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Abstract

This paper deals with preconditioners for the iterative solution of the discrete Oseen

problem with variable viscosity. The motivation of this work originates from numerical

simulations of multiphase flow, governed by the coupled Cahn-Hilliard and incompressible

Navier-Stokes equations. The impact of variable viscosity on some known precondition-

ing technique is analyzed. Theoretical considerations and numerical experiments show

that some broadly used preconditioning techniques for the Oseen problem with constant

viscosity are also efficient when the viscosity is varying.
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1. Introduction

In this paper we consider preconditioned iterative solution methods for the stationary in-

compressible Navier-Stokes (N-S) equations with variable viscosity. Here we assume that the

kinematic viscosity coefficient is a smooth function, such that

0 < νmin ≤ ν(x) ≤ νmax,

where νmin and νmax denote its minimal and maximal value. Many mathematical models in fluid

dynamics involve non-constant viscosity. For example, viscosity is a function of the temperature

in convection flows (e.g., [19, 44]); it is a function of pressure and the rate-of-strain tensor in

non-Newtonian flows (e.g., [11, 42]). In some quasi-Newtonian flows the variable viscosity may

also depend on pressure and shear (e.g., [31, 34, 41]). In this paper the motivation to consider

models with variable viscosity arises from numerical simulations of multiphase flow, which is

often described by the so-called phase-field model. The phase-field approach is used to model

two or more immiscible and incompressible fluids and is described by the Cahn-Hilliard (C-H)

equation (originally derived in [14,16]). By taking into account the convective effect of the fluid

motion, a convective form of the time-dependent C-H equation is derived (e.g., [17]).

∂C

∂t
+ (u · ∇)C = ∇ · [κ(C)∇(βΨ′(C)− α∇2C)], in Ω× (0, T ] (1.1)

with suitable boundary and initial conditions for the primal variable C. Here C represents the

different phases and is referred to as the phase field or the concentration. It takes distinct values

in each of the phases (for instance +1 and −1 for a binary fluid), with a smooth and rapid
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change between those values in the interface zone. The coefficient κ(C) is the so-called mobility,

assumed to be a function of the concentration C. The coefficients α and β are constants. The

function Ψ(C) is a double-well potential, attaining its minimal value at ±1 (under the assump-

tion that the concentration C varies between +1 and −1). For instance, Ψ(C) = 1
4 (C2 − 1)2 is

a common choice. For more details we refer to the classic work [46] by van der Waals and, for

instance, to [12, 17, 18, 32] and the references therein. In equation (1.1), the vector u denotes

the velocity. The term u · ∇ represents the convective effect of the fluid motion, governed by

the time-dependent incompressible Navier-Stokes (N-S) equations

ρ

(
∂u

∂t
+ u · ∇u

)
−∇ · (2µDu) +∇p = f− (βΨ′(C)− α∇2C)∇C, in Ω× (0, T ] (1.2)

∂ρ

∂t
+∇ · (ρu) = 0, in Ω× (0, T ] (1.3)

∇ · u = 0, in Ω× (0, T ] (1.4)

with some given boundary and initial conditions for u. Here Ω × (0, T ] ⊂ Rd (d = 2, 3) is a

bounded, connected domain with boundary ∂Ω and f : Ω → Rd is a given force field. The

operator Du = (∇u +∇Tu)/2 denotes the rate-of-strain tensor for Newtonian fluids and the

force term (βΨ′(C)−α∇2C)∇C denotes the surface tension force and constitutes the coupling

with the C-H equation (1.1) (e.g., [21]). The coefficient µ denotes the dynamic viscosity and ρ

denotes the density.

We point out that a numerical simulation of a multiphase flow problem requires to solve

the coupled system, consisting of the time-dependent C-H and incompressible N-S equations,

where the N-S equations are formulated in their full complexity, including the time-dependence,

variable density and variable viscosity. Note, that density and viscosity remain constant within

each phase, however they vary smoothly and rapidly in the interface region, which evolves with

time and in space (e.g., [21]). Therefore, these can be seen as smooth functions of space and

time in the whole computational domain.

In this paper we limit ourselves to the stationary incompressible N-S equations with constant

density while allowing viscosity to vary. An illustrative example for such a system is a mixture

of water and oil, which have the same density, however their viscosities differ much. Other

examples of problems of practical importance are considered in [45], namely, extrusion with

variable viscosity and a geodynamic problem with a sharp viscosity contrast (SINKER).

The main task in this paper is to analyse the effect of variable viscosity on some of the es-

tablished preconditioning techniques, used for the system matrix arising form the finite element

(FEM) discretization of the stationary incompressible N-S equations with constant viscosity.

The structure of the paper is as follows. In Section 2 we state the problem setting. In Section 3

we recall the augmented Lagrangian (AL) method and analyse the impact of variable viscosity

on the AL preconditioner. Section 4 contains numerical illustrations. Some discussion points

and conclusions are stated in Section 5.

2. Problem Setting and Preliminaries

As mentioned above, in this paper we focus on preconditioners for the iterative solution

of the stationary incompressible N-S problems with variable viscosity.The governing equations
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read as follows:

−∇ · (2ν(x)Du) + (u · ∇)u +∇p = f, in Ω

∇ · u = 0, in Ω
(2.1)

where the coefficient ν(x) denotes the kinematic viscosity, defined as ν = µ
ρ , and for simplicity,

we only consider Dirichlet boundary conditions in this paper.

Remark 2.1. (1) In the case of constant viscosity and with the condition ∇·u = 0, we have

∇ · (2νDu) =∇ · (ν∇u) +∇ · (ν∇Tu)

=ν∇2u + ν∇(∇ · u)

=ν∇2u.

(2) In non-Newtonian flows, since ν also depends on u, two of the terms in (2.1) may exhibit

nonlinear behavior: ∇ · (2ν(x)Du) and (u · ∇)u. In various related works, the nonlinear

convection term (u·∇)u is handled in different ways. In [26], for example, where ν = ν(u),

at the nth nonlinear iteration the term (u · ∇)u is moved to the right hand side and

evaluated by the previously computed approximation for u, i.e., f̃ = f− (un−1 · ∇)un−1.

Then one solves a nonlinear Stokes-type problem with variable viscosity and the matrix to

be solved is symmetric. For that formulation, a block-preconditioner involving a mass-type

matrix for the pressure is proposed and analyzed in [26]. However, the above treatment

of the nonlinear convection term may be unsuitable for strongly convection-dominated

problems, i.e., when the viscosity is very small (see, e.g., the numerical experiments

in [26]).

