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Abstract

In this paper, a generalized preconditioned Hermitian and skew-Hermitian splitting

(GPHSS) iteration method for a non-Hermitian positive-definite matrix is studied, which

covers standard Hermitian and skew-Hermitian splitting (HSS) iteration and also many

existing variants. Theoretical analysis gives an upper bound for the spectral radius of the

iteration matrix. From practical point of view, we have analyzed and implemented inexact

generalized preconditioned Hermitian and skew-Hermitian splitting (IGPHSS) iteration,

which employs Krylov subspace methods as its inner processes. Numerical experiments

from three-dimensional convection-diffusion equation show that the GPHSS and IGPHSS

iterations are efficient and competitive with standard HSS iteration and AHSS iteration.

Mathematics subject classification: 65F10, 65F20, 65F30, 65F50.
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1. Introduction

We consider the solution of large sparse system of linear equations

Ax = b, A ∈ C
n×n, x, b ∈ C

n, (1.1)

where A is a non-Hermitian and positive definite matrix. Bai, et al. [10] first presented

the Hermitian and skew-Hermitian splitting (HSS) iteration method, which is based on the

Hermitian and skew-Hermitian splitting

A = H + S, (1.2)

where

H =
1

2
(A+A∗), S =

1

2
(A−A∗) (1.3)

is the Hermitian and the skew-Hermitian parts of A, respectively.

Let α be a positive constant. The standard HSS iterative scheme works as follows: Given

an arbitrary initial guess x(0), for k = 0, 1, 2, · · · until x(k) converges, compute

{
(αI +H)x(k+ 1

2
) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+ 1

2
) + b,

(1.4)

where α is a given positive constant.
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When H is positive definite, the HSS iteration method is unconditionally convergent for

all α > 0 and for any choice of x(0). Moreover, an upper bound on the spectral radius of the

iteration matrix is given, which can be minimized by choosing α =
√
λ1λn, where λ1 and λn are

the minimal and the maximal eigenvalues of H , respectively. In order to save the computational

cost, the authors considered inexact HSS method with Krylov solvers in the inner iterations, see

also [10, 12]. Further, Bai, Golub and Ng in [10] carefully studied the asymptotic convergence

rates and the optimal choices of the inner iteration steps for two specific kinds of inexact HSS

iteration.

HSS iteration method immediately attracted considerable attention and resulted in many

papers devoted to various aspects of the new algorithms. For instance, generalized Hermitian

and skew-Hermitian splitting (GHSS) iteration in [14]; preconditioned Hermitian and skew-

Hermitian splitting (PHSS) iteration in [8, 13, 14]; lopsided Hermitian and skew-Hermitian

splitting (LHSS) iteration in [22]; asymmetric Hermitian and skew-Hermitian splitting (AHSS)

iteration in [21]; positive-definite and skew-Hermitian splitting (PSS) iteration and block tri-

angular and skew-Hermitian splitting (BTSS) iterations in [9].

On the other hand, HSS iteration method was successfully extended to the solution of

saddle point problem in [16] and preconditioning techniques for Krylov subspace methods [17,

19]; see also [6, 20, 24]. It was noted in [17] that the method can unconditionally convergent

when the Hermitian part H is positive semidefinite for the special case of (generalized) saddle

point problems. Other developments including studies on the optimal selection of iteration

parameters, successive overrelaxation acceleration, extension to certain singular systems and

applications of the HSS preconditioner have been well established in [4,5,7,8,11,15,18] and the

references therein.

In this paper, based on the splitting (1.2)-(1.3), we generalize the HSS iteration scheme into

a new approach, called generalized preconditioned HSS (GPHSS) iteration. By introducing two

symmetric positive definite matrices P1 and P2, the GPHSS iterative scheme works as follows.

Method 1.1. The GPHSS iteration method. Given an arbitrary initial guess x(0), for

k = 0, 1, 2, · · · until x(k) converges, compute

{
(αP1 +H)x(k+ 1

2
) = (αP1 − S)x(k) + b,

(βP2 + S)x(k+1) = (βP2 −H)x(k+ 1

2
) + b,

(1.5)

where α and β are given positive constants.

