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Abstract

We consider a parabolic optimal control problem with pointwise state constraints. The

optimization problem is approximated by a discrete control problem based on a discretiza-

tion of the state equation by linear finite elements in space and a discontinuous Galerkin

scheme in time. Error bounds for control and state are obtained both in two and three

space dimensions. These bounds follow from uniform estimates for the discretization error

of the state under natural regularity requirements.
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1. Introduction

Optimal control of time-dependent production processes plays an important role in many

practical applications such as crystal growth [10,16,17] and cooling of glass melts [5,22]. These

processes are frequently described by systems of partial differential equations involving the

temperature as a system variable. A need to avoid overheating of the device or to prevent

solidification/melting at the wrong places then naturally leads to pointwise bounds on the

temperature variable. The introduction of pointwise state conditions however yields adjoint

variables and multipliers which only admit low regularity complicating the analysis of the

necessary first order conditions. These problems need to be taken into account in the numerical

approximation and necessitate the development of tailored discrete concepts.

In the present work we consider an optimal control problem for the heat equation and with

pointwise bounds on the state. The optimization problem is approximated using variational

discretization [14] combined with linear finite elements in space and a discontinuous Galerkin

scheme in time for the discretization of the state equation, compare [15, Chapter 3]. Our main

result are L2–error estimates for the optimal state and the optimal control. To derive these

bounds, uniform estimates for the discretization error of the state under natural regularity

requirements are proved. For the numerical analysis of the optimal control problem we use an

approach which avoids error estimates for the adjoint state and which was developed in [7],
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[15, Chapter 3] for the analysis of elliptic optimal control problems with state and gradient

constraints.

Although a lot of contributions are known on elliptic optimal control problems with pointwise

bounds on the state, see e.g. [4,6,7,15,18,19,23], to the best of the authors knowledge numerical

analysis of parabolic optimal control problems with pointwise bounds in space-time for the state

has not yet been considered in the literature. In this work we present the numerical analysis

for our result of Theorem 4.1 which we already announced in [11]. However, there are some

contributions on the analysis of related control problems. In [20] Lavrentiev regularization

of state constrained parabolic control problems is investigated, optimal control problems with

pointwise state constraints in time and averaged state constraints in space are considered in [1].

We note that numerical analysis for this particular setting is announced by Vexler in [11].

Optimality conditions for parabolic optimal control problems in the presence of state constraints

are investigated in [8], where further references on analysis aspects of state constrained parabolic

control problems can be found.

2. The Optimal Control Problem

Let Ω ⊂ R
d (d = 2, 3) be a bounded convex polygonal domain, T > 0, ΩT := Ω× (0, T ) and

ΓT := ∂Ω× (0, T ). Let us consider the initial boundary value problem

yt −∆y = f, in ΩT , (2.1)

∂y

∂ν
= 0, on ΓT , (2.2)

y(·, 0) = y0, in Ω. (2.3)

It is well–known that for given f ∈ L2(0, T ;L2(Ω)), y0 ∈ H1(Ω) problem (2.1)–(2.3) has a

unique solution y ∈ C0([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)). In what follows we shall keep the

initial datum y0 fixed and denote by ŷ the solution of (2.1)–(2.3) corresponding to f ≡ 0. This

allows us to write the solution of (2.1)–(2.3) in the form

y = G(f) = ŷ + G0(f), (2.4)

where G0(f) is the linear operator that assigns to f the solution of (2.1)–(2.3) for y0 ≡ 0. Note

that if f ∈ L2(0, T ;H1(Ω)) and

y0 ∈ H2(Ω), with
∂y0

∂ν
= 0 on ∂Ω, (2.5)

then we have

y ∈ W :=
{

w ∈ C0([0, T ];H2(Ω)) | wt ∈ L2(0, T ;H1(Ω))
}

,

and

max
0≤t≤T

‖y(t)‖2H2 +

∫ T

0

‖yt(t)‖2H1dt ≤ C
(

‖y0‖2H2 +

∫ T

0

‖f(t)‖2H1dt
)

. (2.6)

We remark that W ⊂ C0(ΩT ) since we have the continuous embedding H2(Ω) →֒ C0(Ω̄) for

d = 2, 3.

Next, suppose that the functions f1, · · · , fm ∈ H1(Ω) ∩ L∞(Ω) are given and define U :=

L2(0, T ;Rm) as well as B : U → L2(0, T ;H1(Ω)) by

(Bu)(x, t) :=

m
∑

i=1

ui(t)fi(x), (x, t) ∈ ΩT . (2.7)
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This parametrization of the control is motivated by practical considerations. The functions

fi represent given practical control actuations, whose impact is controlled through the time-

dependent amplitudes ui which in our context play the role of control functions.

Note that (2.6) implies that y = G(Bu) ∈ W for u ∈ U with

max
0≤t≤T

‖y(t)‖2H2 +

∫ T

0

‖yt(t)‖2H1dt ≤ C
(

‖y0‖2H2 +

∫ T

0

|u(t)|2dt
)

, (2.8)

where the constant C depends in addition on the H1–norms of f1, · · · , fm.