Another approach is to linearize the convection term and incorporate it into the system

matrix. Then, during each nonlinear iteration, an Oseen-type problem with variable

viscosity has to be solved and the system matrix is nonsymmetric. In this paper, we focus

on the latter technique.

Here, when solving (2.1) we choose to apply Picard iterations. The technique requires to solve

a sequence of approximate solutions of the linear Oseen problem (e.g., [23]), which reads as

follows:

At each Picard iteration, find u : Ω→ Rd and p : Ω→ R satisfying

−∇ · (2ν(x)Du) + (w · ∇)u +∇p = f, in Ω

∇ · u = 0, in Ω
(2.2)

subject to suitable boundary conditions for u on ∂Ω, in this paper u = ub. Here w = u(k−1)

is the velocity, which has been computed in the previous Picard iteration, and is updated at

every nonlinear step.

Let H1
E0

= {v ∈ H1(Ω)| v = 0 on ∂Ω}. The weak formulation of (2.2) reads as follows:

Find u ∈ H1
E0

and p ∈ L2(Ω) such that

(2ν(x)Du,Dv) + ((w · ∇)u,v)− (∇ · v,p) = (f,v),

(∇ · u,q) = 0,
(2.3)

for all v ∈ H1
E0

and all q ∈ L2(Ω).
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Let Xh
E0

and Ph be finite dimensional subspaces of H1
E0

and L2(Ω), and let {~ϕi}1≤i≤nu be

the nodal basis of Xh
E0

and {φi}1≤i≤np be the nodal basis of Ph such that,

uh =

nu∑
i=1

ui~ϕi, ph =

np∑
i=1

piφi,

where nu and np are the total number of unknowns for the velocity and pressure. The linear

systems arising from the weak formulation (2.3) are of the form[
F BT

B O

] [
uh
ph

]
=

[
f

g

]
or Ax = b, (2.4)

where the system matrix A =

[
F BT

B O

]
is nonsymmetric of saddle point form. We also assume

that the discretization is done using a stable pair of FEM spaces, satisfying the Ladyzenskaya-

Babuška-Brezzi (LBB) condition (e.g., [23]). The unknown vector uh is the discrete velocity

vector and ph is the discrete pressure vector. Combining them together we set xT = [uTh pTh ].

The matrix B ∈ Rnu×np corresponds to the discrete (negative) divergence operator and BT

corresponds to the discrete gradient operator (e.g., [23]). Clearly, when considering variable

viscosity, the difference, compared to the stationary incompressible N-S equations with constant

viscosity, can be observed in the pivot block F ∈ Rnu×nu , which, in the case of variable viscosity,

has the form F = Aν +N . We assume that F is nonsingular and discuss Aν and N below.

Based on the weak formulation (2.3) and the nodal basis {~ϕi}1≤i≤nu , the matrix Aν is the

discrete operator, corresponding to the term (2ν(x)Du,Dv), i.e.,

Aν ∈ Rnu×nu , [Aν ]i,j = (2ν(x)D~ϕi,D~ϕj). (2.5)

Thus, the matrix Aν , defined in (2.5), is symmetric and positive definite (see more details

in [29]). The matrix N is the discrete operator, corresponding to the term ((w · ∇u),v), i.e.,

N ∈ Rnu×nu , [N ]i,j = ((w · ∇~ϕj), ~ϕi). (2.6)

For the purpose of the analysis in Section 3, we consider the following modified form of the

weak formulation (2.3)

(2ν(x)Du,Dv) +
1

2
(((w · ∇)u,v)− ((w · ∇)v,u))− (∇ · v,p) = (f,v),

(∇ · u,q) = 0.
(2.7)

This formulation is discussed in [27]. The difference between formulations (2.3) and (2.7) ex-

hibits itself in the matrix, corresponding to the convection part. Let c̃(w,u,v) = 1
2 (c(w,u,v)−

c(w,v,u)), where c(w,u,v) = ((w · ∇)u,v). It is straightforward to see that c̃(w,u,v) =

−c̃(w,v,u) for any w,u,v ∈ H1
E0

. Thus, the matrix Ns, corresponding to the discrete opera-

tor c̃(w,u,v), is skew-symmetric, and Ns = 1
2 (N −NT ) (N is the same as in (2.6)).

Consider the matrices Aν and Ns, also assume that Aν is nonsingular. Then the modulus

of the eigenvalues of the matrix Ñ = A
−1/2
ν NsA

−1/2
ν is bounded independently of the mesh size

h. The proof can be found in [29]. For completeness, we include it as an appendix. This result

is used in [22] without a rigorous proof. Here it is applied in Section 3 where formulation (2.7)

is used to derive some spectrum bounds. The numerical experiments in Section 4 are based on

the original formulation (2.3).
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3. Preconditioning Strategy

Now we turn to the task of constructing an efficient preconditioner for the system matrix A
in (2.4), which is nonsymmetric of saddle point form. Preconditioned iterative solution methods

for saddle point problems have been studied intensively during the last 30 years (e.g., [5, 7, 23]

and the references therein). The exact factorization of a general matrix of two-by-two block

form is [
A11 A12

A21 A22

]
=

[
A11 0

A21 S

] [
I1 A−1

11 A12

0 I2

]
, (3.1)

where I1 and I2 are identity matrices of proper dimensions. The pivot block A11 is assumed to

be nonsingular and S = A22 −A21A
−1
11 A12 is the exact Schur complement matrix. In our case,

A11 = F , A12 = BT , A21 = B and A22 = O. So, S = −BF−1BT .

Some of the best known preconditioners for such two-by-two block matrices are based on

the exact factorization (3.1), where some of the blocks are approximated or neglected. Most

often, block lower- or upper-triangular preconditioners are used, of the form

ML =

[
Ã11 O

A21 S̃

]
, MU =

[
Ã11 A12

0 S̃

]
. (3.2)

Here, Ã11 denotes some approximation of A11, given on explicit form or implicitly defined via

iterative solution methods. The matrix S̃ is some approximation of the exact Schur complement

S.

