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Abstract

We construct a new stabilized finite volume method on rectangular grids for the Stokes

equations. The lowest equal-order conforming finite element pair (piecewise bilinear veloc-

ities and pressures) and piecewise constant test spaces for both the velocity and pressure

are employed in this method. We show the stability of this method and prove first optimal

rate of convergence for the velocity in the H1 norm and the pressure in the L2 norm. In

addition, a second order optimal error estimate for the velocity in the L2 norm is derived.

Numerical experiments illustrating the theoretical results are included.
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Key words: Stokes equations, Equal-order finite element pair, Finite volume method, Error

estimate.

1. Introduction

Finite volume method (FVM) [2,8,9,13,26,27,32], also called generalized difference method,

covolume method, or box scheme, has been widely used in computational fluid dynamics and

practical fluid mechanics. In general, the programming effort in implementing the finite volume

method is usually simpler than the finite element method (FEM). The finite volume method

discretizations provide reasonable approximations for the Stokes problems. Many papers were

devoted to develop the finite volume method and establish its error analysis for the Stokes

equations, for example, see [10–12,23, 28, 29, 33].

The lowest equal-order finite element pair for the Stokes equations have already attracted

much attention [1,3,5,7,16,18,20–24,30] because of their simplicity and attractive computational

properties. Since the equal-order finite element pairs hold an identical degree distribution for

both the velocity and pressure, they are computationally efficient in multigrids and parallel

processing. However, it is well known that the equal-order finite element pairs do not satisfy

the inf-sup condition. In order to counteract the lack of inf-sup stability, one possible remedy

is to modify the variational formulation associated with the Stokes equations by adding a

stabilization term.
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Recently, Li and Chen [23] have developed and analyzed a stabilized finite volume method for

the Stokes equations on triangular grids. The lowest equal-order conforming finite element pair

(piecewise linear velocities and pressures) are employed in their method. By the relationship

between their method and a stabilized finite element method they derived the optimal error

estimates for both the velocity and pressure.

In this paper, we study a new stabilized finite volume method for the Stokes equations on

rectangular grids with the lowest equal-order conforming finite element pair(piecewise bilinear

velocities and pressures). We consider the following stationary Stokes problem in an axiparallel

domain Ω ⊂ R
2

− λ∆u+∇p = f , in Ω, (1.1)

divu = 0, in Ω, (1.2)

u = 0, on ∂Ω, (1.3)

where u = (u1, u2) stands for fluid velocity, p the pressure, f is a given external force, and λ > 0

denotes the viscosity of the fluid. Set

V = H1
0 (Ω)

2, W = L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

qdΩ = 0

}

. (1.4)

Define

A(u,v) = λ

∫

Ω

∇u : ∇vdΩ, (1.5)

C(v, p) =

∫

Ω

v · ∇pdΩ, B(u, q) = −

∫

Ω

qdiv udΩ. (1.6)

It is well known that C(v, q) = B(v, q), then the associated variational formulation of (1.1)-(1.3)

is to seek a pair (u, p) ∈ V ×W such that

A(u,v) +B(v, p) = (f ,v), ∀v ∈ V, (1.7)

B(u, q) = 0, ∀q ∈ W. (1.8)

The above weak formulation (1.1)-(1.3) can be also written as follows:

L(u, p;v, q) := A(u,v) +B(v, p) +B(u, q)

= (f ,v), ∀(v, q) ∈ V ×W. (1.9)

In the case of rectangular partition, since the bilinear form C for the finite volume method is

no longer equal to the bilinear form B for the finite element method when the lowest equal-order

finite element pair are employed, the finite volume method for the Stokes problem (1.1)-(1.3) can

not be written as the standard form. To compensate for this deficiency, we discretize Eq. (1.2)

using the finite volume method instead of the finite element method, which is different from the

classical mixed methods [4,6,11,12,17,19,29]. Moreover, in order to stabilize this system, with

the idea of [3,24] we introduce a stabilization term using a local polynomial pressure projection

on dual elements. We will show that our method is unconditionally stable, and achieve optimal

accuracy. Moreover, numerical experiments confirm the theoretical results.

The remainder of this paper is organized as follows. In the next section we introduce

some notations which will be used throughout the paper and recall the stabilized finite element
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approximations [3,24] of the Stokes equations. In Section 3, the stabilized finite volume method

for the Stokes equations is constructed. Section 4 deals with the stability of this method. The

optimal convergence error estimates for the method are derived in Section 5. Finally, we present

the numerical experiments illustrating the theoretical results in Section 6.

Throughout this paper the symbol C will denote a generic positive constant independent of

the discretization parameters and may have different values at different places.