Note that the GPHSS iteration method can cover many existing variants of the standard

HSS iteration. For instance, when α = β and P1 = P2 = I, the GPHSS iteration method is

equivalent to the standard HSS iteration method in [10]; when α = 0 and P2 = I, it leads to

the LHSS iteration method in [22]; when α 6= β and P1 = P2 = I, it results in AHSS iteration

method in [21] and when P1 = P2, it is PHSS iteration method in [8, 13].

Theoretical analysis gives an upper bound about the contraction factor of GPHSS iteration

method, which shows the relations among GPHSS, HSS and other existing variants. From

practical point of view, we also analyze the convergence theory of inexact variants of the GPHSS

iteration method and their implementation. A number of numerical experiments from discrete

three-dimensional convection-diffusion equation are presented to illustrate the advantages of

the GPHSS iteration method.

This paper is organized as follow. We study the convergence properties of the GPHSS it-

eration method in Section 2. In Section 3, we discuss in detail the implementation of GPHSS
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iteration method and inexact GPHSS iteration method, and study their convergence property.

Numerical results about the GPHSS iteration method and the inexact GPHSS for the appli-

cation from discrete three-dimensional convection-diffusion equation are reported in Section 4

and, finally we end the paper with concluding remarks in Section 5.

2. Convergence Analysis of the GPHSS Iteration Method

We study the convergence of the GPHSS iteration method and derive an upper bound for

the contraction factor in this section. The GPHSS iteration method can be generalized into

a two-step splitting iteration framework, see also [2, 3, 10]. We firstly review the convergence

criterion for two-step splitting iteration form in [10].

Lemma 2.1. Let A ∈ C
n×n, A = Mi −Ni(i = 1, 2) be two splittings of A, and x(0) ∈ C

n be a

given initial vector. If x(k) is a two-step iteration sequence defined by

{
M1x

(k+ 1

2
) = N1x

(k) + b,

M2x
(k+1) = N2x

(k+ 1

2
) + b,

(2.1)

k = 0, 1, · · · , then

x(k+1) = M−1
2 N2M

−1
1 N1x

(k) +M−1
2 (I +N2M

−1
1 )b, k = 0, 1, · · · . (2.2)

Moreover, if the spectral radius ρ(M−1
2 N2M

−1
1 N1) < 1, then the iterative sequence {x(k)} con-

verges to the unique solution x∗ ∈ Cn of the system of linear equations (1.1) for any initial

vector x(0) ∈ Cn.

This lemma can also be found in [20], which contains a general theory for the so-called

alternating iteration method. Applying this lemma to the GPHSS iteration, we obtain the

following convergence property.

Theorem 2.1. Let P1 ∈ Cn×n and P2 ∈ Cn×n be two Hermitian positive definite matrices. Let

A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗) be its Hermitian

and skew-Hermitian parts, respectively, and α be a nonnegative constant and β be a positive

constant. Then the iteration matrix M(α, β) of GPHSS method is

M(α, β) = (βP2 + S)−1(βP2 −H)(αP1 +H)−1(αP1 − S). (2.3)

Denote λ(P̂ P̂ ∗) and λ(Ĥ) be the spectral sets of the matrix P̂ P̂ ∗ and Ĥ, respectively, and

σ(Ŝ) be the singular value set of the matrix Ŝ, where P̂ = P
− 1

2

1 P
1

2

2 , Ĥ = P
− 1

2

1 HP
− 1

2

1 and

Ŝ = P
− 1

2

2 SP
− 1

2

2 . Then,

ρ(M(α, β)) ≤ δ = κ(P̂ )δ1δ2, (2.4a)

where

δ1 = (β max
γi∈λ(P̂ P̂∗)

|γi − 1|+ |β − α|) max
λi∈λ(Ĥ)

1

α+ λi
+ max

λi∈λ(Ĥ)

|λi − α|
|λi + α| , (2.4b)

δ2 = (α max
γi∈λ(P̂ P̂∗)

| 1
γi

− 1|+ |α− β|) max
θi∈σ(Ŝ)

1√
β2 + θ2i

+ 1. (2.4c)
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Proof. Let

M1 = αP1 +H, N1 = αP1 − S, M2 = βP2 + S and N2 = βP2 −H.