The quality of the preconditioners in (3.2) depends on how well the pivot block A11 and the

exact Schur complement matrix S are approximated, see [4] for a recent analysis. Compared to

the approximations of A11, the most challenging task, however, is how to construct numerically

and computationally efficient approximations for the Schur complement matrix S, which is

in general dense and not cheap to be formed explicitly. The research on Schur complement

approximations for the Oseen problem with constant viscosity has been an active field of research

during the past years (e.g., [22, 23, 40] and the references therein, also [36]). Since the system

matrices, arising from the Oseen problem, share the same structure for both constant and

variable viscosity, except for the difference in the pivot block, it is a natural idea to extend the

known approximation techniques to the Oseen problem with variable viscosity. For example,

a scaled pressure mass matrix Mν = {Mνij} ∈ Rnp×np with [Mν ]ij = (ν−1φi, φj) is proposed

in [26] as an approximation of the negative Schur complement of the system matrix.

In this paper we utilize the same AL preconditioning strategy as shown in [8, 9, 28] for the

Oseen problem with constant viscosity and extend it to the variable viscosity case. Following

the standard AL technique (for an earlier reference, see [24]), we first algebraically transform

the system (2.4) into an equivalent one[
F + γBTW−1B BT

B 0

] [
uh
ph

]
=

[
f̂

g

]
or Aγx = b̂, (3.3)

where f̂ = f+γBTW−1 g, and γ > 0 and W are suitable scalar and matrix parameters. Clearly,

the transformation (3.3) does not change the solution for any value of γ and any nonsingular

matrix W .

The equivalent system (3.3) is what we intend to solve and the extension of some known

efficient preconditioner to the system matrix Aγ in the case of variable viscosity is the main
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issue considered in this section. Here, we again choose the AL-type preconditioner, which is

originally proposed in [8] and used in [9, 28] for the Oseen problem with constant viscosity.

The AL-type preconditioner for the transformed system matrix Aγ in (3.3) is of the form

ML =

[
F + γBTW−1B 0

B − 1
γW

]
. (3.4)

It is not difficult to see that the exact Schur complement SAγ = −B(F+γBTW−1B)−1BT ofAγ
is approximated by − 1

γW . In the related literature, several choices of W have been considered.

In some studies (e.g., [3, 20]) W is chosen to be the identity matrix. In [8], a good choice for

W is shown to be the pressure mass matrix M . Furthermore, it can be verified that it suffices

to choose W as the diagonal of M , which is the practical choice in numerous applications and

for many FE methods. For clarity, we briefly recall the analysis in [28]. Consider the following

generalized eigenvalue problem

Aγv = λMLv. (3.5)

We see that

M−1
L Aγ =

[
I (F + γBTW−1B)−1BT

0 γW−1B(F + γBTW−1B)−1BT

]
.

Thus, the eigenvalues λ in (3.5) are either equal to 1 (with multiplicity equal to the dimension

of F ) or coincide with those of the matrix γW−1B(F +γBTW−1B)−1BT . Applying Sherman-

Morrison-Woodbury’s formula to (F + γBTW−1B)−1, we have

γW−1B(F + γBTW−1B)−1BT = γQ− γQ(I + γQ)−1γQ,

where Q = W−1BF−1BT . The matrix BF−1BT is the negative Schur complement of the

original system matrix A in (2.4). Denote by R(·) and I(·) the real and the imaginary part of

a complex number. We state the following theorem.

Theorem 3.1. Let µ = a + i b be an eigenvalue of Q = W−1BF−1BT and λ be the eigen-

values of the eigenproblem (3.5). Let δ be an eigenvalue of the matrix Q̃ = γW−1B(F +

γBTW−1B)−1BT . Then the following holds:

(1) The matrices Q and Q̃ have the same eigenvectors and the eigenvalues of Q̃ are equal to

δ =
γµ

1 + γµ
=

1

1 + 1
γµ

. (3.6)

When γ →∞ all nonzero eigenvalues λ converge to 1.

(2) Denote µ = a + i b and assume that µ is bounded. (Note that since µ 6= 0 then a and b

are not simultaneously equal to zero.) Then λ are also bounded and the following holds:

δ = 1− 1 + γ a

(1 + γ a)2 + γ2b2
+ i

γ b

(1 + γ a)2 + γ2b2
. (3.7)

For any γ ≥ 1, and any value of a and b, we have

1− 1 + γ|a|
(1 + γ a)2 + γ2b2

< 1, |I(δ)| = γ|b|
(1 + γ a)2 + γ2b2

< 1. (3.8)
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If in addition 0 < a1 ≤ a ≤ a2 and |b| ≤ b1, then

λ1 ≤ R(λ) < 1 and |I(λ)| ≤ λ2, (3.9)

where λ1 = 1− 1

1 + γa1
, λ2 =

1

2(1 + γa1)2
.

(3) Suppose that a and b are bounded as in (2). Then, the asymptotic convergence factor % of

the GMRES method [43] when solving systems with Aγ in (3.3), preconditioned by ML, is

bounded as

% ≤ λ2√
λ2

1 + λ2
2

=
1√

1 + 4(γa1)2(1 + γa1)2
, if

λ2
1 + λ2

2

λ1
≥ 1 + λ1

2
,

% ≤

√
1 +

4λ2
2 − 4λ1

(1 + λ1)2
=

1

(1 + 2γa1)

√
1 +

1

(1 + γa1)2
, otherwise.

(3.10)

When γ →∞ the asymptotic convergence factor % converges to 0, which agrees with item

(2) above.

Proof. We prove that the above claims one by one

(1) The proof of this part can be found in [28], where it is used in the context of Oseen

problem with constant viscosity.

(2) The expressions in (3.7) and (3.8) are straightforwardly observed. Further, we have

1 > R(δ) =
γa(1 + γa) + (γb)2

(1 + γa)2 + (γb)2
≥ γa(1 + γa)

(1 + γa)2
=

γa

1 + γa
≥ γa1

1 + γa1
,

|I(δ)| = γ|b|i
(1 + γa)2 + (γb)2

≤ γ|b|i
(1 + γa1)2 + (γb)2

=
1

(1+γa1)2

γ|b| + γ|b|
≤ 1

2(1 + γa1)2
,

which shows the result in part (2).