2. Notations and Preliminaries

For a subdomain D ⊂ R
2, we denote by (·, ·)D the usual L2(D) or L2(D)2 inner product,

‖ · ‖0,D the norm in the space L2(D) or L2(D)2. For k a positive integer, let ‖ · ‖k,D and | · |k,D
be the norm and the semi-norm of the Sobolev space Hk(D) or Hk(D)2 [14,19,26], respectively.

For brevity we omit D in the subscript if D = Ω.

Let Th = {Ki,j, 1 ≤ i ≤ M, 1 ≤ j ≤ N} be a partition of the domain Ω into a union of

rectangles Ki,j with centers ci,j = (xi+1/2, yj+1/2). Denote by P1, P2, · · · , PN̊v
those interior

vertices and PN̊v+1, · · · , PNv
those on the boundary. Let hx

i = xi+1 − xi, hy
j = yj+1 − yj

and h = max1≤i≤M,1≤j≤N{hx
i , h

y
j }. We shall assume that the partition Th = {Ki,j} is quasi-

uniform, i.e., there exist positive constants C1 and C2 independent of h such that

C1h
2 ≤ |Ki,j | ≤ C2h

2, ∀Ki,j ∈ Th, (2.1)

where |Ki,j | is the area of Qi,j .

Now we choose the lowest equal-order conforming finite element space Vh ×Wh ⊂ V ×W

as the trial space:

Vh =
{

u ∈ V : u|K ∈ Q1(K)2, ∀K ∈ Th

}

, (2.2)

Wh =
{

q ∈ W ∩ C0(Ω) : q|K ∈ Q1(K), ∀K ∈ Th

}

, (2.3)

where Q1(K) = {p : p = a + bx + cy + dxy, (x, y) ∈ K, a, b, c, d ∈ R} is the space of bilinear

functions.

For uh ∈ Vh, define

|uh|2 :=

(

∑

K∈Th

|uh|
2
2,K

)1/2

.

Let Ihu and Jhq be the interpolation projection from V and W onto Vh and Wh, respectively:

Ihu|K ∈ Q1(K)2 and Ihu|K(Pi) = u(Pi), i = 1, 2, 3, 4, (2.4)

Jhq|K ∈ Q1(K) and Jhq|K(Pi) = q(Pi), i = 1, 2, 3, 4, (2.5)

where Pi, i = 1, 2, 3, 4 are the four vertices of the element K.

For u ∈ H2(Ω)2, q ∈ H1(Ω), the projection operators Ih and Jh have the following properties

[4, 14, 15]:

‖u− Ihu‖i ≤ Ch2−i|u|2, ‖q − Jhq‖0 ≤ Ch|q|1, i = 0, 1, (2.6)

|Ihu|i ≤ C|u|i, |Jhq|1 ≤ C|q|1, i = 1, 2. (2.7)
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Fig. 2.1. Primal and dual elements.

Moreover, the inverse inequalities hold [4, 14, 15]:

|uh|i+1 ≤ Ch−1|uh|i, |qh|1 ≤ Ch−1‖qh‖0, ∀uh ∈ Vh, qh ∈ Wh, i = 0, 1. (2.8)

Denote by Mh the piecewise constant space associated with Th. Let πh : L2(Ω) → Mh be the

standard L2 projection operator:

(p, qh) = (πhp, qh), ∀p ∈ L2(Ω), qh ∈ Mh. (2.9)

The projection operator πh satisfies [4, 14, 15]:

‖πhp‖0 ≤ C‖p‖0, ∀p ∈ L2(Ω), (2.10)

‖p− πhp‖0 ≤ Ch|p|1, ∀p ∈ H1(Ω). (2.11)

Now, we can define the bilinear form G(·, ·) [3, 23] as follows:

G(ph, qh) = (ph − πhph, qh − πhqh). (2.12)

Then the stabilized finite element method for the Stokes problem (1.1)-(1.3) is to seek (uh, ph) ∈

Vh ×Wh such that

Q(uh, ph;vh, qh) = (f ,vh), ∀(vh, qh) ∈ Vh ×Wh, (2.13)

where

Q(uh, ph;vh, qh) = A(uh,vh) +B(vh, ph) +B(uh, qh)−G(ph, qh). (2.14)

This bilinear form satisfies the continuity and weak coercivity [3, 24]:

Q(uh, ph;vh, qh) ≤ C
(

‖uh‖1 + ‖ph‖0

)(

‖vh‖1 + ‖qh‖0

)

, (2.15)

sup
(vh,qh)∈Vh×Wh

Q(uh, ph;vh, qh)

‖vh‖1 + ‖qh‖0
≥ β

(

‖uh‖1 + ‖ph‖0

)

, (2.16)

where β is a positive constant independent of h.

