5.18) help to yield the following lemma that is useful in the proof of
Theorem 4.1.

Lemma 5.4. Let V and W be partitioned as in (5.17) and (5.18), respectively. Let = ) =
Wa (I, ® A2 @ LYW5 ™, Egy = Vi(E2 @ Ly @0V, Eg ) = Vi(S 2" @ I, © L)V
and gy ) = Wg([ml oA @OT)ng with ¥ = 31939 and A = A1 DAy, Then for sufficiently
large k, matrices

I —EawEer + [n — Ean)Va0nr & (—=2) 1)V, (5.19)
I —E30Zur + Esr — In)Wi(0n—r @ (=2)~F 1wy, (5.20)

are both nonsingular. Moreover, we have

Jim B -EqnEer) ' = V2O, 41 ® Ly ©0,)V; " =2 By, (5.21)
lim Z (I — Es 0 Sam) L = Ws(I, Wit =2y 22
Jm (4, ( (3.5) Z(4,k)) W3 (I, @ On—m,)Ws 4 (5.22)

Proof. Note that ¥ is a diagonal matrix with nonzero entries greater than 1 while A is a
diagonal matrix with nonzero entries less than 1. Therefore, matrices Z; 1) (j = 1,2, 3,4) have
the limits =;(j = 1,2,3,4) with E1 = Ws(In, ®014m, ® L) W5, B2 = Vi(Ony 11 Lo, ©0,) V7,
Es = Vi(Omyti @ Iy @ I,«)Vl_1 and 24 = W3(In, ® On_ml)WS_l. Observing (5.14) and (5.15),
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the matrix sequences defined by (5.19) and (5.20) converge to nonsingular matrices

I, I,
= = I I
I —=12, = I — =32, =
1502 I, ; 354 I,
-9, I, -9,9,! I.
Relations (5.21) and (5.22) can be obtained by (5.14), (5.15), (5.17) and (5.18). O

5.3. The proof of Theorem 4.1

We prove the convergence for the diagonal quadratic Q4(\) by doubling algorlthm then the
results in Theorem 4.1 can be obtained via the relation (5. 5) By (5.7), we have M Ly =
(M;'Lo)?". This together with V=1(M; ' Lo)V = J, and W—(M; 'Lo)W = J,, yield

~ ~ — =~ ok ~ = — = ok
LV =MVJIY, LW=DMWJZ. (5.23)

Equating (5.23) by 2 x 2 blocks of M\k, Ek in Lemma 5.1 and ‘7, W in Lemma 5.3, we obtain

DiVi+ Vo= A% @1, @ 1) (5.24)
CoVi = —(HVi + Vo) (5% @ 1, & 1) (5.25)
DiVs + Vi = A Vi(0n—r @ (=2)%1,) + A Vs (L, @ A% @ I) (5.26)
CoVs = —(HeVi + Va) (0ny @ (=2)F1,) — (HeVs + Vi) I, ® A @ 1,)  (5.27)

and

DuWh + W = AW (52 @ L, & 1) + ApWs(0,_p & (—2)%1,) (
CeWy = —(H Wy + Wo) (82 @ I, ® 1) — (HeWs + W) (0nr & (—2)F1) (5.29
BkW3+W4:A\kW3( ml@AQk@I) (
6kW3 (HkW3+W4)( my @AQ o1, (
where ¥ and A are both diagonal matrices with X = 31 ® 35 and A = A1 § As.
Post-multiplying (5.24) and (5.26) by n2" g Ly, ® 0, and 0,,_, ® (—2) "I, respectively
and then adding the resulting equalities yields
A\k‘/}l + A\k‘//\é(onfr 2 (72)_kIT)
— DV + ) (2 @ 1, ©0,) + (Di Vs + Vi) (0, @ (—2)7*1,.). (5.32)
By (5.30), we have
Dy = (kaWg(Iml oA I, - W4)W3—1. (5.33)
Inserting (5.33) into (5.32) and then post-multiplying it by 171_1 gives

o~

Ap (In — EanEer) + Tn — Ean)Vs(0nr @ (—2)_k1r)‘7171)