(3) In the general case, the asymptotic convergence factor for GMRES iteration can be estimated

based on an ellipse which contains all the eigenvalues of the coefficient matrix but not the

origin (e.g., Theorem 4.2 in Chapter 4 in [23]). In our case, since the eigenvalues λ are

contained in a single cluster, i.e., 0 < λ1 ≤ R(λ) ≤ 1 and |I(λ)| ≤ λ2, instead of an ellipse,

we consider a circle and use that to bound the asymptotic convergence factor, as is done

in [15], for instance. The circle is positioned with a center (x0, 0) with x0 ≥ (1 + λ1)/2

and radius r =
√

(x0 − λ1)2 + λ2
2. To avoid containing the origin, we let x0 ≥ r, thus

x0 ≥ (λ2
1 + λ2

2)/(2λ1). Based on Theorem 5 in [43] the asymptotic convergence factor

for GMRES is bounded as % ≤ r/x0. In this way, the task is transformed to the following

minimization problem

min y =
r

x0
=

√
(x0 − λ1)2 + λ2

2

x2
0

=

√
(λ2

1 + λ2
2)

1

x2
0

− 2λ1
1

x0
+ 1,

such that x0 ≥ max

{
1 + λ1

2
,
λ2

1 + λ2
2

2λ1

}
.
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There exists a global minimum ymin = λ2/
√
λ2

1 + λ2
2, attained for x0 = (λ2

1 + λ2
2)/λ1. If

(λ2
1 + λ2

2)/λ1 ≥ (1 + λ1)/2, then

ymin =
λ2√
λ2

1 + λ2
2

, when x0 =
λ2

1 + λ2
2

λ1
.

If (λ2
1 + λ2

2)/λ1 < (1 + λ1)/2, then

ymin =

√
1 +

4λ2
2 − 4λ1

(1 + λ1)2
, when x0 =

1 + λ1

2
.

Supplying

λ1 =
γa1

1 + γa1
and λ2 =

1

2(1 + γa1)2
,

then item (3) is proved. �

Theorem 3.1 explains the fact, observed in several other works, that γ = 1 suffices to ensure

good numerical efficiency of the AL-preconditioner. It is also worth noticing that even if the

bounds for µ may not be independent of h, the bounds for δ are. For Oseen problem, when ν

decreases, a and |b| get larger and they increase also when refining the mesh. This, however,

improves the clustering of δ around 1, including the case when γ = 1, see Fig. 3.1(a). For large

γ the clustering gets stronger, in particular I(δ) decreases.When a and |b| are large but γ is

small, we see from the expression for R(δ) that the ratio (1 + γ a)/((1 + γ a)2 + γ2b2) starts

approaching 0, this, the clustering of the eigenvalues δ is shifted towards zero, see Fig. 3.1(b).

In this paper, for all numerical experiments we choose γ = 1 (or in some of the tests, slightly

larger than one).

Remark 3.1. Theorem 3.1 provides an estimate of the asymptotic convergence rate of the

preconditioned GMRES when solving systems with Aγ in (3.3) preconditioned by ML in (3.4).

The estimate in Theorem 3.1, part (3) has more theoretical value since it is well known that

for nonsymmetric preconditioned iterations eigenvalues alone may not be sufficient to predict

the convergence. A better tool could be to use the field of values technique, to more accurately

predict the decrease of the relative residual, cf. [25], p. 56, for example. In [10], based on

the field-of-values approach, for problems with constant viscosity and W = M , a theoretical

analysis on the convergence rate of the AL-preconditioned GMRES is provided. For the case,

when systems with the modified pivot block are solved exactly, the estimates show the order

of γ related to ν−1, which entails h-independent convergence, provided that bounds for µ are

assumed to hold, as derived in [22]. It is also pointed out that, in all numerical tests, γ = 1

works sufficiently well.

Remark 3.2. For the case W = M , almost identical results as in Theorem 3.1 (1) and partly

(2) are derived in [8], and in [9], Section 2.2. As we show here, the results hold for any positive

definite matrix W . Result (1) in Theorem 3.1 can also be found in [28] and [13], for instance.

Next we show that the bounds for a and b, as required in part (2) of Theorem 3.1 hold

true for the choices W = M and W = DM , where M is the finite element mass matrix for the

pressure and DM is its diagonal part. Further, it turns out that the estimate of the convergence

factor, as shown in part (3) of Theorem 3.1, remains true for W = DM and γ = 1.
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(a) γ = 1, νmax = 0.01, νmin = 0.001.

(b) γ = 0.001, νmax = 0.01, νmin = 0.001.

Fig. 3.1. Plot of the eigenvalues δ, h = 1/64.

Theorem 3.2. For the choice W = M , the eigenvalues of the matrix Q = M−1BF−1BT are

contained in a rectangular box in the right half complex plane, with boundaries independent of

the mesh size h.

Proof. Let S = BF−1BT , C = B

(
F−1 + F−T

2

)
BT denote the symmetric part of S,

and R = B

(
F−1 − F−T

2

)
BT denote the skew-symmetric part of S. Thus, S = C + R. By

Bendixson’s theorem, the eigenvalues µ satisfy

min
p

(p, Cp)

(p,Mp)
≤ Re(µ) ≤ max

p

(p, Cp)

(p,Mp)
and | Im(µ) |≤ max

p

| (p, Rp) |
(p,Mp)

.
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We let S′ = BA−1
ν BT and denote

νmin = inf
Ω
ν(x), νmax = sup

Ω
ν(x).

For the symmetric part C, for an arbitrary nonzero vector p we have

(p, Cp)

(p,Mp)
=

(p, Cp)

(p, S′p)

(p, S′p)

(p,Mp)
.

It has been proved in [26] that

c20/νmax ≤
(p, S′p)

(p,Mp)
≤ 1/νmin, (3.11)

where the coefficient c0 comes from the LBB condition. Next, we consider the symmetric part

of F−1:

F−1 + F−T

2
=F−1F + FT

2
F−T

=(Aν +Ns)
−1Aν(Aν −Ns)−1

=A−1/2
ν (I − Ñ2)−1A−1/2

ν ,

where Ñ = A
−1/2
ν NsA

−1/2
ν . Thus

(p, Cp)

(p, S′p)
=

(p, BA
−1/2
ν (I − Ñ2)−1A

−1/2
ν BTp)

(p, BA−1
ν BTp)

=
(q, (I − Ñ2)−1q)

(q,q)
,

where q = A
−1/2
ν BTp.

The matrix Ns is skew-symmetric, so is Ñ . Thus, the eigenvalues of −Ñ2 are real and

nonnegative. As mentioned in Section 2, see also the appendix, the modulus of the eigenvalues

of Ñ is bounded by c1
νmin

, where c1 is a constant independent of h. Therefore, the spectrum of

I − Ñ2 lies in the interval [1, 1 +
c21
ν2
min

]. Thus, we have

ν2
min

ν2
min + c21

≤ (p, Cp)

(p, S′p)
≤ 1.