Thus, the system (2.13) has unique solution and the following convergence results hold [3,24]:

‖u− uh‖0 + h(‖u− uh‖1 + ‖p− ph‖0) ≤ Ch2
(

‖u‖2 + ‖p‖1

)

. (2.17)
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3. The Stabilized Finite Volume Method

In this section we shall present a new stabilized finite volume method for the Stokes problem.

We shall construct the dual partition T ∗
h and the test function spaces. The dual grid is a

union of rectangles, can be constructed by the following rule: Referring to Fig.2.1, the interior

node P5 is the common vertex of the rectangles Kc1 = �P1P2P5P4, Kc2 = �P2P3P6P5, Kc3 =

�P4P5P8P7 and Kc4 = �P5P6P9P8, and the rectangle �c1c2c4c3 is dual element according

to the node P5, denoted by K∗
5 , where ci is the center of element Kci . For a boundary node

like P6(P9) the associated dual element is the rectangle �c2m1m2c4(�c4m2P9m3), denoted by

K∗
6 (K

∗
9 ), where m1,m2,m3 are the midpoints of the edges P3P6, P6P9, P8P9, respectively.

Next we define the following two test spaces:

Ṽh :=
{

vh ∈ L2(Ω)2 : vh is constant vector over K∗ ∈ T ∗
h ,

and vh = 0 on any boundary dual element
}

, (3.1)

W̃h :=
{

qh ∈ L2(Ω) : qh is constant over K∗ ∈ T ∗
h

}

. (3.2)

In addition, define two operators Γh : Vh → Ṽh and γh : Wh → W̃h:

Γhvh =

N̊v
∑

j=1

vh(Pj)χPj
, vh ∈ Vh, (3.3)

γhqh =

Nv
∑

j=1

qh(Pj)χPj
, qh ∈ Wh, (3.4)

where χPj
is the characteristic function of the dual element K∗

j .

The above idea of connecting the trial and test spaces in the Petrov-Galerkinmethod through

the operator Γh or γh was first introduced by Li [25] in the context of elliptic problems. The

operators Γh and γh satisfy the following properties [25, 26]:

‖vh − Γhvh‖0 ≤ Ch|vh|1, vh ∈ Vh, , (3.5)

‖qh − γhqh‖0 ≤ Ch|qh|1, qh ∈ Wh, (3.6)

‖γhqh‖0 ≤ C‖qh‖0, qh ∈ Wh. (3.7)

Noting that vh ∈ Vh is a piecewise bilinear function, the following lemma which is necessary

to derive error estimates can be easily obtained by direct calculation.

Lemma 3.1. If K ∈ Th, then

∫

K

(vh − Γhvh)dK = 0, vh ∈ Vh, (3.8)

∫

K

(qh − γhqh)dK = 0, qh ∈ Wh. (3.9)
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Define the following bilinear forms of the finite volume method as follows:

Ã(uh,Γhvh) = −λ

N̊v
∑

j=1

vh(Pj) ·

∫

∂K∗

j

∂uh

∂n
ds, uh,vh ∈ Vh, (3.10)

B̃(vh, γhqh) = −

Nv
∑

j=1

qh(Pj) ·

∫

∂K∗

j

vh · nds, vh ∈ Vh, qh ∈ Wh, (3.11)

C̃(Γhvh, qh) =

N̊v
∑

j=1

vh(Pj) ·

∫

∂K∗

j

qhnds, vh ∈ Vh, qh ∈ Wh, (3.12)

where n is the unit normal outward to ∂K∗
j .

Notice that the bilinear form B̃ is different from the definition used in general mixed finite

volume methods. Its second argument is now a test function γhqh instead of qh, in other words,

it is B̃(·, γh·), not B̃(·, ·). We shall show in the following lemma that B̃(vh, γhqh) = C̃(Γhvh, qh).