Let us denote by M(ΩT ) the space of regular Borel measures on ΩT . Given µ ∈ M(ΩT ) we

consider the following backward parabolic problem

− ϕt −∆ϕ = µΩT
, in ΩT , (2.9)

∂ϕ

∂ν
= µΓT

, on ΓT , (2.10)

ϕ(·, T ) = µT , in Ω. (2.11)

Here, µΩT
:= µ|ΩT

, µΓT
:= µ|ΓT

and µT := µ|Ω̄×{T}.

Theorem 2.1. There exists a unique function ϕ that belongs to Ls(0, T ;W 1,σ(Ω)) for all s, σ ∈
[1, 2) with 2

s + d
σ > d+ 1 and which solves (2.9)–(2.11) in the sense that

∫ T

0

(wt −∆w,ϕ)dt +

∫ T

0

∫

∂Ω

∂w

∂ν
ϕdodt =

∫

ΩT

wdµ, ∀w ∈ W∞
0 , (2.12)

where W∞
0 := {w ∈ W |w(·, 0) = 0 in Ω̄, wt − ∆w ∈ L∞(ΩT ),

∂w
∂ν ∈ L∞(ΓT )}. Here, (•, •)

denotes the inner product in L2(Ω).

Proof. See [8], Theorem 6.3. 2

Note that ϕ ∈ L1(0, T ;W 1,1(Ω)) so that all integrals in (2.12) exist. We consider the

optimization problem

(TP )







minu∈U J(u) :=
1

2

∫ T

0

‖y(·, t)− ȳ(·, t)‖2dt+ α

2

∫ T

0

|u(t)|2dt,
s.t. y = G(Bu), and y(x, t) ≥ 0, (x, t) ∈ ΩT ,

(2.13)

where ȳ ∈ H1(0, T ;L2(Ω)) is given. From now on we shall assume (2.5) and that minx∈Ω̄ y0(x) >

0. It is not difficult to verify with the help of a comparison argument that the function ŷ in

(2.4) satisfies

ŷ(x, t) > 0, (x, t) ∈ ΩT . (2.14)

Since the state constraints form a convex set and the set of admissible controls is closed

and convex one obtains the existence of a unique solution u ∈ U to problem (2.13) by standard

arguments.

Theorem 2.2. The function u ∈ U is the solution of (2.13) if and only if there exist µ ∈
M(ΩT ) and a function p ∈ Ls(0, T ;W 1,σ(Ω)) (s, σ ∈ [1, 2), 2s + d

σ > d + 1), such that with

y = G(Bu) there holds

∫ T

0

(wt −∆w, p)dt+

∫ T

0

∫

∂Ω

∂w

∂ν
pdodt =

∫ T

0

(y − ȳ, w)dt+

∫

ΩT

wdµ, ∀w ∈ W∞
0 , (2.15)
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αu(t) +
(

(p(·, t), fi)
)

i=1,··· ,m = 0, a.e. in (0, T ), (2.16)

µ ≤ 0, y(x, t) ≥ 0, (x, t) ∈ ΩT and

∫

ΩT

ydµ = 0. (2.17)

Proof. It is not difficult to see that the existence of µ and p with the above properties

implies that u is a solution of (2.13). In order to show the reverse we apply Theorem 5.2 in [3]

(compare also [2, Theorem 2]) with the choices U = L2(0, T ;Rm), Z = C0(ΩT ), K = U and

C =
{

z ∈ Z | z(x, t) ≥ 0, ∀(x, t) ∈ ΩT

}

.

Furthermore, let G : U → Z,G(v) := G(Bv) = ŷ + G0(Bv). Clearly, DG(u)v = G0(Bv) so that

we obtain in particular with the choice u0 = 0

G(u) +DG(u)(u0 − u) = ŷ + G0(Bu)− G0(Bu) = ŷ ∈ int(C),

by (2.14). According to Theorem 5.2 in [3] there exists µ ∈
(

C0(ΩT )
)′

= M(ΩT ) such that

∫

ΩT

(z − y)dµ ≤ 0, ∀z ∈ C, (2.18)

J ′(u)v + 〈DG(u)∗µ, v〉U = 0, ∀v ∈ U. (2.19)

Standard measure theoretic arguments imply that µ ≤ 0 and that suppµ ⊂ {(x, t) ∈ ΩT | y(x, t)
= 0} giving (2.17). Since y0 > 0 in Ω̄ this yields in particular that suppµ ⊂ Ω̄× (0, T ]. Next,

we calculate

J ′(u)v =

∫ T

0

(y − ȳ, yv)dt+ α

∫ T

0

u · vdt, v ∈ U, where yv = G0(Bv). (2.20)

Furthermore, since DG(u)v = yv we have

〈DG(u)∗µ, v〉U =

∫

ΩT

yvdµ.