The latter result, combined with (3.11), gives us the following bound

c20ν
2
min

νmax(ν2
min + c21)

≤ (p, Cp)

(p,Mp)
≤ 1

νmin
,

where the coefficients c0, c1, νmin and νmax do not depend on the mesh size h.

For the skew-symmetric part R, an analogous reasoning holds. First,

(p, Rp)

(p,Mp)
=

(p, Rp)

(p, S′p)

(p, S′p)

(p,Mp)
.

Then, we have

F−1 − F−T

2
=F−1

(
FT − F

2

)
F−T

=− (Aν +Ns)
−1Ns(Aν −Ns)−1

=−A−1/2
ν (I + Ñ)−1Ñ−1(I − Ñ)−1A−1/2

ν ,
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where Ñ = A
−1/2
ν NsA

−1/2
ν . Therefore

(p, Rp)

(p, S′p)
=− (p, BA

−1/2
ν (I + Ñ)−1Ñ(I − Ñ)−1A

−1/2
ν BTp)

(p, BA−1
ν BTp)

=− (w, Ñw)

(w, (I − Ñ2)w)
,

where w = (I − Ñ)−1A
−1/2
ν BTp. It is easy to prove that Ñ is a normal matrix, so that it can

be represented by a diagonal matrix Λ and unitary matrix U as

Ñ = iUΛU∗,

where Λ = diag(−σ1i,−σ2i, · · ·) and σ is an eigenvalue of Ñ . Therefore, Ñ2 = −UΛ2U∗, and

the modulus of − (w, Ñw)

(w, (I − Ñ2)w)
can be written as

∣∣∣∣ (v,Λv)

(v, (I + Λ2)v)

∣∣∣∣,
where v = U∗w. For any v, there exists a positive constant σ so that the following relation

holds ∣∣∣∣ (v,Λv)

(v, (I + Λ2)v)

∣∣∣∣ =
σ

1 + σ2
(σ > 0).

Therefore, the modulus is bounded and the maximal upper bound is 1/2, attained for σ = 1.

Thus, we have ∣∣∣∣ (p, Rp)

(p, S′p)

∣∣∣∣ ≤ 1

2
.

Again, the latter result, combined with (3.11), shows that

| (p, Rp) |
(p,Mp)

≤ 1

2νmin
.

Thus, there holds

c20ν
2
min

νmax(ν2
min + c21)

≤ Re(µ) ≤ 1

νmin
and | Im(µ) |≤ 1

2νmin
.

This completes the proof. �

Remark 3.3. The proof follows that of Theorem 1 in [22], where Oseen problem with constant

viscosity is considered. Theorem 3.2 generalizes the result from Theorem 1 in [22], since for

νmin = νmax = ν, it is straightforward to obtain

c20ν

(ν2 + c21)
≤ Re(µ) ≤ Γ

ν
and | Im(µ) |≤ Γ

2ν
.

Of course, the values of the constants c0, c1 and Γ are different.

A broadly used practice is to replace M by its diagonal, DM , which turns out to be a very

good approximation of M . Choosing the matrix W to be DM , the following proposition holds

true.
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Proposition 3.1. For W = DM , the eigenvalues of the matrix Q = D−1
M BF−1BT lie in a

rectangular box in the right half plane, with boundaries independent of the mesh size h.

Proof. Based on the results in [47], the following inequality holds true:

α1(p, DMp) ≤ (p,Mp) ≤ α2(p, DMp)

for any vector p of proper size. In 2D, for linear FEM on triangles, α1 = 1/2, α2 = 2 and on

bilinear FEM rectangles α1 = 1/4, α2 = 9/4.

Following the proof of Theorem 3.2, it is straightforward to obtain

α1c
2
0ν

2
min

νmax(ν2
min + c21)

≤ Re(µ) ≤ α2

νmin
and | Im(µ) |≤ α2

2νmin
,

where µ are the eigenvalues of the matrix Q = D−1
M BF−1BT . �

Remark 3.4. From this proposition we see that for W = DM , part (2) in Theorem 3.1 still

holds true. Furthermore, when iteratively solving the system in (3.3) using the AL-type precon-

ditioner ML in (3.4) with W = DM , it is trivial to multiply a diagonal matrix with a vector,

and the bounds of the asymptotic convergence factor for GMRES can be estimated based on part

(3) in Theorem 3.1 and the convergence rate can be predicted. The corresponding bounds of

the convergence factor are evaluated and given in the next section. Also we see that whether

the variable viscosity is continuous or not does not impact the quality of the AL-type precon-

ditioner ML with W = DM and W = M , and that only the extremal values of the viscosity,

i.e., νmax and νmin have an impact. This property makes the AL-type preconditioner applicable

also in the case of discontinuous viscosity.

4. Numerical Illustrations

We choose as a benchmark the well-known two-dimensional lid-driven cavity problem,

equipped with the boundary conditions u1 = u2 = 0 for x = 0, x = 1 and y = 0; u1 = 1, u2 = 0

for y = 1.

The problem is discretized using Cartesian meshes and the modified Taylor-Hood FE pair

Q1isoQ1, i.e., piecewise bilinear basis functions on a mesh of size 2h for the pressure and

piecewise bilinear basis functions for the velocity on a mesh of size h, obtained by one regular

refinement of the discretization mesh for the pressure.

To linearize the stationary incompressible N-S equations we use Picard method, and the

stopping tolerance for the nonlinear iterations in all experiments is relative and is chosen to

be 10−6. At each nonlinear step we solve the linear system (3.3), with the system matrix

Aγ preconditioned by the AL-type preconditioner ML from (3.4). For all experiments in this

paper, W = DM , where DM is the diagonal part of the pressure mass matrix. We use GMRES

as an iterative solution method to solve systems with Aγ and the corresponding iterations are

referred to as the linear iterations. When solving systems with the preconditioner ML, for the

modified pivot block matrix Fγ = F + γBTW−1B, the results in Tables 4.2-4.4 are obtained

using a direct solver and those in Tables 4.5-4.8 – using a preconditioned iterative method.