= (Vo = W5 )22 @ I, ®0,) V7
(Vi — WaW5 ' V3) (0 @ (—2)7F

~

L)Vt
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where Z(; ) and Z(y ) are defined by Lemma 5.4. By (5.16) and (5.21), we get

Ay — (VT = WaWs DZ ) (In — EapEer)
= A= (8® - 5W)Z, = 0((-2)7). (5.34)

It then follows from (5.33) that
Dy + WaWs ' = LS = O((-2)79), (5.35)

here we have used the fact Za(I, — Z152) !Z; = Z35; = 0. Post-multiplying (5.29) by
0n_r @ (—2)7*I, and then subtracting it from (5.31) gives

ak/Wi% - éV\k/vv\l (On—'r' S¥ (_2)7k17“)
o~ o~ — ~ — k
= (Hle + WQ)(On—T D (_2)_klr) - (HkW3 + W4)(Im1 D A? D 0,«). (5-36)

From (5.25), we have
Hy == (G5 @ Ly @ 1) + V2) V7 (5.37)
Inserting (5.37) into (5.36) and then post-multiplying the result by ng, we get
C (In — B Eur + Esr) — In)Wi(0ny ® (—2)_k1r)/ﬂ7371>
= (Wo = DV W) (O @ (~2)F L)W+ (Va0 = Wy )E ),
where Z3 ) and Z(4 ) are defined by Lemma 5.4. By (5.16) and (5.22), we have

Cr — (VW' = WaWy E iy (In — Ea.) Zak)) ™
=Cp— (8 =5z, = 0((-2)7h). (5.38)

This together with (5.37) implies
Hy + VoVt = CuZ5 = O((—2)7"), (5.39)

here we have used the fact Z4(I,, —Z324) 123 = 24Z3 = 0. In view of (5.5), we get from (5.34),
(5.35), (5.38) and (5.39)

Ap — PT(8§® — 8z, P = O((—2)7), (5.40)
Dy, + PTSWP = 0((-2)~%), (5.41)
Cr — PT(S® -5z, P = 0((—-2)7%), (5.42)
Hy, + P73 P = 0((-2)7F) (5.43)

Since (5@ — SN2y = (§@ — §WY)(0,,, 41 ® I, ©0,) and (S@) — SO)Z, = (§@) — SOY(I,,,, &
On—m, ), (5.40) and (5.42) together with §@ = P~1S@P (i = 1,2) and A = PTP imply (4.7)
and (4.8). Note that By, = Hy— Dy, Sy = H]'. Following a similar way to the proof of Corollary
4.7 in [6], we obtain (4.9). O

Remark 5.1. When the constant r equals zero, we know from (5.34), (5.35), (5.38) and (5.39)
in Theorem 4.1 that the r x r block matrices disappear. In this case, the convergence rate
is quadratic, which is also reflected from the example in [6, Sec. 4]. When the constant r is
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greater than zero, Theorem 4.1 shows that the iterate sequences { B} and {S;} have the same
limit with that in Theorem 3.1. However, sequences { A} and {Cy} no longer converge to the
zero matrix unless my and mso are both zero.

Remark 5.2. We prove Theorem 4.1 by using the same tool in [6]. This result can also be
derived by directly applying the Kronecker form to @(S ) = 0 and its dual equation (as in [2]).
Once the structure of V and W is clear, there is no difference in essence of the two methods.
However, our proof can not cover all quadratics isospectral with Q4()), even for those in which
the two extremal solvents have a semisimple \,,.