Lemma 3.2. For any uh,vh ∈ Vh, qh ∈ Wh, it holds that

Ã(uh,Γhuh) ≥ C‖uh‖
2
1, (3.13)

Ã(uh,Γhvh) ≤ C‖uh‖1‖vh‖1, (3.14)

C̃(Γhvh, qh) = B̃(vh, γhqh). (3.15)

Proof. Note that (3.13) and (3.14) were shown in [11, 27]. It suffices to prove (3.15). Let

T ∗
h = {K∗

i,j, 1 ≤ i ≤ M + 1, 1 ≤ j ≤ N + 1}. For simplicity, we set hx
i = hy

j = h, 1 ≤

i ≤ M, 1 ≤ j ≤ N , and it does not affect the proof. Write qi,j = qh(Pi,j), vh = (u, v), and

vi,j = vh(Pi,j) = (ui,j , vi,j). Let K be a rectangular and xi = (xi, yi), i = 1, 2, 3, 4 be its four

vertices counted anti-clockwise. We take the unit square K̂ = [0, 1] × [0, 1] as the reference

element in the ξη-plane with vertices denoted by

x̂1 = (0, 0), x̂2 = (1, 0), x̂3 = (1, 1), x̂4 = (0, 1).

Define the bilinear transformation FK : K̂ → K:

x = FK(x̂) = x1(1− ξ)(1− η) + x2ξ(1− η) + x3ξη + x4(1− ξ)η. (3.16)

Then, for any qh ∈ Wh,vh ∈ Vh, we have the expressions

qh|K = qh(x1)(1 − ξ)(1 − η) + qh(x2)ξ(1− η) + qh(x3)ξη + qh(x4)(1 − ξ)η, (3.17)

vh|K = vh(x1)(1− ξ)(1 − η) + vh(x2)ξ(1 − η) + vh(x3)ξη + vh(x4)(1− ξ)η. (3.18)
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Combine (3.16)-(3.18) by direct calculation, we obtain

B̃(vh, γhqh) = −

N+1
∑

j=1

M+1
∑

i=1

qi,j

∫

∂K∗

i,j

vh · nds

=−

N+1
∑

j=1

M+1
∑

i=1

qi,j

(

−

∫ 1

1/2

hqh(FKi−1,j−1
(
1

2
, η))dη +

∫ 1

1/2

hqh(FKi,j−1
(
1

2
, η))dη

−

∫ 1/2

0

hqh(FKi−1,j
(
1

2
, η))dη +

∫ 1/2

0

hqh(FKi,j
(
1

2
, η))dη −

∫ 1

1/2

hqh(FKi−1,j−1
(ξ,

1

2
))dξ

+

∫ 1

1/2

hqh(FKi,j−1
(ξ,

1

2
))dξ −

∫ 1/2

0

hqh(FKi−1,j
(ξ,

1

2
))dξ +

∫ 1/2

0

hqh(FKi,j
(ξ,

1

2
))dξ

)

=−

N+1
∑

j=1

M+1
∑

i=1

qi,j

(

−
h

16
ui−1,j−1 +

h

16
ui+1,j−1 −

3h

8
ui−1,j +

3h

8
ui+1,j −

h

16
ui−1,j+1

+
h

16
ui+1,j+1 −

h

16
vi−1,j−1 −

3h

8
vi,j−1 −

h

16
vi+1,j−1 +

h

16
vi−1,j+1 +

3h

8
vi,j+1 +

h

16
vi+1,j+1

)

,

and

C̃(Γhvh, qh) =
N
∑

j=1

M
∑

i=1

vi,j ·

∫

∂K∗

i,j

qhnds

=

N
∑

j=1

M
∑

i=1

ui,j

(

−
h

16
qi−1,j−1 +

h

16
qi+1,j−1 −

3h

8
qi−1,j +

3h

8
qi+1,j −

h

16
qi−1,j+1 +

h

16
qi+1,j+1

)

+ vi,j

(

−
h

16
qi−1,j−1 −

3h

8
qi,j−1 −

h

16
qi+1,j−1 +

h

16
qi−1,j+1 +

3h

8
qi,j+1 +

h

16
qi+1,j+1

)

=−
N+1
∑

j=1

M+1
∑

i=1

qi,j

(

−
h

16
ui−1,j−1 +

h

16
ui+1,j−1 −

3h

8
ui−1,j +

3h

8
ui+1,j −

h

16
ui−1,j+1 +

h

16
ui+1,j+1

−
h

16
vi−1,j−1 −

3h

8
vi,j−1 −

h

16
vi+1,j−1 +

h

16
vi−1,j+1 +

3h

8
vi,j+1 +

h

16
vi+1,j+1

)

= B̃(vh, γhqh),

which gives the desired result (3.15). 2

To define the stabilized finite volume method, we need add a stabilization term to the

variational formulation associated with the Stokes equations with the idea of [3]. Now we

define the following bilinear form:

G̃(ph, qh) := (ph − γhph, qh − γhqh), ph, qh ∈ Wh. (3.19)

It is clear that the bilinear form G̃(·, ·) is symmetric and semi-definite form generated on dual

elements. It is not like as G(·, ·) mentioned above and not equal to G(·, γh·), but it is still a

simple and effective stabilization form.