In this paper we consider two phase flow with variable viscosity and design two numerical

experiments. Firstly, we divide the computational domain into two equal parts and, within each

part, we set the viscosity to be constant, namely, νleft = νmax on the left part and νright = νmin
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on the right part, where νmax 6= νmin. This setting models the stationary situation of two

phases corresponding to a final stage of the phase separation process with an interface of zero

width between them. We refer to this experiment as ’two phase flow at a final stage of the

phase separation process’. Compared to the final stage, in the beginning, the phases could be

quite randomly spread in small islands in the domain. Therefore, in the second experiment, it

is decided randomly whether the viscosity of each area in the domain is taken to be νmin or

νmax. Correspondingly, this experiment is referred to as ’two phase flow at an initial stage of

the phase separation process’. In these experiments, the values of the viscosity are set to be

piecewise constant and discontinuous in the domain. As predicted by Theorem 3.1, Theorem

3.2 and Proposition 3.1, with the choice of W = M or W = DM , the convergence rate of

the linear method depends on the extremal values of the viscosity, i.e., νmax and νmin, but is

independent of the continuity of the viscosity.

Table 4.1 shows the minimal nonzero and maximal eigenvalues of D−1
M S and the asymptotic

convergence factor % for two phase flow at a final stage of the phase separation process, where

S is the negative Schur complement of the system matrix A from (2.4), i.e., S = BF−1BT . We

observe that

Re(D−1
M S)min = O(ν−1

max), Re(D−1
M S)max = O(ν−1

min) ≤ 9

4
ν−1

min,

| Im(D−1
M S) |max≤

9

8
ν−1

min.

Remark 4.1. The bounds for the Re(D−1
M S)max and | Im(D−1

M S) |max agree with the theo-

retical prediction given in Proposition 3.1. However, from Table 4.1, instead of the theoretical

bound Re(D−1
M S)min = O(ν−1

max
1

1+c21/ν
2
min

), the relation Re(D−1
M S)min = O(ν−1

max) is observed. A

reason which could explain the observation is that the value of the constant c1 turns out to

be much smaller than the chosen values of νmin (0.05, 0.01, 0.005 and 10−3), so that the ratio
1

1+c21/ν
2
min
≈ 1 and Re(D−1

M S)min = O(ν−1
max).

Table 4.2 and Table 4.3 show the nonlinear and linear iterations with varying mesh size for

two phase flow at the final and initial stages of the phase separation process. Clearly, both

the nonlinear and linear iterations are independent of the mesh size. In this paper, unless

Table 4.1: Extreme eigenvalues of D−1
M S and asymptotic convergence factor for GMRES on the last

nonlinear step, two phase flow at a final stage of the phase separation process, γ = 1.

νmax = 0.1 νmax = 0.01

νmin 0.05 0.01 10−3 0.005 10−3

h = 1/32

Re(D−1
M S)min 0.6350 0.6350 0.6350 6.3207 6.3210

Re(D−1
M S)max 18.9287 81.0884 766.0679 156.6134 671.669

| Im(D−1
M S) |max 1.6747 31.6947 191.905 67.0167 178.7441

convergence factor % 0.5164 0.5164 0.5164 0.0734 0.0740

h = 1/64

Re(D−1
M S)min 0.6350 0.6349 0.6349 6.3436 6.3436

Re(D−1
M S)max 20.8379 97.4026 935.7287 191.6925 901.2033

| Im(D−1
M S) |max 2.3942 40.9770 287.5361 86.2511 294.5081

convergence factor % 0.5164 0.5164 0.5164 0.0737 0.0737
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(a) νmax = 1, νmin = 0.1. (b) νmax = 1, νmin = 10−2.

(c) νmax = 0.1, νmin = 10−3. (d) νmax = 1, νmin = 10−3.

Fig. 4.1. Two phase flow at a final stage of the phase separation process: selected streamlines, h = 1
64

.

explicitly stated, the stopping tolerance for the linear iterations is relative and is chosen to be

10−2. Tighter values are not necessary because the convergence of the nonlinear iterations is

not improved by decreasing the (relative) stopping tolerance for the linear systems (see also the

numerical experiments in [29]). Thus, if one solves with the modified pivot block exactly, or

accurately enough, a relative stopping tolerance of 10−2 for the linear solutions suffices.

The asymptotic convergence factor % for two phase flow at a final stage of the phase sepa-

ration process, shown in Table 4.1, is estimated based on the bounds (3) in Theorem 3.1. The

convergence of the whole method is illustrated in Table 4.2. Fig. 4.2 shows the GMRES conver-

gence history of the linear iterations on the last nonlinear step. Theorem 3.1 and Proposition

3.1 predict that, with W = DM , the factor % depends on νmin and νmax. However, the extremal

eigenvalues presented in Table 4.1 show that the factor % depends on νmax, instead of νmin, in

the chosen range of νmax and νmin. In other words, smaller values of νmax result in smaller

values of %, corresponding to a faster linear convergence rate.

Fig. 4.1 shows some selected streamlines of the velocity on the last nonlinear iteration for

two phase flow at a final stage of the phase separation process with different values of νmin and

νmax.

Simplifying the task to approximate the Schur complement of the original system, the AL
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Table 4.2: Two phase flow at a final stage of the phase separation process: iterations to solve Aγ

preconditioned by ML, γ = 1.

νmax = 0.1 νmax = 0.01

νmin 0.05 0.01 10−3 0.005 10−3

h = 1/32

nonlinear iter. 5 7 17 12 21

linear iter. 5 5 5 3 3

h = 1/64

nonlinear iter. 5 7 13 12 21

linear iter. 5 5 5 3 3

h = 1/128

nonlinear iter. 4 6 12 11 19

linear iter. 5 5 5 3 3

h = 1/256

nonlinear iter. 4 6 12 11 19

linear iter. 5 5 5 3 3

technique shifts the difficulty to solving systems with the modified pivot block Fγ = F +

γBTW−1B, which itself is a Schur complement. The analysis in Theorem 3.1 and significant

numerical evidence (e.g., [8–10, 13, 28, 30]) show that first, in order to achieve the efficiency of

the (outer) block-triangular preconditioner ML, systems with Fγ have to be solved accurately

enough and second, that γ = 1 is the preferred choice of the stabilization parameter. Direct

solution methods for Fγ are clearly unfeasible for large scale computations. While striving to

find an efficient preconditioner for Fγ , in order to enable its solution via iterative methods, many

Fig. 4.2. Two phase flow at a final stage of the phase separation process: convergence history of GMRES

on the last nonlinear step, γ = 1, h = 1
32

.
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Table 4.3: Two phase flow at an initial stage of the phase separation process: iterations to solve Aγ

preconditioned by ML, γ = 1.