Hence, combining (2.19) and (2.20) we derive

∫ T

0

(y − ȳ, yv)dt+ α

∫ T

0

u · vdt+
∫

ΩT

yvdµ = 0, ∀v ∈ U. (2.21)

In view of Theorem 2.1 there exists a unique solution p ∈ Ls(0, T ;W 1,σ(Ω)) (s, σ ∈ [1, 2) with
2
s + d

σ > d+ 1) of the backward parabolic problem

− pt −∆p = y − ȳ + µΩT
, in ΩT , (2.22)

∂p

∂ν
= µΓT

, on ΓT , (2.23)

p(·, T ) = µT , in Ω, (2.24)

so that

∫ T

0

(wt −∆w, p)dt+

∫ T

0

∫

∂Ω

∂w

∂ν
pdodt =

∫ T

0

(y − ȳ, w)dt+

∫

ΩT

wdµ, ∀w ∈ W∞
0 . (2.25)



Variational Discretization of Parabolic Control Problems 5

It remains to verify (2.16). If v ∈ C∞
0 (0, T ;Rm) then yv = G0(Bv) belongs to W∞

0 because we

have assumed that fi ∈ L∞(Ω), i = 1, · · · ,m. Hence we deduce from (2.21), (2.25) and the

definition of yv that

0 =

∫ T

0

(y − ȳ, yv)dt+ α

∫ T

0

u · vdt+
∫

ΩT

yvdµ

=

∫ T

0

(yv,t −∆yv, p)dt+ α

∫ T

0

u · vdt

=

m
∑

i=1

∫ T

0

vi
{

(p(·, t), fi) + αui

}

dt.

Since v ∈ C∞
0 (0, T ;Rm) is arbitrary we obtain (2.16). 2

3. Discretization

Let Th be a quasi–uniform triangulation of Ω with maximum mesh size h := maxS∈Th
diam

(S). Let us denote by x1, · · · , xJ the set of nodes of Th. We consider the space of linear finite

elements

Xh :=
{

φh ∈ C0(Ω̄) |φh is a linear polynomial on each S ∈ Th
}

.

We denote by Ih the usual Lagrange interpolation operator and by Ph : L2(Ω) → Xh the

L2–projection, i.e.

(z, φh) = (Phz, φh), ∀φh ∈ Xh.

Furthermore, let Rh : H1(Ω) → Xh be the Ritz–projection, defined by the relation

(∇Rhz,∇φh) + (Rhz, φh) = (∇z,∇φh) + (z, φh), ∀φh ∈ Xh. (3.1)

It is well–known that

‖z −Rhz‖+ h‖∇(z −Rhz)‖ ≤ Chm‖z‖Hm , ∀z ∈ Hm(Ω), m = 1, 2. (3.2)

We shall also require a uniform bound on z − Rhz. Using interpolation and inverse estimates

together with (3.2) we find for z ∈ H2(Ω) that

‖z −Rhz‖L∞ ≤‖z − Ihz‖L∞ + ‖Ihz −Rhz‖L∞

≤Ch2− d
2 ‖z‖H2 + Ch− d

2 ‖Ihz −Rhz‖ ≤ Ch2− d
2 ‖z‖H2. (3.3)

Furthermore, we have the following estimate for functions φh ∈ Xh,

‖φh‖L∞ ≤ Cρ(d, h)‖φh‖H1 , (3.4)

where

ρ(d, h) =

{

√

| log h|, d = 2,

h− 1

2 , d = 3.

Next, let 0 = t0 < t1 < · · · < tN−1 < tN = T a time grid with τn := tn − tn−1, n = 1, · · · ,
N and τ := max1≤n≤N τn. We set

Wh,τ :=
{

Φ : Ω̄× [0, T ] → R |Φ(·, t) ∈ Xh is constant in t ∈ (tn−1, tn), 1 ≤ n ≤ N
}

.
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For Y,Φ ∈ Wh,τ we let

A(Y,Φ) :=

N
∑

n=1

τn(∇Y n,∇Φn) +

N
∑

n=2

(Y n − Y n−1,Φn) + (Y 0
+,Φ

0
+),

where Φn := Φn
−,Φ

n
± = lims→0± Φ(tn + s). Given u ∈ U , our approximation Y ∈ Wh,τ of the

solution y of (2.1)–(2.3) is obtained by the following discontinuous Galerkin scheme:

A(Y,Φ) =
N
∑

n=1

∫ tn

tn−1

(

Bu(t),Φn
)

+ (y0,Φ
0
+), ∀Φ ∈ Wh,τ . (3.5)

The above solution will be denoted by Y = Gh,τ (Bu). We have the following uniform error

estimate.

Theorem 3.1. Let u ∈ U, y = G(Bu), Y = Gh,τ (Bu). Then

max
1≤n≤N

‖y(·, tn)− Y n‖L∞ ≤ Cρ(d, h)(h+
√
τ )
(

‖y0‖H2 + ‖u‖U
)

.

Proof. We begin by deriving an error relation using standard arguments. Take Φ ∈ Wh,τ ,

multiply (2.1) by Φn ∈ Xh and integrate over Ω × (tn−1, tn): Abbreviating yn := y(·, tn) we

have

(yn − yn−1,Φn) +

∫ tn

tn−1

(∇y,∇Φn)dt =

∫ tn

tn−1

(

Bu(t),Φn
)

dt, 1 ≤ n ≤ N. (3.6)

Next, let us introduce Ỹ ∈ Wh,τ by

Ỹ (·, t) := Rhy
n, t ∈ (tn−1, tn), 1 ≤ n ≤ N. (3.7)