By Lemma 3.2 and (3.19) we define

Q̃(ũh, p̃h;vh, qh) = Ã(ũh,Γhvh) + B̃(vh, γhp̃h) + B̃(ũh, γhqh)− G̃(p̃h, qh). (3.20)

Then the new stabilized finite volume method for the Stokes problem (1.1)-(1.3) is: Find

(ũh, p̃h) ∈ Vh ×Wh such that

Q̃(ũh, p̃h;vh, qh) = (f ,Γhvh), ∀(vh, qh) ∈ Vh ×Wh. (3.21)
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Remark 3.1. In general, the finite element methods for Stokes problem can not keep the

conservativeness. However, the finite volume scheme for the second equation (1.2) is obtained

by integrating the equation over a dual element, so the finite volume method should keep

the conservation of mass. In this paper, the stabilized method (3.21) is defined by using a

stabilization term (3.19) to modify the second variational equation associated with the Stokes

equations, therefore, the method keep the approximate local conservation of mass actually.

4. Stability

In this section, we study the stability of the new stabilized finite volume method. The

symbols Ci, 1 ≤ i ≤ 7 in this section will be used as a generic positive constant independent of

h.

The following continuity and weak coercivity of Q̃(·, ·; ·, ·) hold.

Theorem 4.1. The following hold

Q̃(ũh, p̃h;vh, qh) ≤ C
(

‖ũh‖1 + ‖p̃h‖0

)(

‖vh‖1 + ‖qh‖0

)

,

∀(ũh, p̃h), (vh, qh) ∈ Vh ×Wh, (4.1)

and, there exists a positive constant β independent of h such that

sup
(vh,qh)∈Vh×Wh

Q̃(ũh, p̃h;vh, qh)

‖vh‖1 + ‖qh‖0
≥ β(‖ũh‖1 + ‖p̃h‖0), ∀(ũh, p̃h) ∈ Vh ×Wh. (4.2)

Proof. Using Green’s formula and (3.7) gives

B̃(vh, γhqh) = −(div vh, γhqh) ≤ ‖div vh‖0‖γhqh‖0 ≤ C‖vh‖1‖qh‖0,

we obtain (4.1):

Q̃(ũh, p̃h;vh, qh) = Ã(ũh,Γhvh) + B̃(vh, γhp̃h) + B̃(ũh, γhqh)− G̃(p̃h, qh)

≤ C
(

‖ũh‖1‖vh‖1 + ‖vh‖1‖p̃h‖0 + ‖ũh‖1‖qh‖0 + ‖p̃h‖0‖qh‖0

)

= C
(

‖ũh‖1 + ‖p̃h‖0

)(

‖vh‖1 + ‖qh‖0

)

.

Next we prove (4.2). For any p̃h ∈ Wh ⊂ L2(Ω), there exists w ∈ H1
0 (Ω)

2 [4] satisfying

div w = p̃h, and ‖w‖1 ≤ C‖p̃h‖0. (4.3)

Set wh = Ihw, (vh, qh) = (ũh − αwh,−p̃h), where α is a positive parameter, yields

Q̃(ũh, p̃h; ũh − αwh,−p̃h)

= Ã(ũh,Γhũh)− αÃ(ũh,Γhwh)− αB̃(wh, γp̃h) + G̃(p̃h, p̃h). (4.4)

By Lemma 3.2 and Young’s inequality, we have that

Ã(ũh,Γhũh) ≥ C1‖ũh‖
2
1, (4.5)

Ã(ũh,Γhwh) ≤ C‖ũh‖1‖wh‖1 ≤ C‖ũh‖1‖p̃h‖0 ≤
1

8
‖p̃h‖

2
0 + C2‖ũh‖

2
1. (4.6)
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Applying Green’s formula, we get

−B̃(wh, γhp̃h) =(div wh, γhp̃h)

=(div w, γhp̃h)− (div(w −wh), γhp̃h − p̃h)− (div(w −wh), p̃h). (4.7)

Using the Cauchy-Schwarz inequality, Young’s inequality, (2.7) and (4.3) yields

(div w, γhp̃h) =(p̃h, γhp̃h) = (p̃h, p̃h)− (p̃h, p̃h − γhp̃h)