νmax = 0.1 νmax = 0.01

νmin 0.05 0.01 10−3 0.005 10−3

h = 1/32

nonlinear iter. 5 6 7 11 16

linear iter. 5 5 5 3 3

h = 1/64

nonlinear iter. 5 6 7 11 16

linear iter. 5 5 5 3 3

h = 1/128

nonlinear iter. 5 6 7 11 16

linear iter. 5 5 5 3 3

h = 1/256

nonlinear iter. 5 6 7 11 16

linear iter. 5 5 5 3 3

Table 4.4: Iterations and time (sec) to solve Aγ preconditioned by ML with Fγ/F̃γ : γ = 10, systems

with Fγ and F̃γ solved directly, time (sec).

νmax 0.1 0.01

νmin 0.05 0.01 0.001 0.005 0.001

h = 1/64

nonlin. iter. 5/5 7/6 13/12 12/11 21/20

linear iter. 2/3 1/3 1/2 1/3 1/3

nonlin.solver 9.5/13.0 11.9/16.1 22.6/29.6 20.4/26.4 35.6/58.0

h = 1/128

nonlin. iter. 4/4 6/6 12/11 11/10 19/18

linear iter. 2/3 1/3 1/2 1/2 1/3

nonlin.solver 48.8/69.0 70.4/109.1 143.3/185.5 132.7/161.9 231.1/350.5

ideas have been developed, in which however, γ is suggested to be chosen rather small, sometimes

of order 0.001 (e.g., [9, 13]). The latter, in its turn, means that we try to precondition Fγ by

F , which in general cannot be efficient and entails increase in the number of outer iterations.

Without considering this problem to be fully resolved, we include experiments with an

algebraic multigrid (AMG) method and γ = 1 and also slightly larger than 1 to illustrate that

it is possible to solve Fγ efficiently without slowing down the numerical performance of the

outer solver. The AMG method we use is agmg, see [35, 38, 39]. The implementation is in

Fortran and Matlab interface is provided. Therefore, its performance in time is comparable

with that of the ’backslash’ direct solver in Matlab. The agmg solver is used here as a black box.

For problems with constant, but small viscosity, it exhibits extraordinary good performance.

It converges in one iteration and acts as a direct solver. Straightforwardly applied to problems

with variable viscosity, it is found somewhat less efficient.

We note that, in contrast to the constant viscosity case, the block F is not block-diagonal

anymore. It can be seen as a sum of two parts, F = FD + FV , where FD is the block-diagonal
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Table 4.5: Solving systems with Fγ/F̃γ by agmg: γ = 10, relative stopping tolerance 10−6, random

right hand vector, time (sec).

νmax 0.1 0.01

νmin 0.05 0.01 0.001 0.005 0.001

size(Fγ) = 8450

agmg iterations 18/1 20/1 23/1 1/1 1/1

agmg setup time 0.44/0.44 0.44/0.49 0.45/0.45 0.45/0.45 0.45/0.45

agmg solution time 0.31/0.02 0.36/0.02 0.40/0.02 0.02/0.02 0.02/0.02

agmg total time 0.75/0.46 0.80/0.51 0.85/0.47 0.47/0.47 0.47/0.47

Direct solver 0.51/0.53 0.51/0.57 0.54/0.53 0.52/0.53 0.51/0.51

size(Fγ) = 33282

agmg iterations 47/1 57/1 69/1 1/1 1/1

agmg setup time 2.55/2.78 2.58/2.77 2.59/2.82 2.71/2.74 2.80/2.87

agmg solution time 4.78/0.11 5.71/0.11 6.82/0.11 0.11/0.11 0.14/0.14

agmg total time 7.33/2.89 8.29/2.88 9.41/2.93 2.82/2.85 2.94/3.01

Direct solver 3.21/3.19 3.20/3.24 3.28/3.32 3.22/3.08 3.41/3.37

part and [FD]i,j = (ν(x)∇~ϕi,∇~ϕj). Correspondingly, we denote F̃γ = FD + γBTW−1B. We

illustrate that agmg is a viable option for the considered class of problems.

The results in Tables 4.4-4.8 are all computed for the two phase flow at a final stage of the

phase separation process. First we show that the outer solution method preserves its efficiency

when ML is constructed with either Fγ or F̃γ (Table 4.4). Next, in Table 4.7, we show the

behaviour of agmg when solving F̃γ and point out that γ > 1 (γ = 10) is better than γ = 1.

In Table 4.5 we compare the solution time for Fγ and F̃γ using agmg and the direct method,

and see that agmg, applied to F̃γ becomes slightly faster than the direct method, already for

relatively small problems.

Table 4.6 shows a gain in overall time for the nonlinear solver. The important detail is that

the agmg preconditioner is constructed once every 3 nonlinear iterations ( and when νmax = 0.01,

νmin = 0.001 - every 5 nonlinear steps).

Finally, Table 4.8 indicates the expected savings in overall solution time when the problem

size is increased, where Gain in time =
Tdirect−Tagmg

Tdirect
.

Table 4.6: Iterations and time (sec) to solve Aγ preconditioned by ML with Fγ/F̃γ : γ = 10, systems

with Fγ solved directly and with F̃γ solved by agmg, time (sec).

νmax 0.1 0.01

νmin 0.05 0.01 0.001 0.005 0.001

h = 1/64

nonlinear iter. 5/5 7/6 13/12 12/11 21/20

linear iter. 2/3 1/3 1/2 1/3 1/3

nonlin. solver time 9.5/3.0 11.9/3.8 22.6/6.0 20.4/5.2 35.6/10.8

h = 1/128

nonlinear iter. 4/4 6/6 12/11 11/10 19/18

linear iter. 2/3 1/3 1/2 1/2 1/3

nonlin. solver time 48.8/23.6 70.4/32.4 143.3/56.0 132.7/46.7 231.1/99.1
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Table 4.7: Solving systems with F̃γ by agmg for γ = 1/γ = 10: relative stopping tolerance 10−6, random

right hand vector, time (sec).