Using (3.6) along with (3.1) we derive by straightforward calculation

A(Ỹ ,Φ) =
N
∑

n=1

∫ tn

tn−1

(Bu(t),Φn)dt+ (y0,Φ
0
+) + r(Φ), ∀Φ ∈ Wh,τ ,

where

r(Φ) =

N
∑

n=1

τn

(

∇yn − 1

τn

∫ tn

tn−1

∇ydt,∇Φn

)

+

N
∑

n=1

τn(y
n −Rhy

n,Φn)

+
N
∑

n=2

(

Rh(y
n − yn−1)− (yn − yn−1),Φn

)

+ (Rhy
1 − y1,Φ1)

≡:
4
∑

j=1

rj(Φ). (3.8)

As a consequence, the error E := Ỹ − Y ∈ Wh,τ satisfies

A(E,Φ) = r(Φ), ∀Φ ∈ Wh,τ . (3.9)

Let us fix l ∈ {2, · · · , N} and define Φ ∈ Wh,τ by

Φn :=







0, n = 1 or n > l,

En − En−1

τn
, 2 ≤ n ≤ l.
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Inserting Φ into (3.9) yields

l
∑

n=2

τn

∥

∥

∥

∥

En − En−1

τn

∥

∥

∥

∥

2

+
1

2

∥

∥∇El
∥

∥

2 − 1

2

∥

∥∇E1
∥

∥

2
+

1

2

l
∑

n=2

∥

∥∇(En − En−1)
∥

∥

2
= r(Φ).

Let us estimate the integrals in the remainder term r(Φ). To begin,

|r1(Φ)| ≤
l
∑

n=2

∥

∥

∥

∥

∥

∇yn − 1

τn

∫ tn

tn−1

∇y(t)dt

∥

∥

∥

∥

∥

∥

∥∇(En − En−1)
∥

∥

≤1

4

l
∑

n=2

∥

∥∇(En − En−1)
∥

∥

2
+ Cτ

∫ T

0

∥

∥∇yt
∥

∥

2
dt.

We infer from Young’s inequality and (3.2) that

|r2(Φ)| ≤
l
∑

n=2

‖yn −Rhy
n‖ ‖En − En−1‖

≤1

4

l
∑

n=2

τn

∥

∥

∥

∥

En − En−1

τn

∥

∥

∥

∥

2

+ Ch4 max
1≤n≤N

‖yn‖2H2 .

Finally, again by (3.2),

|r3(Φ)| ≤Ch

l
∑

n=2

1

τn

∥

∥yn − yn−1
∥

∥

H1

∥

∥En − En−1
∥

∥

≤Ch

l
∑

n=2

1√
τn

(

∫ tn

tn−1

∥

∥yt
∥

∥

2

H1
dt

)
1

2
∥

∥En − En−1
∥

∥

≤1

4

l
∑

n=2

τn

∥

∥

∥

∥

En − En−1

τn

∥

∥

∥

∥

2

+ Ch2

∫ T

0

∥

∥yt
∥

∥

2

H1
dt.

Since r4(Φ) = 0 we obtain upon combining the above inequalities and recalling (2.8) that

1

2

l
∑

n=2

τn

∥

∥

∥

∥

En − En−1

τn

∥

∥

∥

∥

2

+
1

2

∥

∥∇El
∥

∥

2

≤1

2

∥

∥∇E1
∥

∥

2
+ C(h2 + τ)

(

∥

∥y0
∥

∥

2

H2
+
∥

∥u
∥

∥

2

U

)

. (3.10)

It remains to estimate ‖∇E1‖2. We insert Φ ∈ Wh,τ with Φ1 = φh ∈ Xh,Φ
n = 0, n ≥ 2

into the error relation (3.9). After straightforward calculations we obtain

τ1(∇E1,∇φh) + (Phy
1 − Y 1, φh) = τ1

(

∇y1 − 1

τ1

∫ t1

t0

∇ydt,∇φh

)

+ τ1(y
1 −Rhy

1, φh)

for all φh ∈ Xh. Choosing φh = Phy
1 − Y 1 = E1 + (Phy

1 −Rhy
1) we have

τ1‖∇E1‖2 + ‖Phy
1 − Y 1‖2 = τ1

(

∇y1 − 1

τ1

∫ t1

t0

∇ydt,∇E1 +∇(Phy
1 −Rhy

1)

)

+ τ1
(

∇E1,∇(Rhy
1 − Phy

1)
)

+ τ1(y
1 −Rhy

1, Phy
1 − Y 1)

≤τ
3

2

1

(

∫ t1

t0

‖∇yt‖2dt
)

1

2 (
∥

∥∇E1
∥

∥+
∥

∥∇(Rhy
1 − Phy

1)
∥

∥

)

+ τ1
∥

∥∇E1
∥

∥

∥

∥∇(Rhy
1 − Phy

1)
∥

∥

+ Cτ1‖y1 −Rhy
1‖ ‖Phy

1 − Y 1‖
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≤1

2

(

τ1
∥

∥∇E1
∥

∥

2
+
∥

∥Phy
1 − Y 1

∥

∥

2
)

+ Cτ1h
2
∥

∥y1
∥

∥

2

H2
+ Cτ21

∫ t1

t0

∥

∥∇yt
∥

∥

2
dt.