6. Numerical Experiments

In this section, we test the convergence behavior of the CR algorithm in Theorem 4.1. We
first provide a way to generate a class of WO quadratics Q(X) (see also in [13] and [14]). Let

X’f) = [Xm17Xla XT)’LQ)XT) Xm1®17Xl62) Xm2®37 OTLX’!‘] (61)

with
Xml = [(21 - Iml)_%ao(nfml)fml]Tv
X1 = [Oml x1s (22 - @2A2® )_5 O(m2+r)><l]Ta
= [0n

Xm2 [0(m1+l)><m27( AQ)_E 7><m2]T

)

)XTy ]T7

where ©;,7 = 1,2, 3 are real orthogonal matrices. Let

P = _Iml 2] _Il 2] _Img 2] Or 0m1 2] Ol S Omg S I’r‘
OTI’L1 @Ol@OmQ @Ir Iml @Il @Iﬂ’n 69O’!

be a standard involuntary permutation matrix [5, Chap. 10] and Y; = P@XﬁT . Then we have

X5 On
Y = .
e[z
Such a triple (X3, J,,, Y3) is called a self-adjoint Jordan triple [5] for the monic quadratic matrix
polynomial. If J, is stable (i.e. all eigenvalues of .J, are in the open left half of the complex
plane), we define the moments

D= XoJlYs, i=-1,1,2

from the triple (Xs, Jy, Ys). The next lemma describes how to generate weakly overdamped
quadratics Q(\).

Lemma 6.1. Given a nonsingular real n X n matriz P and a choice of X; by (6.1). If J, is
stable, then the coefficient matrices A, B and C of Q()\) defined by

A=PPT B=-PI2P", C=-Pr;P" (6.2)

are all symmetric and positive definite.
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Proof. By the nonsingularity of P, it is clear that A is symmetric and positive definite. By
the definition of I';, we have

Ty = X3 J2Y;
= X, (I = D) X, " + Xi(©248705 — 535)X,"
X, (A2 = DX, T — 2D x (DT
Iy =XJ, 'Y,
= X, (ET - DX T 4+ X025 - A7 e X T
F Xy (1 — A DX, T — XD x (DT

Since ¥; and A;(j = 1,2) are diagonal matrices with diagonal elements greater than 1 and less
than 1, respectively, we deduce from Weyl’s theorem and the fact A(MN) = A(NM) (see [19]
for example) that

M0:A207 — ¥2) < AM(A?) — Auin(Z2) < 0,

Thus ©,A?03 —¥3 is negative definite, and so is ;' —02A7 0. By the choice of X; in (6.1),
I'; and I'_; are both symmetric and negative definite. The required symmetry and definiteness
of B and C then follows from (6.2). O

Example 6.1. Take —2¢(i = £1,42, 43, +4) and —1 with r = m; = mg = 2 as eigenvalues.
Let X; be of the form in (6.1) with ©; = Iz(i = 1,2,3) and P be the real random orthogonal
matrix (gallery(’randsvd’,8) in MATLAB). As suggested in [2], it would be reasonable to
stop the iteration of the CR when ||Sy — Sk_1]|/[|Sk|| < 1077, and take S}, as an approximation
to the exact —S(® A. Further iterations may not be able to improve the accuracy significantly
in view of that Bj are nearly singular for large k. Table 6.1 shows the average iterations and
the maximum, minimum 1-norm of A; and C} over 20 quadratics for which the stop criterion
is satisfied. The third row in Table 6.1 listed the corresponding results of a version of the CR
algorithm to balance ||Ag|| and ||Ck| (BCR) [8].

Table 6.1 Average iterations and the maximum, minimum 1l-norm of A, and C} performed by the

CR and its balanced version BCR
averiter maxnormA  minnormA maxnormC  minnormC

CR 20.5 30.1370 4.2443 222.5990 79.1581
BCR 20.8 67.1519 22.9727 67.1519 22.9727

We note from Table 6.1 that minimum 1-norm of Ay and Cj does not converge to zero. In
fact, they are found between 4.2518 and 4.2443 for Ay and 79.3675 and 79.1581 for C} from
k =5 to the termination. This shows that for WO quadratics Q()) in (4.4), the convergence
behavior of the CR is largely dictated by the results in Theorem 4.1.