νmax 0.1 0.01

νmin 0.05 0.01 0.001 0.005 0.001

size(Fγ) = 8450

agmg iterations 23/1 22/1 25/1 1/1 1/1

agmg setup time 0.22/0.44 0.40/0.49 0.44/0.45 0.48/0.45 0.48/0.45

agmg solution time 0.38/0.02 0.38/0.02 0.43/0.02 0.03/0.02 0.03/0.02

agmg total time 0.60/0.46 0.78/0.51 0.87/0.47 0.51/0.47 0.51/0.47

size(Fγ) = 33282

agmg iterations 60/1 59/1 61/1 1/1 1/1

agmg setup time 1.62/2.78 2.13/2.77 2.09/2.82 2.78/2.74 2.80/2.87

agmg solution time 4.14/0.11 5.26/0.11 5.28/0.11 0.13/0.11 0.13/0.14

agmg total time 5.76/2.89 7.39/2.88 7.37/2.93 2.91/2.85 2.93/3.01

Remark 4.2. The efficiency of the agmg method, originally developed for scalar problems and

nonsymmetric M-matrices, could be related to the fact that agmg assumes ’divergence-free’

solutions, which is the case when solving incompressible Navier-Stokes equations.

Table 4.8: Solving F̃γ directly and by agmg: γ = 10, νmax = 0.01, νmin = 0.001, relative stopping

tolerance (agmg) 10−12, random right hand vector, time (sec).

size(F̃γ) 8450 33282 132098 526338

agmg iterations 1 1 1 1

agmg total time 0.47 3.01 16.70 127.70

Direct solver time 0.51 3.37 20.68 187.99

Gain in time 7% 10% 20% 32%

5. Discussion and Conclusions

The AL approach, used in this paper and also in other works, such as [8,9,28], is also known

as the ’First-Discretize-Then-Stabilize’ (FDTS) technique. There are also other techniques,

known as ’First-Stabilize-Then-Discretize’ (FSTD). To illustrate those, consider the stationary

Oseen problem with constant viscosity

− ν∇ · (∇u) + (w · ∇)u +∇p = f, (5.1a)

∇ · u = 0. (5.1b)

If we apply the gradient operator to the divergence-free constraint in (5.1), and add the so-

obtained result, pre-multiplied with a stabilization constant γ to the first equation we obtain

the so-called ’grad-div ’ stabilization formulation (see, e.g., [13, 30])

− ν∇ · (∇u) + (w · ∇)u− γ∇(∇ · u) +∇p = f, (5.2a)

∇ · u = 0. (5.2b)
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For completeness, we mention that, alternatively, one can apply the divergence operator to the

first equation in (5.1), which leads to the so-called pressure equation

∇ · (∇p) = ∇ · f ,

which, pre-multiplied by a stabilization constant γ, is then added to the second equation in

(5.1) and the system becomes

− ν∇ · (∇u) + (w · ∇)u +∇p = f, (5.3a)

∇ · u + γ∇ · (∇p) = γ∇ · f . (5.3b)

A pressure correction stabilization for the Stokes equation has been used, for instance, in [2],

to enable the usage of a unstable FEM discretization.

The difference between FSTD and FDTS stabilization, applied to the first equation in

(5.1) is in the pivot block of the resulting matrix, namely FFSTDγ = F + γF̂ and FFDTSγ =

F+γBTW−1B. It is clear (also noted in [30]) that FFSTDγ is sparser than FFDTSγ . On the other

side, F̂ denotes the discrete operator of (∇ · u,∇ · v) (v is the test function), and is analogous

to the matrix BTB. Thus, the matrix FFSTDγ is analogous to FFDTSγ with W - the identity

matrix. The latter indicates that the means to tune the FSTD stabilization is only the constant

γ, while in FDTS we possess γ and W to play with. So far, the most natural and easily available

choice of W has been the pressure mass matrix M , or, rather, its diagonal. This, however, does

not fully discard the need to look for other choices of W , which approximate BF−1BT better

than M , especially when the exact Schur complement BF−1BT is nonsymmetric.

In this paper we consider the augmented Lagrangian approach to precondition matrices

arising from the finite element discretization of the linearized stationary incompressible Navier-

Stokes equations with variable viscosity. We prove that the AL preconditioner involving the

finite element mass matrix for the pressure is fully robust with respect to the mesh size, but

depends on the maximal and minimal values of the viscosity, i.e., νmax and νmin. The presented

results are more general and the estimates in [22] can be obtained as a special case by taking

νmax = νmin = ν.

Further, provided that systems with the modified pivot block are solved accurately enough,

we also show that any γ ≥ 1 suffices to ensure high numerical efficiency of the AL-preconditioner.

The numerical experiments in Section 4 illustrate that the AL preconditioner works effi-

ciently for a broad range of values of νmax and νmin. The observation in Remark 4.1, namely,

that the conducted numerical tests do not show any dependence of Re(D−1
M S) on νmin, needs

further consideration.

An issue of particular importance is how to efficiently solve the modified pivot block of

the transformed system matrix. Here we show that a general purpose AMG solver, namely

agmg, used as a black-box, can be successfully applied for the full range of the problem and

discretization parameters, considered in this paper.

Appendix

Consider the form c̃(w,u,v) = 1
2 (c(w,u,v)− c(w,v,u)), where c(w,u,v) = ((w · ∇)u,v),

and the operator l(u,v) = (2ν(x)Du,Dv), where Du = 1
2 (∇u +∇Tu). The following results

holds.



480 X. HE AND M. NEYTCHEVA

Proposition A.1. Consider the above operators l and c̃. Assume that w and ν(x) are bounded

in Ω and that the part of ∂Ω, where Dirichlet conditions for velocity u are imposed, is not

empty. Then there holds,

‖ l−1c̃(w,u,u) ‖L2≤
C
√
νmin

. (A.1)

Proof. We have

‖ l(u,u) ‖2L2
=

∫
Ω

2ν | Du |2

≥2νmin

∫
Ω

| Du |2≥ C1νmin ‖ ∇u ‖2L2
. (A.2)

For the last part of relation (A.2) we use Korn’s inequality. Further,

‖ c̃(w,u,u) ‖2L2
=

∫
Ω

| c̃(w,u,u) |

≤C2 ‖ w ‖∞‖ ∇u ‖L2‖ u ‖L2

≤C3 ‖ w ‖∞‖ ∇u ‖2L2
. (A.3)

For the last part of relation (A.3) we use the assumption that ∂ΩD 6= ∅. Combing (A.2) and

(A.3), we obtain,

‖ c̃(w,u,u) ‖2L2
≤ C

νmin
‖ l(u,u) ‖2L2

, (A.4)

which yields (A.1). �
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