Then αP1 + H and βP2 + S are nonsingular for any nonnegative constants α and positive

constants β. So formula (2.3) is valid.

Denote by

Ĥ = P
− 1

2

1 HP
− 1

2

1 , Ŝ = P
− 1

2

2 SP
− 1

2

2

and P̂ = P
− 1

2

1 P
1

2

2 . Then

αP1 +H = P
1

2

1 (αI + Ĥ)P
1

2

1 , βP2 −H = P
1

2

1 (βP̂ P̂ ∗ − Ĥ)P
1

2

1 , (2.5a)

βP2 + S = P
1

2

2 (βI + Ŝ)P
1

2

2 , αP1 − S = P
1

2

2 (αP̂−1P̂−∗ − Ŝ)P
1

2

2 . (2.5b)

Hence,

(βP2 −H)(αP1 +H)−1

=P
1

2

1 (βP̂ P̂ ∗ − Ĥ)(αI + Ĥ)−1P
− 1

2

1

=P
1

2

1 [(βP̂ P̂ ∗ − αI)(αI + Ĥ)−1 + (αI − Ĥ)(αI + Ĥ)−1]P
− 1

2

1

=P
1

2

1 [β(P̂ P̂ ∗ − I)(αI + Ĥ)−1 + (β − α)(αI + Ĥ)−1 + (αI − Ĥ)(αI + Ĥ)−1]P
− 1

2

1 ,

and

(αP1 − S)(βP2 + S)−1

=P
1

2

2 (αP̂−1P̂−∗ − Ŝ)(βI + Ŝ)−1P
− 1

2

2

=P
1

2

2 [(αP̂−1P̂−∗ − βI)(βI + Ŝ)−1 + (βI − Ŝ)(βI + Ŝ)−1]P
− 1

2

2

=P
1

2

2 [α(P̂−1P̂−∗ − I)(βI + Ŝ)−1 + (α− β)(βI + Ŝ)−1 + (βI − Ĥ)(βI + Ŝ)−1]P
− 1

2

2 ,

which lead to

ρ(M(α, β))

=ρ((βP2 −H)(αP1 +H)−1(αP1 − S)(βP2 + S)−1)

=ρ(P
1

2

1 (βP̂ P̂ ∗ − Ĥ)(αI + Ĥ)−1P̂ (αP̂−1P̂−∗ − Ŝ)(βI + Ŝ)−1P
− 1

2

2 )

=ρ((βP̂ P̂ ∗ − Ĥ)(αI + Ĥ)−1P̂ (αP̂−1P̂−∗ − Ŝ)(βI + Ŝ)−1P̂−1)

≤‖(βP̂ P̂ ∗ − Ĥ)(αI + Ĥ)−1P̂ (αP̂−1P̂−∗ − Ŝ)(βI + Ŝ)−1P̂−1‖2
≤κ(P̂ )

[
β‖P̂ P̂ ∗ − I‖2‖(αI + Ĥ)−1‖2 + |β − α|‖(αI + Ĥ)−1‖2 + ‖(αI − Ĥ)(αI + Ĥ)−1‖2

]

·
[
α‖P̂−1P̂−∗ − I‖2‖(βI + Ŝ)−1‖2 + |α− β|‖(βI + Ŝ)−1‖2 + ‖(βI − Ŝ)(βI + Ŝ)−1‖2

]
.