Hence, recalling (2.8),

∥

∥∇E1
∥

∥

2
+

1

τ1

∥

∥Phy
1 − Y 1

∥

∥

2 ≤ C(h2 + τ)
(

∥

∥y0
∥

∥

2

H2
+
∥

∥u
∥

∥

2

U

)

. (3.11)

Inserting (3.11) into (3.10) we deduce that

N
∑

n=2

τn

∥

∥

∥

∥

En − En−1

τn

∥

∥

∥

∥

2

+ max
1≤n≤N

‖∇En‖2 ≤ C(h2 + τ)
(

‖y0‖2H2 + ‖u‖2U
)

. (3.12)

Furthermore, we infer from (3.11) and (3.12) for 1 ≤ n ≤ N ,

∥

∥En
∥

∥ ≤
∥

∥E1
∥

∥+

n
∑

i=2

∥

∥Ei − Ei−1
∥

∥

≤
∥

∥Phy
1 − Y 1

∥

∥+
∥

∥Rhy
1 − Phy

1
∥

∥+

(

n
∑

i=2

τi

∥

∥

∥

∥

Ei − Ei−1

τi

∥

∥

∥

∥

2
)

1

2

(

n
∑

i=1

τi

)
1

2

≤C(h+
√
τ )
(

∥

∥y0
∥

∥

H2
+
∥

∥u
∥

∥

U

)

.

Combining this estimate with (3.12) we obtain

max
n=1,··· ,N

∥

∥En
∥

∥

H1
≤ C

(

h+
√
τ
)

(

∥

∥y0
∥

∥

H2
+
∥

∥u
∥

∥

U

)

. (3.13)

Finally, we infer with the help of (3.3), (3.4), (2.8) and (3.13) that
∥

∥yn − Y n
∥

∥

L∞ ≤
∥

∥yn −Rhy
n
∥

∥

L∞ +
∥

∥En
∥

∥

L∞

≤Ch2− d
2

∥

∥yn
∥

∥

H2
+ Cρ(d, h)

∥

∥En
∥

∥

H1

≤Cρ(d, h)(h+
√
τ )
(

∥

∥y0
∥

∥

H2
+
∥

∥u
∥

∥

U

)

,

which completes the proof. 2

Remark 3.2. Note that the error bound in Theorem 3.1 is derived under the condition that

the right hand side and hence the time derivative of the solution is only square integrable in

time. Classical results known from the literature require higher regularity requirements, see

e.g. [9, Theorem 1.2] and thus are not applicable in our case. A situation that is comparable

to ours in that the time derivative only belongs to some Lq–space is considered in [21]. For a

function

y ∈ W 2,1
q (ΩT ) :=

{

z ∈ Lq(0, T ;W 2,q(Ω)), zt ∈ Lq(0, T ;Lq(Ω))
}

, (q > 2),

with y = 0 on ΓT the following parabolic projection is analyzed: Y 0 = Ihy0 and

1

τ
(Y n − Y n−1, φh) + (∇Y n,∇φh) =

1

τ
(yn − yn−1, φh) +

(

1

τ

∫ tn

tn−1

∇y(·, t)dt,∇φh

)

,

for all φh ∈ Xh0 := Xh ∩H1
0 (Ω), 1 ≤ n ≤ N . Here, yn = y(·, tn). It is shown in [21, Theorem

4.1] that

max
1≤n≤N

∥

∥yn − Y n
∥

∥

L∞ ≤ Cq2| logh|2
(

h2−4/q + τ1−2/q
)

‖y‖W 2,1
q

, (3.14)
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provided that d = 2 and τ ≥ C∗| log h|3h2. We expect that the techniques in [21] can be

applied to the scheme (3.5) and Neumann boundary conditions provided that the solution has

the necessary regularity.

Remark 3.3. In what follows we shall assume that the time step is coupled to the spatial grid

size h in such a way that τ = o(ρ(d, h)−2) as h → 0. With this choice we infer from Theorem

3.1 that

max
1≤n≤N

∥

∥y(·, tn)− Y n
∥

∥

L∞ → 0, h → 0.

We use the variational approach of [14] in order to discretize our optimal control problem

as follows:

(TP )h











minu∈U Jh,τ (u) :=
1

2

N
∑

n=1

τn
∥

∥Y n − ȳn
∥

∥

2
+

α

2

∫ T

0

|u(t)|2dt,

s.t. Y = Gh,τ (Bu) and Y n(xj) ≥ 0, 1 ≤ j ≤ J, 1 ≤ n ≤ N.

(3.15)

As a minimization problem for a quadratic functional over a closed and convex domain,

(TP )h has a unique solution uh ∈ U . Furthermore, using [3, Theorem 5.2] again, we conclude

that there exist µn
j ∈ R, 1 ≤ j ≤ J, 1 ≤ n ≤ N as well as P ∈ Wh,τ such that

A(Φ, P ) =

N
∑

n=1

τn(Y
n − ȳn,Φn) +

N
∑

n=1

J
∑

j=1

Φn(xj)µ
n
j , ∀Φ ∈ Wh,τ , (3.16)

αuh(t) +
(

(Pn, fi)
)

i=1,··· ,m = 0, a.e. in (tn−1, tn), (3.17)

µn
j ≤ 0, Y n(xj) ≥ 0, and

N
∑

n=1

J
∑

j=1

Y n(xj)µ
n
j = 0. (3.18)

Here we note that in view of (3.17) variational discretization automatically yields an optimal

control uh which is piecewise constant in time. An inspection of the arguments above then

shows that replacing the control space U in problem (3.15) by the space of piecewise constant

functions over the time grid in the present situation would give the same optimal control uh.