7. Concluding Remarks

We have established the convergence of the CR algorithm for a class of weakly overdamped
quadratics. This convergence theory does not require the assumption that the partial multiplic-
ities of A, are all equal to 2. Also, the matrices sequences {A;} and {C}} generated by the CR
algorithm, unlike Guo, Higham and Tisseur’s convergence theorem in [6], no longer converge to
the zero matrix if the partial multiplicities of A, include 1. Therefore, our derived result can
be seen as a complement to the convergence of the CR algorithm. However, the behavior of
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the CR algorithm for general weakly overdamped quadratics without any assumption on the
partial multiplicity of A, still deserves more research.
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Appendix

Proof of Lemma 5.2

We can utilize Definition 2.1 to find Jordan chains of the diagonal quadratic Qq(\) corre-
sponding to each eigenvalue. Let A\g = —oy for my +1 >t > 1. In view of (2.1) for k = 0, we
have Qq(—0¢)p(~7*) = 0. Solving the system for ¢(~7*), we have

B0 = [o 10,005,007, (A1)

where QSEJ ta)t) can be an arbitrary nonzero real scalar. A further computation by (2.1) for k =1
shows that ¢(=7*) = 0. Hence the length of the Jordan chain corresponding to —or(my +1 >
t > 1) is 1. Similarly, we can obtain the Jordan chain

mi+s—1
=) =[0,-+,0,6(,%,0,--- 0" (A2)

with the length 1 corresponding to —ds(mg +1 > s > 1), where ¢(0 5s)

nonzero real scalar. Finally we find the Jordan chains of Q4(\) corresponding to —1. From the

can be an arbitrary

equation Qq(—1) é_l) =0, we get
l
(=1) (=1)
[¢(0 1) e 7¢(0 my)’ a : O ¢(0 mq41+1)7 e ’¢(O,m1+l+m2)’
(=1)
D0, my +tmat1) ’¢(0 n)] (A3)
with arbitrary real constants ¢§a]1; not all equal zero for j =1,--- ;my,my+1+1,--- ,n. Note

that <Z)871) in (A3) indeed includes mq + mg + r linearly independent vectors (see also in (4.2))
corresponding to —1. Let k =1 in (2.1) and solve the system Q’,(—1)¢, =1 4 Qa(—1) (1_1) =0
for <Z)871) (based on (A3)) and ¢§71). We obtain

m1+l+m2
oy Y =10, 0 ¢(0m1+l+m2+1) "’¢E(;:z))]T’ (A4)
and
z
I R S ANCRRR I - REERT e N

(=1 (=
¢(1,m1+l+m2+1)’ T ¢(1,n)] (A5)
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with arbitrary real constants <Z)§;]1; forj=1,--- ,my,m +1+1,--- ,n. An analogous compu-
tations to
1

SQi(-1)o5 Y + Qa1 + Qu(-1)¢5 " =0

gives <Z)871) = 0. Thus the Jordan chain of the eigenvalue —1 terminated at the length 2.
Arranging the vectors (A1)—(A5) according to J,, we obtain the structure of X; as in
(5.12), where ®,,,,, ®;, ¥; and ¥,,,, are mq x my, [ x I, I x [ and mq X ms nonsingular diagonal
matrices, respectively, with nonzero entries corresponding to (Al) and (A2). Note that d)(()_l)
in (A4) includes r linearly independent eigenvectors corresponding to —1. Thus @, is an r x r
nonsingular matrix. ®;,(j = 1,2,3), ®; and Ux(k = 0,1) are all arbitrary real matrices with
the respective dimension my X 7, mg X r, ¥ X 7, m1 X my, r X mg, mg X m1 and r X my.
Without loss of the generality, we can assume that ®,,, and ¥,,, are my X mg and m; X my
nonsingular matrices. In fact, an appropriate permutation to vectors formed by (A3) always
gives such nonsingular ®,,, and ¥,,,, since we have mentioned that (A3) includes mj +mqo +r
linearly independent vectors corresponding to —1. Similarly, rearranging the vectors (A1)—(A5)
according to J,, can yield (5.13). O
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