Denote by Q(β) = (βI − Ŝ)(βI + Ŝ)−1. It is clear that Ŝ∗ = −Ŝ and

Q(β)∗Q(β) =(βI − Ŝ)−1(βI + Ŝ)(βI − Ŝ)(βI + Ŝ)−1

=(βI − Ŝ)−1(βI − Ŝ)(βI + Ŝ)(βI + Ŝ)−1 = I, (2.6)

so that Q(β) is a unitary matrix, and therefore ‖Q(β)‖2 = 1.
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Note that both P̂ P̂ ∗ and Ĥ are Hermitian positive definite matrices. Denote by λi, (i =

1, · · · , n) the eigenvalues of Ĥ. It is seen that

‖(αI − Ĥ)(αI + Ĥ)−1‖2 = max
λi∈λ(Ĥ)

∣∣∣∣
α− λi

α+ λi

∣∣∣∣ < 1 (2.7)

is always valid. Let λn be the smallest eigenvalue of Ĥ . Then

‖(αI + Ĥ)−1‖2 = max
λi∈λ(Ĥ)

1

α+ λi
≤ 1

α+ λn
<

1

α
. (2.8)

Denote by γi, (i = 1, · · · , n) the eigenvalues of P̂ P̂ ∗. Then

‖P̂ P̂ ∗ − I‖2 ≤ max
1≤i≤n

|γi − 1|, (2.9a)

‖P̂−1P̂−∗ − I‖2 ≤ max
1≤i≤n

| 1
γi

− 1|. (2.9b)

The above inequalities then give the upper bound for ρ(M(α, β)) in (2.4). �

We give some remarks on the upper bound before going on. First, when P1 = P2, GPHSS

leads to standard preconditioned HSS method where

P̂ = P
− 1

2

1 P
1

2

2 = I, κ(P̂ ) = 1. (2.10)

In this case, the upper bound in (2.4) results in

δ =

(
max

λi∈λ(Ĥ)

|β − α|
α+ λi

+ max
λi∈λ(Ĥ)

|λi − α|
|λi + α|

)(
max

θi∈σ(Ŝ)

|α− β|√
β2 + θ2i

+ 1

)
, (2.11)

which is a bit looser than the upper bound in [21], but also includes the special case in [10]:

δ = max
λi∈λ(Ĥ)

|λi − α|
|λi + α| , (2.12)

when α = β. On the other hand, when P1 6= P2 and α = β, the upper bound in (2.4) leads in

(

max
γi∈λ(P̂ P̂∗)

|γi − 1| max
λi∈λ(Ĥ)

α

α+ λi

+ max
λi∈λ(Ĥ)

|λi − α|

|λi + α|

)(

max
γi∈λ(P̂ P̂∗)

|
1

γi
− 1| max

θi∈σ(Ŝ)

α
√

α2 + θ2i
+ 1

)

.

In this case, it is observed that the upper bound could be minimized to

max
λi∈λ(Ĥ)

|λi − α|
|λi + α| ,

if and only if P̂ is orthogonal.

The approach to minimize the the upper bound is very important in theoretical viewpoint.

However, it is not practical since the corresponding spectral radius of the iteration matrix

M(α, β) is not optimal. How to choose the suitable preconditioners and parameters for practical

problem is still a great challenge.
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3. The Inexact GPHSS Iteration Method and Its Convergence

From the process of GPHSS iteration, it is required to solve two systems of linear equations

whose coefficient matrices are αP1 + H and βP2 + S, respectively, which is costly and even

impractical in actual implementation. To improve computing efficiency of the GPHSS iteration

method, we propose to solve the two subproblems iteratively [1,10,12], which leads to IGPHSS

iteration scheme.

Since αP1+H is Hermitian positive definite, one can solve this system of linear equations by

CG; and for the solution of the system of linear equations with coefficient matrix βP2+S, some

Krylov subspace method can be considered, e.g., CGNR [23], Lanczos [25] and GMRES [23].

Here, taking CG and CGNR for example, we describe the IGPHSS iteration scheme in the

following algorithm.

Algorithm 3.1. The IGPHSS(CG, CGNR) iteration method.

Input an initial guess x(0), the stopping tolerance ǫ for the outer iteration method, the

largest admissible number kmax of the outer iteration steps, two stopping tolerances {ηk}
and {τk} for the inner CG and the inner CGNR iteration methods, respectively.