Let us define the measure µh,τ ∈ M(ΩT ) by

∫

ΩT

fdµh,τ :=
N
∑

n=1

J
∑

j=1

f(xj , tn)µ
n
j , f ∈ C0(ΩT ).

As a first result for (3.15) we prove that the sequence of optimal controls, states and measures

µh,τ are uniformly bounded.

Lemma 3.4. Let uh ∈ U be the optimal solution of (3.15) with corresponding state Y =

Gh,τ (Buh) and adjoint variables P ∈ Wh,τ and µh,τ ∈ M(ΩT ). Then there exists h0 > 0

such that

N
∑

n=1

τn
∥

∥Y n
∥

∥

2
+

∫ T

0

|uh(t)|2dt+
N
∑

n=1

J
∑

j=1

|µn
j | ≤ C, for all 0 < h ≤ h0.

Proof. We infer from (2.14) that there exists δ > 0 such that

ŷ = G(0) ≥ δ, in ΩT .
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Theorem 3.1 and Remark 3.3 then imply that Ŷ := Gh,τ (0) ∈ Wh,τ satisfies

Ŷ n(xj) ≥
δ

2
, 1 ≤ j ≤ J, 1 ≤ n ≤ N, 0 < h ≤ h0. (3.19)

Using (3.18) and (3.16) we obtain

N
∑

n=1

J
∑

j=1

Ŷ n(xj) |µn
j | =

N
∑

n=1

J
∑

j=1

(Y n(xj)− Ŷ n(xj))µ
n
j

=−
N
∑

n=1

τn(Y
n − ȳn, Y n − Ŷ n) +A(Y − Ŷ , P )

=

N
∑

n=1

τn

∫

Ω

(

−(Y n)2 + Y nŶ n + ȳnY n − ȳnŶ n
)

+

N
∑

n=1

m
∑

i=1

τn uh,i|(tn−1,tn)(P
n, fi)

≤− 1

2

N
∑

n=1

τn
∥

∥Y n
∥

∥

2 − α

∫ T

0

|uh(t)|2dt+ C

recalling that Y = Gh,τ (Buh), Ŷ = Gh,τ (0) as well as (3.17). Combining this estimate with

(3.19) implies the result. 2

4. Error Estimate

Theorem 4.1. Let u be the solution of (TP ), uh the solution of (TP )h with corresponding

states y = G(Bu) and Y = Gh,τ (Buh). Then

N
∑

n=1

τn
∥

∥y(·, tn)− Y n
∥

∥

2
+

∫ T

0

|u(t)− uh(t)|2dt ≤ Cρ(d, h)
(

h+
√
τ
)

+ Cτ.

Proof. Let us write

α

∫ T

0

|u(t)− uh(t)|2dt

=α

∫ T

0

u(t) · (u(t)− uh(t))dt− α

∫ T

0

uh(t) · (u(t)− uh(t))dt

≡I + II. (4.1)

In order to deal with I we choose a sequence (vk)k∈N, vk ∈ C∞
0 (0, T ;Rm) such that vk → u−uh

in L2(0, T ;Rm) as k → ∞. Furthermore, let yh := G(Buh) and zk := G0(Bvk). Note that

zk ∈ W∞
0 in view of the smoothness of vk and the fact that fi ∈ L∞(Ω), i = 1, · · · ,m. In

addition, (2.8) yields
∥

∥(y − yh)− zk
∥

∥

C0(ΩT )
≤C max

0≤t≤T

∥

∥(y − yh)(·, t)− zk(·, t)
∥

∥

H2

≤C
(

∫ T

0

|(u− uh)(t) − vk(t)|2dt
)

1

2 → 0, k → ∞. (4.2)

Hence, we infer from (2.16), the definition of zk, (2.15) and (4.2) that

I =α lim
k→∞

∫ T

0

u(t) · vk(t)dt = − lim
k→∞

∫ T

0

m
∑

i=1

vk,i(t) (p(·, t), fi)dt
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=− lim
k→∞

∫ T

0

(Bvk, p)dt = − lim
k→∞

∫ T

0

(zk,t −∆zk, p)dt

=− lim
k→∞

{

∫ T

0

(y − ȳ, zk)dt+

∫

ΩT

zkdµ
}

=

∫ T

0

(y − ȳ, yh − y)dt+

∫

ΩT

(yh − y)dµ.

Recalling (2.17) we may continue

I =

N
∑

n=1

τn(y
n − ȳn, yh,n − yn) +

∫

ΩT

(yh)−dµ

+

N
∑

n=1

∫ tn

tn−1

{

(y − ȳ, yh − y)− (yn − ȳn, yh,n − yn)
}

dt

≡I1 + I2 + I3.