≥‖p̃h‖
2
0 − ‖p̃h‖0‖p̃h − γhp̃h‖0 ≥

3

4
‖p̃h‖

2
0 − ‖p̃h − γhp̃h‖

2
0, (4.8)

and

(div(w −wh), γhp̃h − p̃h) ≤ ‖div(w −wh)‖0‖p̃h − γhp̃h‖0

≤ C‖w −wh‖1‖p̃h − γhp̃h‖0 ≤ C‖p̃h‖0‖p̃h − γhp̃h‖0

≤
1

4
‖p̃h‖

2
0 + C3‖p̃h − γhp̃h‖

2
0. (4.9)

Moreover, applying the Green’s formula, (2.6), (2.8) and Young’s inequality gives

(div(w −wh), p̃h) ≤ Ch‖w‖1|p̃h|1

≤ Ch‖p̃h‖0

(

Nv
∑

j=1

∑

K∈Th

|p̃h − γhp̃h|
2
1,K∩K∗

j

)1/2

≤ C‖p̃h‖0‖p̃h − γhp̃h‖0 ≤
1

4
‖p̃h‖

2
0 + C4‖p̃h − γhp̃h‖

2
0. (4.10)

Combining (4.8)-(4.10) yields

−B̃(wh, γhp̃h) ≥
1

4
‖p̃h‖

2
0 − (1 + C3 + C4)‖p̃h − γhp̃h‖

2
0

≥
1

4
‖p̃h‖

2
0 − C5‖p̃h − γhp̃h‖

2
0. (4.11)

Thus, it can be deduced from (4.4)-(4.6) and (4.11) that

Q̃(ũh, p̃h; ũh − αwh,−p̃h)

≥(C1 − αC2)‖ũh‖
2
1 +

α

8
‖p̃h‖

2
0 + (1− αC5)‖p̃h − γhp̃h‖

2
0. (4.12)

Choose α = min { 2C1−1
2C2

, 1
2C4

} satisfying

C1 − αC2 ≥
1

2
, 1− αC5 ≥

1

2
. (4.13)

With this choice, (4.12) leads to

Q̃(ũh, p̃h; ũh − αwh,−p̃h) ≥ C6(‖ũh‖1 + ‖p̃h‖0)
2. (4.14)

Also, it is clear that

‖ũh − αwh‖1 + ‖ − p̃h‖0 ≤ ‖ũh‖1 + α‖wh‖1 + ‖p̃h‖0 ≤ C7(‖ũh‖1 + ‖p̃h‖0). (4.15)

Finally, setting β = C6/C7 and combining (4.12) with (4.14), we obtain (4.2). 2

We point out that Theorem 4.1 implies the uniqueness and existence of the solution of the

new stabilized mixed finite volume system (3.21) [6, 19, 31].
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5. Error Estimates

We now prove the main results of this paper.

Theorem 5.1. Let (u, p) and (ũh, p̃h) be the solution of the Stokes problem (1.9) and the

stabilized finite volume system (3.21), respectively. Then

‖u− ũh‖1 + ‖p− p̃h‖0 ≤ Ch(‖u‖2 + ‖p‖1 + ‖f‖0). (5.1)

Proof. Subtracting (3.21) from (2.13) yields

Q̃(uh − ũh, ph − p̃h;vh, qh)

=(f,vh − Γhvh)−A(uh,vh) + Ã(uh,Γhvh)−B(vh, ph)

+ B̃(vh, γhph)−B(uh, qh) + B̃(uh, γhqh) +G(ph, qh)− G̃(ph, qh), (5.2)

where (uh, ph) is the solution of (2.13). Applying the Cauchy-Schwarz inequality and by (3.5)

yields

(f,vh − Γhvh) ≤ ‖f‖0‖vh − Γhvh‖0 ≤ Ch‖f‖0‖vh‖1. (5.3)

The following estimate can be seen from [11, Lemma 2.2] that

−A(uh,vh) + Ã(uh,Γhvh) ≤ Ch2|uh|2|vh|2 ≤ Ch|uh|2|vh|1, ∀uh,vh ∈ Vh. (5.4)

It follows from Green’s formula, (3.6), (3.9) and (2.11) that

−B(vh, ph) + B̃(vh, γhph) =
(

div vh, ph − γhph

)

≤ ‖div vh‖0‖ph − γhph‖0 ≤ Ch‖vh‖1|ph|1, (5.5)

−B(uh, qh) + B̃(uh, γhqh) =
(

div uh, qh − γhqh

)

=
(

div uh − πhdiv uh, qh − γhqh

)

≤ Ch|div uh|1‖qh‖0 ≤ Ch|uh|2‖qh‖0, (5.6)

G(ph, qh)− G̃(ph, qh) ≤ Ch|ph|1‖qh‖0. (5.7)