1. Set k := 0;

2. Compute r(0) = b−Ax(0) and ρ(0) = ‖r(0)‖2;
3. If ρ(0) ≤ ‖b‖2, then stop;

4. For k = 0, 1, 2, · · · , kmax and ρk ≤ ‖b‖2, Do

5. Solve (αP1 +H)z(k) = r(k) by CG until the residual p(k) = r(k) − (αP1 +H)z(k)

satisfies ‖p(k)‖ ≤ ηk‖r(k)‖;
6. Compute x(k+1/2) = x(k) + z(k);

7. Compute r(k+1/2) = b−Ax(k+1/2);

8. Solve (βP2+S)z(k+1/2) = r(k+1/2) by CGNR until the residual q(k+1/2) = r(k+1/2)−
(βP2 + S)z(k+1/2) satisfies ‖q(k+1/2)‖ ≤ τk‖r(k+1/2)‖;
9. Compute x(k+1) = x(k+1/2) + z(k+1/2);

10. Compute r(k+1) = b−Ax(k+1);

11. Compute ρ(k+1) = ‖r(k+1)‖2;
12. EndFor

We should remark that the convergence criterion ǫ for the outer iteration is a small constant

to make the approximate solution accurate enough; while the stopping criterion {ηk} and {τk}
for the inner iteration is relatively large for rough approximate solution in the half steps.

Usually, {ηk} and {τk} are chosen to be larger than ǫ; for details, refer to [10, 12, 22]. If both

tolerances {ηk} and {τk} are all zeros, then the inner systems is solved exactly and the IGPHSS

iteration becomes the exact GPHSS iteration method.

To analyze the convergence property of IGPHSS method, we review the following lemma

presented in [10], where |‖x‖|M2
= ‖Mx‖2 for all x ∈ Cn.

Lemma 3.1. Let A ∈ Cn×n, A = Mi −Ni(i = 1, 2) be two splittings of the matrix A. If {x(k)}
is an iteration sequence defined as follows:

x(k+1/2) = x(k) + z(k), with M1z
(k) = r(k) + p(k), (3.1)
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satisfying ‖p(k)‖ ≤ ηk‖r(k)‖, where r(k) = b−Ax(k); and

x(k+1) = x(k+1/2) + z(k+1/2), with M2z
(k+1/2) = r(k+1/2) + q(k+1/2), (3.2)

satisfying ‖q(k+1/2)‖ ≤ τk‖r(k+1/2)‖, where r(k+1/2) = b−Ax(k+1/2), then {x(k)} is of the form

x(k+1) = M−1
2 N2M

−1
1 N1x

(k) +M−1
2 (I +N2M

−1
1 )b+M−1

2 (N2M
−1
1 p(k) + q(k+1/2)). (3.3)

Moreover, if x∗ ∈ Cn is the exact solution of the system of linear equation (1.1), then we have

|‖x(k+1) − x∗‖|M2
≤ (ζ + µθηk + θ(ρ+ θνηk)τk)|‖x(k+1) − x∗‖|M2

, k = 0, 1, · · · ,
(3.4a)

where

ζ = ‖N2M
−1
1 N1M

−1
2 ‖, ρ = ‖M2M

−1
1 N1M

−1
2 ‖, (3.4b)

µ = ‖N2M
−1
1 ‖, θ = ‖AM−1

2 ‖, ν = ‖M2M
−1
1 ‖. (3.4c)

In particular, if

ζ + µθηmax + θ(ρ+ θνηmax)τmax < 1, (3.5)

then the iteration sequence {x(k)} converges to x∗ ∈ Cn, where ηmax = maxk{ηk} and τmax =

maxk{τk}.
According to this lemma, we derive the convergence theorem for IGPHSS iteration method.