Here, we have abbreviated y− = min(y, 0). Let us start with the second term. For (x, t) ∈ Ω̄×
(tn−1, tn) we deduce upon recalling (3.3), (3.4), Theorem 3.1 and the fact that Y n(x) ≥ 0, x ∈ Ω̄

∣

∣(yh)−(x, t)
∣

∣ ≤
∣

∣(yh)−(x, t)− (yh)−(x, tn)
∣

∣+
∣

∣(yh)−(x, tn)− (Y n)−(x)
∣

∣

≤
∣

∣yh(x, t) − yh(x, tn)
∣

∣ +
∣

∣yh(x, tn)− Y n(x)
∣

∣

≤2 max
0≤s≤T

∥

∥yh(·, s)−Rhy
h(·, s)

∥

∥

L∞ +
∥

∥Rhy
h(·, t)−Rhy

h(·, tn)
∥

∥

L∞ +
∥

∥yh,n − Y n
∥

∥

L∞

≤Ch2− d
2 max
0≤s≤T

∥

∥yh(·, s)
∥

∥

H2
+ Cρ(d, h)

∥

∥Rhy
h(·, t)−Rhy

h(·, tn)
∥

∥

H1

+ Cρ(d, h)(h +
√
τ )
(

∥

∥y0
∥

∥

H2
+
∥

∥uh

∥

∥

U

)

≤Cρ(d, h)(h+
√
τ )
(∥

∥y0
∥

∥

H2
+
∥

∥uh

∥

∥

U

)

+ Cρ(d, h)
√
τn

(
∫ tn

tn−1

∥

∥Rhy
h
t

∥

∥

2

H1
dt

)
1

2

≤Cρ(d, h)(h+
√
τ )
(
∥

∥y0
∥

∥

H2
+
∥

∥uh

∥

∥

U

)

≤Cρ(d, h)(h+
√
τ ), (4.3)

in view of (2.8) and Lemma 3.4. By continuity this estimate also holds at the points t = tn, n =

0, · · · , N . An elementary calculation shows that

|I3| ≤ Cτ

N
∑

n=1

∫ tn

tn−1

(

∥

∥yt
∥

∥+
∥

∥yht
∥

∥+
∥

∥ȳt
∥

∥

)(

∥

∥y
∥

∥+
∥

∥yh
∥

∥+
∥

∥ȳ
∥

∥

)

dt ≤ Cτ. (4.4)

Inserting the estimates (4.3) and (4.4) into our formula for I we have

I ≤
N
∑

n=1

τn(y
n − ȳn, yh,n − yn) + Cρ(d, h)(h +

√
τ ) + Cτ. (4.5)

Next, let us introduce Ỹ = Gh,τ (Bu). Then,(3.16)−(3.18) imply that

II =
N
∑

n=1

m
∑

i=1

(Pn, fi)

∫ tn

tn−1

(ui − uh,i)(t)dt

=

N
∑

n=1

∫ tn

tn−1

(B(u − uh), P
n)dt = A(Ỹ − Y, P )
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=

N
∑

n=1

τn(Y
n − ȳn, Ỹ n − Y n) +

N
∑

n=1

J
∑

j=1

(

Ỹ n(xj)− Y n(xj)
)

µn
j

≤
N
∑

n=1

τn(Y
n − ȳn, Ỹ n − Y n) + max

1≤n≤N,1≤j≤J
|(Ỹ n)−(xj)|

N
∑

n=1

J
∑

j=1

|µn
j |.

Recalling that y ≥ 0 in ΩT we have for 1 ≤ j ≤ J, 1 ≤ n ≤ N

|(Ỹ n)−(xj)| =|(Ỹ n)−(xj)− y−(xj , tn)| ≤ |Ỹ n(xj)− y(xj , tn)|

≤
∥

∥Ỹ n − y(·, tn)
∥

∥

L∞ ≤ Cρ(d, h)(h+
√
τ )
(

∥

∥y0
∥

∥

H2
+
∥

∥u
∥

∥

U

)

≤Cρ(d, h)(h+
√
τ ),

again by Theorem 3.1. As a result,

II ≤
N
∑

n=1

τn(Y
n − ȳn, Ỹ n − Y n) + Cρ(d, h)(h+

√
τ). (4.6)

Inserting (4.5) and (4.6) into (4.1) we have

α

∫ T

0

|u(t)− uh(t)|2dt

≤
N
∑

n=1

τn(y
n − ȳn, yh,n − yn) +

N
∑

n=1

τn(Y
n − ȳn, Ỹ n − Y n) + Cρ(d, h)(h +

√
τ ) + Cτ

=

N
∑

n=1

τn

∫

Ω

{

− (yn − Y n)2 + (Y n − ȳn)(Ỹ n − yn) + (yn − ȳn)(yh,n − Y n)
}

+ Cρ(d, h)(h+
√
τ ) + Cτ

≤−
N
∑

n=1

τn
∥

∥yn − Y n
∥

∥

2
+ Cρ(d, h)(h+

√
τ ) + Cτ,

where we once more used Theorem 3.1. The proof is complete. 2

Remark 4.2. The order of convergence obtained in Theorem 4.1 is essentially determined by

the error bound in Theorem 3.1, which in turn is limited by our regularity assumptions on the

control u. A situation in which one can expect better error bounds occurs when the solution of

the state equation enjoys better regularity properties, for example in the case where additional

control constraints of the form

a ≤ ui(t) ≤ b, a.e. in (0, T ), i = 1, · · · ,m,

are prescribed. Here, a < b are given constants. Then, Bu ∈ L∞(ΩT ) so that parabolic

regularity theory implies that y ∈ W 2,1
q (ΩT ) for all q < ∞. Recalling Remark 3.2 it seems

possible to us that an error bound of the form

N
∑

n=1

τn
∥

∥y(·, tn)− Y n
∥

∥

2
+

∫ T

0

|u(t)− uh(t)|2dt ≤ Cǫ

(

h2−ǫ + τ1−ǫ
)