Combining (5.3)-(5.7) we obtain

Q̃(uh − ũh, ph − p̃h;vh, qh) ≤ Ch
(

|uh|2 + |ph|1 + ‖f‖0

)(

‖vh‖1 + ‖qh‖0

)

, (5.8)

Next, we prove that

|uh|2 + |ph|1 ≤ C(‖u‖2 + ‖p‖1 + ‖f‖0). (5.9)

Let us divide each rectangle K ∈ Th into two triangles T+ and T− by connecting its one

diagonal. Denote by T 1
h the resulting triangulation. For T ∈ T 1

h , denote by P1(T ) the space of

all linear polynomials defined on T , and define

V1
h :=

{

vh ∈ V : vh|T ∈ P1(T )
2, ∀T ∈ T 1

h

}

. (5.10)

Let I1h be the interpolation operator from H2(Ω)2 to V1
h. Then

|uh|2 = |uh − I1hu|2 ≤ Ch−1|uh − I1hu|1

≤ Ch−1
(

|u− uh|1 + |u− I1hu|1

)

≤ C
(

‖u‖2 + ‖p‖1 + ‖f‖0

)

. (5.11)



A Stabilized Equal-order FV Method for the Stokes Equations 625

On the other hand

|ph|1 = |ph − πhp|1 ≤ Ch−1‖ph − πhp‖0

≤ Ch−1
(

‖p− ph‖0 + ‖p− πhp‖0

)

≤ C
(

‖u‖2 + ‖p‖1 + ‖f‖0

)

. (5.12)

Thus, (5.9) holds. Combining (5.8) with (5.9), we obtain

Q̃(uh − ũh, ph − p̃h;vh, qh) ≤ Ch
(

‖u‖2 + ‖p‖1 + ‖f‖0

)(

‖vh‖1 + ‖qh‖0

)

, (5.13)

which gives

β(‖uh − ũh‖1 + ‖ph − p̃h‖0) ≤ sup
(vh,qh)∈Vh×Wh

Q̃(uh − ũh, ph − p̃h;vh, qh)

‖vh‖1 + ‖qh‖0

≤ Ch
(

‖u‖2 + ‖p‖1 + ‖f‖0

)

. (5.14)

Finally, applying the triangle inequalities

‖u− ũh‖1 ≤ ‖u− uh‖1 + ‖uh − ũh‖1, (5.15)

‖p− p̃h‖0 ≤ ‖p− ph‖0 + ‖ph − p̃h‖0, (5.16)

we complete the proof. 2

Now we employ a duality argument to derive the following theorem. We consider the dual

problem: Find (Φ,Ψ) ∈ V ×W such that

L(v, q;Φ,Ψ) = (v,u − ũh), (v, q) ∈ V ×W. (5.17)

The solution satisfies the regularity condition

‖Φ‖2 + ‖Ψ‖1 ≤ C‖u− ũh‖0. (5.18)

Theorem 5.2. Let (u, p) and (ũh, p̃h) be the solution of the Stokes problem (1.9) and the

stabilized finite volume system (3.21), respectively. Then

‖u− ũh‖0 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1), (5.19)

provided that f ∈ H1(Ω)2.

Proof. Setting (v, q) = (u− ũh, p− p̃h) in (5.17), we have

‖u− ũh‖
2
0 = A(u− ũh,Φ) +B(Φ, p− p̃h) +B(u− ũh,Ψ). (5.20)

Setting (v, q) = (IhΦ, JhΨ) in (1.9) and (vh, qh) = (IhΦ, JhΨ) in (3.21), respectively, we have

A(u, IhΦ) +B(IhΦ, p) +B(u, JhΨ) = (f , IhΦ), (5.21)

Ã(ũh,ΓhIhΦ) + B̃(IhΦ, γhp̃h) + B̃(ũh, γhJhΨ)− G̃(p̃h, JhΨ) = (f ,ΓhIhΦ). (5.22)

Combining (5.20)-(5.22), we have

‖u− ũh‖
2
0 =A(u− ũh,Φ)−A(u, IhΦ) + Ã(ũh,ΓhIhΦ) +B(Φ, p− p̃h)−B(IhΦ, p)

+ B̃(IhΦ, γhp̃h) +B(u− ũh,Ψ)−B(u, JhΨ)

+ B̃(ũh, γhJhΨ)− G̃(p̃h, JhΨ) + (f , IhΦ− ΓhIhΦ). (5.23)
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A similar argument as for (5.9) yields

|ũh|2 + |p̃h|1 ≤ C(‖u‖2 + ‖p‖1 + ‖f‖0). (5.24)