Theorem 3.2. Let P1, P2 ∈ Cn×n be two Hermitian positive definite matrices. Let A ∈ Cn×n

be a positive definite matrix, H and S be its Hermitian and skew-Hermitian parts, α be a

nonnegative constant and β be a positive constant. If {x(k)} is an iteration sequence generated

by the IGPHSS iteration method and if x∗ ∈ Cn is the exact solution of the system of linear

equation (1.1), then it holds that

|‖x(k+1) − x∗‖| ≤ (δ(α, β) + µθηk + θ(ρ+ θνηk)τk)|‖x(k) − x∗‖|, k = 0, 1, · · · ,
(3.6a)

where

ρ = ‖(βP2 + S)(αP1 +H)−1(αP1 − S)(βP2 + S)−1‖2, θ = ‖A(βP2 + S)−1‖2,
(3.6b)

µ = ‖(βP2 −H)(αP1 +H)−1‖2, ν = ‖(βP2 + S)(αP1 +H)−1‖2. (3.6c)

In particular, when

δ(α, β) + ηmaxρ+ τmaxρ(ω + ηmaxθρ) < 1, (3.7)

the iteration sequence {x(k)} converges to x∗, where ηmax = maxk{ηk} and τmax = maxk{τk}.
Replacing Mi and Ni(i = 1, 2) in Lemma 3.1 with

M1 = αP1 +H, N1 = αP1 − S, (3.8a)

M2 = βP2 + S, N2 = βP2 −H, (3.8b)

we straightforwardly obtain the proof of Theorem 3.2.

We remark that Theorem 3.2 gives the choices of the tolerances {ηk} and {τk} for conver-

gence. It is clear that there is a trade-off between inner and outer iterations, which depends on
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the choices of {ηk} and {τk}. However, the theoretical optimal tolerances {ηk} and {τk} are

difficult to be analyzed.

Since the convergence rate of Krylov subspace iteration depends on large extent on the

size, shape, and location of the entire spectrum of the coefficient matrix, the convergence rate

of IGPHSS method combined with Krylov subspace iteration is not only determined by the

spectral radius of the iteration matrix. In practice, the optimal parameters α and β should be

chosen to minimize the number of iteration, or the total CPU time.

4. Numerical Results

In this section, we illustrate the efficiency of GPHSS iteration method by a number of nu-

merical experiments on the application from discrete convection-diffusion problem. Numerical

comparisons with the standard HSS method and the AHSS method are also presented to show

the advantage of GPHSS iteration method.

Consider the discrete convection-diffusion equation of the form

−∆u+ q∇u = f, u ∈ Ω, (4.1)

with the homogeneous Dirichlet boundary conditions, where q is a constant number and f is a

given function. Here, we discretize the problem with seven-point finite-difference with the same

numbers (m) of grid points in all three directions, which results in a positive-definite linear

system with the number n = m3 of unknowns.

If we choose different difference scheme (central or upwind difference scheme) for convection

term, the above problem will lead to different system of linear equations. The spectral properties

of these problems were carefully studied in [10] and analyzed in [22]. Thus we take these

problems as examples to illustrate the efficiency of our methods.

In our experiments, we take P1 = I and P2 = tridiag(H) in GPHSS iteration method, where

I is a identity matrix and tridiag(H) is a tridiagonal matrix constructed by the diagonal, the

upper diagonal and the lower diagonal of the matrix H .

4.1. Spectral radius

In this section, we will show how to choose optimal parameters α and β for P1 and P2,

respectively, to minimize the spectral radius of the iteration matrix of GPHSS iteration method

with different values of q and difference schemes. In our experiments, the size of the tested

matrix is 512× 512.

In order to compare the optimal spectral radius of GPHSS iteration method to those of HSS

and AHSS iteration methods, we plot the curves of the spectral radius of the iteration matrix

versus α in Figs. 4.1 and 4.2 with respect to the central and the upwind difference scheme

respectively. Here, for every curve of GPHSS iteration method, the parameter β is chosen to

minimize the spectral radius of iteration matrix.

From Fig. 4.1, it is clear that the spectral radius of GPHSS iteration matrix is always smaller

than AHSS iteration method when q = 10. From Fig. 4.2, the spectral radius of iteration matrix

of GPHSS iteration method is always the smaller one between these methods when q = 10 and

100. Furthermore, the optimal spectral radius of GPHSS iteration method is generally smaller

than those of HSS and AHSS iteration methods.
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Fig. 4.1. Central difference scheme. The spectral radii of the iteration matrices of HSS, AHSS, GPHSS

method versus α: (a) q = 1; (b) q = 10; (c) q = 100; and (d) q = 1000.