, (ǫ > 0),

can be proved in this situation.
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5. Numerical Experiments

In order to construct a test example we consider the numerical approximation of problem

(2.13) for Ω := B1(0) ⊂ R
2, T = 1 and α = 0.1. We set y0 ≡ 0 and allow an additional right

hand side in the state equation, i.e. y = G(Bu+ f), where we choose (Bu)(x, t) = u(t), so that

m = 1 and f1 ≡ 1 in (2.7). Furthermore we replace the state constraint y ≥ 0 in ΩT by the

constraint y ≤ yb in ΩT . Note that (2.17) then has to be replaced by the condition

µ ≥ 0, y(x, t) ≤ yb(x, t), (x, t) ∈ ΩT ,

∫

ΩT

(y − yb)dµ = 0. (5.1)

Let us introduce

y(x, t) = cos
(

π|x|
)

sin(πt) and u(t) =
2

α
t(t− 1)

as well as yb(x, t) = max(0.5, y(x, t)). Clearly, y ≤ yb in ΩT , 0 = y(x, 0) < yb(x, 0), x ∈ Ω̄ and

y = G(Bu + f) provided that

f(x, t) = π cos
(

π|x|
)

cos(πt) +

(

π2 cos
(

π|x|
)

+ π sin
(

π|x|
) 1

|x|

)

sin(πt) − u(t).

Next, setting

p(x, t) = sin
(π

2
|x|2
)

t(1− t),

dµ = µ(x, t)dxdt, µ(x, t) = max(y(x, t)− 0.5, 0), µΓT
= µT = 0,

we see that (2.16) and (5.1) hold. Finally, (2.15) is satisfied if we choose

ȳ(x, t) = y(x, t)+µ(x, t)+(1−2t) sin
(π

2
|x|2
)

+ t(1− t)
(

2π cos
(π

2
|x|2
)

− π2|x|2 sin
(π

2
|x|2
))

.

In view of Theorem 2.2, u is the exact solution of problem (TP ). For the numerical solution

of problem (3.15) we use the penalization method, see e.g. [12]. In this approach the state

constraints Y n(xj) ≤ yb(xj , tn), (1 ≤ j ≤ J, 1 ≤ n ≤ N) are relaxed by adding a penalization

term to the cost functional. The relaxed optimization problem then reads

(TP )γh































minu∈U J
γ
h,τ (u) :=

1

2

N
∑

n=1

τn
∥

∥Y n − ȳn
∥

∥

2
+

α

2

∫ T

0

|u(t)|2dt

+
γ

2

N
∑

n=1

τn
∥

∥max(0, Y n − Ih(y
n
b )
∥

∥

2

s.t. Y = Gh,τ (Bu+ f).

Here, Ih : C0(Ω̄) → Xh denotes the spatial Lagrange interpolation operator.

Table 5.1 summarizes our numerical findings for the errors

ηu =
(

∫ T

0

|u(t)− uh(t)|2dt
)

1

2

and ηy =
(

N
∑

n=1

τn
∥

∥y(·, tn)− Y n
∥

∥

2
)

1

2

.

Here we used the coupling τ = 0.5h2. In both cases we observe an experimental order of

convergence of approximately 1. This clearly exceeds the values predicted by Theorem 4.1 and

might be explained with the help of Remark 4.2.
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Table 5.1: Experimental order of convergence.

h ηu eoc ηy eoc

0,5710 0,7299 0 0,3785 0

0,3956 0,3738 0,965 0,1986 1,756

0,3022 0,2192 0,953 0,1295 1,587

0,2050 0,0986 0,991 0,0773 1,328

0,1550 0,0561 0,990 0,0552 1,203

0,1042 0,0257 0,986 0,0353 1,128

0,0785 0,0147 0,975 0,0259 1,080

0,0525 0,0067 0,965 0,0170 1,050

In Fig. 5.1 we investigate the decrease of the errors

ηγu =
(

∫ T

0

|u(t)− u
γ
h(t)|2dt

)
1

2

and ηγy =
(

N
∑

n=1

τn
∥

∥y(·, tn)− Y γ,n
∥

∥

2
)

1

2

in dependence of γ, where u
γ
h denotes the solution of (TP )γh with corresponding discrete state

Y γ . One clearly sees that increasing the value of γ over a certain h−dependent threshold yields

no further error reduction. Furthermore, our numerical experiments suggest the parameter

coupling 1√
γ ∼ h. A corresponding analysis in the case of elliptic optimal control problems

with state constraints can be found in [13].
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Fig. 5.1. Error behaviour for ηγ

u (left), and ηγ

y (right).
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