It follows from (5.4), Theorem 5.1, (2.7) and (5.24) that

A(u− ũh,Φ)−A(u, IhΦ) + Ã(ũh,ΓhIhΦ)

= A(u− ũh,Φ− IhΦ)−A(ũh, IhΦ) + Ã(ũh,ΓhIhΦ)

≤ C‖u− ũh‖1‖Φ− IhΦ‖1 + Ch2|ũh|2|IhΦ|2

≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Φ‖2. (5.25)

Using the Green’s formula, (3.9), Theorem 5.1 and (5.24) gives

B(Φ, p− p̃h)−B(IhΦ, p) + B̃(IhΦ, γhp̃h)

= − (div(Φ− IhΦ), p− p̃h) + (div IhΦ− πhdiv IhΦ, p̃h − γhp̃h)

≤ C‖Φ− IhΦ‖1‖p− p̃h‖0 + Ch2|div IhΦ|1|p̃h|1

≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Φ‖2 + Ch2|IhΦ|2|p̃h|1

≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Φ‖2. (5.26)

In view of Green’s formula, (3.9), Theorem 5.1 and (5.24), we have

B(u− ũh,Ψ)−B(u, JhΨ) + B̃(ũh, γhJhΨ)

= − (div(u− ũh),Ψ− JhΨ) + (div ũh − πhdiv ũh, JhΨ− γhJhΨ)

≤ C‖u− ũh‖1‖Ψ− JhΨ‖0 + Ch2|ũh|2|JhΨ|1

≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Ψ‖1. (5.27)

By (5.24), (2.7), and (3.8), we get

− G̃(p̃h, JhΨ) ≤ Ch2|p̃h|1|JhΨ|1 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Ψ‖1, (5.28)

(f , IhΦ− ΓhIhΦ) = (f − πhf , IhΦ− ΓhIhΦ) ≤ Ch2‖f‖1|IhΦ|1 ≤ Ch2‖f‖1‖Φ‖2. (5.29)

Thus, combining (5.25)-(5.29), we obtain

‖u− ũh‖
2
0 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1)(‖Φ‖2 + ‖Ψ‖1), (5.30)

which implies the desired result. 2

6. Numerical Experiments

The objective of this section is to confirm the theoretical results obtained in the previous

section through numerical experiments. Two examples using the new stabilized finite volume

method for the Stokes equations (1.1)-(1.3) on the domain Ω = (0, 1) × (0, 1) with the lowest

equal-order finite element pair are considered. In all of the examples below, u = (u1, u2)

represents the exact velocity, p the exact pressure, and the right-hand side function f can be

computed by using the equation (1.1).

Example 6.1. u1 = 1
π sin2(πx) sin(2πy), u2 = − 1

π sin(2πx) sin2(πy), p = cos(πx) cos(πy), and

the viscosity λ = 1. The results are illustrated in Table 6.1.
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Table 6.1: Numerical results for Example 6.1.

1/h ‖u− uh‖0 order ‖u− uh‖1 order ‖p− ph‖0 order

4 3.27E-2 6.51E-1 3.14E-1

8 7.59E-3 2.11 3.26E-1 0.997 1.08E-1 1.54

16 1.83E-3 2.05 1.62E-1 1.011 3.56E-2 1.59

32 4.48E-4 2.03 8.06E-2 1.007 1.20E-2 1.56

64 1.11E-4 2.02 4.02E-2 1.004 4.15E-3 1.54

128 2.76E-5 2.01 2.01E-2 1.002 1.44E-3 1.52

Table 6.2: Numerical results for Example 6.2.

1/h ‖u− uh‖0 order ‖u− uh‖1 order ‖p− ph‖0 order

4 1.58E-3 1.81E-2 3.17E-3

8 3.97E-4 1.99 8.81E-3 1.04 1.17E-3 1.43

16 8.99E-5 2.14 4.14E-3 1.08 4.72E-4 1.30

32 2.07E-5 2.11 2.00E-3 1.04 1.74E-4 1.43

64 4.92E-6 2.07 9.82E-4 1.02 6.25E-5 1.47

128 1.19E-6 2.04 4.86E-4 1.01 2.22E-5 1.49

Example 6.2. u1 = x2(x − 1)2y(y − 1)(2y − 1), u2 = −y2(y − 1)2x(x − 1)(2x − 1), p =

2x(x− 1)(2x− 1)y(y − 1)(2y − 1), and the viscosity λ = 0.1. Table 6.2 shows the results.

From the results of Tables 6.1 and 6.2 we can see that the stabilized finite volume method

for the Stokes equations in this article is effective and the numerical results are consistent with

the theoretical analysis.
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