In Tables 1 and 2, we list the optimal parameters for HSS, AHSS and GPHSS iteration

methods, denoted by α∗
H , α∗

A and (α∗
G, β

∗
G), as well as the corresponding spectral radii of the

iteration matrices for different values of q and different difference schemes, respectively.

From Tables 4.1 and 4.2, we observe that the optimal spectral radius of GPHSS iteration

method is smaller than those of HSS and AHSS iteration methods except for the case where

convection term is discreted by central difference scheme and q = 1000. Also, we see that

for GPHSS method, α∗
G is smaller than β∗

G when q is relatively small, e.g., q = 1, and bigger

Table 4.1: Central difference scheme. The optimal parameters α∗(or (α∗, β∗)) and the corresponding

spectral radii for the iteration matrices of HSS, AHSS and GPHSS iteration methods with respect to

different q .

q 1 10 100 1000

α∗

H 2.0 3.1 5.0 2.0
HSS

ρ(M(α∗

H)) 0.70 0.41 0.53 0.69

α∗

A 0.1 2.0 200 1000

β∗

A 1.4 3.1 6.0 6.0AHSS
ρ(M(α∗

A, β
∗

A)) 0.18 0.38 0.17 0.03

α∗

G(a) 0.1 2.0 30 1000

β∗

G(a) 0.4 0.6 1.0 1.0GPHSS
ρ(M(α∗

G, β
∗

G)) 0.10 0.34 0.16 0.05
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Fig. 4.2. Upwind difference scheme. The spectral radii of the iteration matrices of HSS, AHSS, GPHSS

methods versus α: (a) q = 1; (b) q = 10; (c) q = 100; and (d) q = 1000.

than β∗
G when q becomes large, e.g., q = 10, 100 and 1000. This further illustrates that the

convergence condition in Theorem 2.1 is a sufficient but not a necessary one.

In Figs. 4.3 and 4.4, the eigenvalue distribution of GPHSS iteration matrices with the

optimal parameters listed in Tables 4.1 and 4.2 is plotted for upwind and central difference

schemes, respectively, when q = 1, 10, 100, 1000.

From Figs. 4.3 and 4.4, we note that the eigenvalues of the iteration matrix of GPHSS

iteration method are clustered and the corresponding spectral radii are all smaller than 1,

which shows the potential that fast convergence performance of GPHSS iteration method could

Table 4.2: Upwind difference scheme. The optimal parameters and the corresponding spectral radii for

the iteration matrices of HSS, AHSS and GPHSS iteration methods with respect to different q .

q 1 10 100 1000

α∗

H 2.0 3.1 30 200
HSS

ρ(M(α∗

H)) 0.70 0.51 0.40 0.38

α∗

A 0.1 1.1 30 100

β∗

A 1.4 4.2 30 101AHSS
ρ(M(α∗

A, β
∗

A)) 0.18 0.36 0.40 0.61

α∗

G 0.1 1.1 30 100

β∗

G 0.4 0.5 0.7 0.6GPHSS
ρ(M(α∗

G, β
∗

G)) 0.10 0.32 0.32 0.38
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Fig. 4.3. Central difference scheme. Eigenvalue distributions for the iteration matrix of GPHSS iteration

method with optimal parameters α and β when n = 512: (a) q = 1; (b) q = 10; (c) q = 100; and (d)

q = 1000.

be expected.

4.2. Results for GPHSS and IGPHSS iteration methods

In this subsection, we focus our attention on the convergence performance of GPHSS and

IGPHSS iterations.

The system of linear equations is discretized from convection-diffusion equation 4.1, where

the right-hand side vector is chosen such that the true solution is x∗ = (1, 1, · · · , 1)T . All

numerical experiments were done in MATLAB with the initial guess x0 = (0, 0, · · · , 0)T , and
terminated when ‖rk‖2/‖r0‖2 < 10−6, where rk is the residual of the kth iteration.

In Table 4.3, we list the numbers of iteration steps and the computational times for HSS,

AHSS and GPHSS iteration methods using the optimal parameters in Tables 4.1 and 4.2 with

respect to different difference schemes and different values of q, respectively.

From Table 4.3, we see that GPHSS iteration method is the best among three methods in

terms of number of iteration steps and computational time when q varies. This further verifies

the spectral analysis in the above section.

To test the efficiency of IGPHSS(CG, CGNR) iteration method, we enlarge the size of the

problem and use the optimal parameters in Tables 4.1 and 4.2 for different difference schemes.
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Fig. 4.4. Upwind difference scheme. Eigenvalues distributions of the iteration matrices of GPHSS

iteration method with optimal parameters α and β when n = 512: (a) q = 1; (b) q = 10; (c) q = 100;

and (d) q = 1000.

In Tables 4.4 and 4.5, we list the number of iteration steps, average number of CG iteration

steps, average number of CGNR iteration steps and CPU time of inexact GPHSS(CG, CGNR)

iteration method for central and upwind difference scheme, respectively.

From Tables 4.4 and 4.5, we see that inexact GPHSS(CG, CGNR) iteration method con-

Table 4.3: The numbers of iteration steps and computational times for HSS, AHSS and GPHSS iteration

methods.

Difference HSS AHSS GPHSS

Scheme
q

IT CPU IT CPU IT CPU

1 34 7.82 7 2.01 7 1.61

10 21 5.48 17 4.17 15 3.70

100 21 4.93 16 3.85 10 2.31
Central

1000 31 7.33 6 1.44 6 1.44

1 33 7.71 7 1.65 7 1.58

10 24 5.88 14 3.49 13 3.01

100 21 5.35 21 4.93 16 3.78
Upwind

1000 17 4.18 29 6.66 16 3.60



416 J.F. YIN AND Q.Y. DOU

Table 4.4: Central difference scheme: The number of iteration steps and the computational time for

IGPHSS(CG, CGNR) iteration method.

n = 512 n = 4096 n = 32768
q

IT CPU IT CPU IT CPU

1 18(4.00, 0.33) 0.08 21(12.62, 0.67) 2.45 38(34.05, 5.11) 47.77

10 24(5.17, 1.96) 0.13 50(10.78, 9.12) 7.86 177(36.32, 27.90) 808.03

100 18(1.00, 8.94) 0.28 25(1.96, 15.24) 5.82 61(3.90, 16.59) 164.05

1000 11(0.09, 29.09) 0.50 9(0.11, 48.33) 6.22 16(0.44, 54.69) 132.80

Table 4.5: Upwind difference scheme: The number of iteration steps and the computational time for

IGPHSS(CG, CGNR) iteration method.

n = 512 n = 4096 n = 32768
q

IT CPU IT CPU IT CPU

1 19(3.89, 0.32) 0.09 22(12.18, 0.64) 2.81 38(34.26, 5.08) 47.70

10 21(7.00, 1.29) 0.09 33(12.30, 6.39) 4.02 120(35.98, 19.19) 405.46

100 18(3.56, 5.67) 0.20 40(4.72, 9.30) 6.23 109(10.75, 21.11) 371.84

1000 16(5.81, 6.00) 0.19 22(4.95, 7.64) 3.40 48(6.56, 13.19) 104.58

verges when using these optimal parameters. The number of iteration steps and the computa-

tional time of IGPHSS(CG, CGNR) iteration method increase as the size of the problem grows

up. This confirms that IGPHSS(CG, CGNR) iteration method is efficient for solving large size

system of linear equations.

5. Conclusion

In this paper, we have generalized the HSS method to the GPHSS method for solving non-

Hermitian positive-definite system of linear equations. Theoretical analysis shows that for any

initial guess the GPHSS method converges to the unique solution of the linear system for a wide

range of the parameters. Then, an inexact version has been presented and implemented for

saving the computational cost. Numerical experiments show that GPHSS method and IGPHSS

method are efficient and competitive with the existing HSS and AHSS methods.
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