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1. Introduction

The Bell polynomials which are studied extensively by Bell [2] have played a very impor-

tant role in combinatorial analysis. Many sequences such as the Stirling numbers and the Lah

numbers are special values of the Bell polynomials. Recently, Abbas and Bouroubi [1] proposed

two new methods for determining new identities for the Bell polynomials, and Yang [20] gen-

eralized one of the methods. By studying the matrices related to the Bell polynomials, Wang

and Wang [16] gave a unified approach to various lower triangular matrices such as the Stirling

matrices of the first kind and of the second kind [5,6], the Lah matrix [14] and so on. The Faà

di Bruno formula [7,8] on higher derivatives of composite functions has wide applications in

many branches of mathematics, notably in numerical analysis [9,15,17]. The Bell polynomial

is one of the representation tools of the Faà di Bruno’s formula. Chu [3] used the properties

of the Bell polynomials and the Faà di Bruno formula to obtain several classical determinant

identities for composite functions which generalized Mina’s identities and their extensions due

to Kedlaya [11] and Wilf [19].

Divided differences as the coefficients in a Newton form arise in numerical analysis, which

also have applications in the study of spline interpolation and polynomial interpolation. Given a

function h, for distinct points x0, x1, · · · , xn, the divided differences of h are defined recursively

as

h[x0] = h(x0),

h[x0, x1, · · · , xn] =
h[x0, x1, · · · , xn−1]− h[x1, x2, · · · , xn]

x0 − xn
, n ≥ 1.
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By extending the definition for h[x0, x1, · · · , xn] in the case of distinct arguments, we have a

similar formula for x0 ≤ x1 ≤ · · · ≤ xn as follows

h[x0, x1, · · · , xn] =











h[x0, x1, · · · , xn−1]− h[x1, x2, · · · , xn]

x0 − xn
, if xn 6= x0,

h(n)(x0)

n!
, if xn = x0.

For more basic properties of divided differences, one can refer to a recent reference [4]. In [18],

Wang and Wang proposed a divided difference form of Faà di Bruno’s formula to obtain an

explicit divided difference formula for a composite function.They also provided a new proof of

Faà di Bruno’s formula. It is also noted that Floater and Lyche [10] independently obtained

similar results.

Usually, derivatives can be understood as the limit of divided differences. That is to say,

divided differences may be taken as discrete derivatives. This gives a motivation to present

some matrix identities and determinant identities for the divided differences of the composite

functions. This paper is organized as follows. In Section 2, some notation will be introduced.

Section 3 is devoted to the matrix identities for composite functions with divided differences.

Using the divided difference form of the Faà di Bruno’s formula, Section 4 presents some

determinant identities for composite functions.

2. Notation

In this section we will introduce some notation. Let the composite function h(t) = f(g(t)).

Then the divided difference form of Faà di Bruno’s formula [10,18] is described as follows.

Proposition 2.1. For n ≥ 1, if f and g are sufficiently smooth functions, then

h[t0, t1, · · · , tn] =
n
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]

×
∑

m=ν0≤ν1≤···≤νm=n

m
∏

i=1

g[ti−1, tνi−1 , tνi−1+1, · · · , tνi ].

In particular, Faà di Bruno’s formula holds when t0 = t1 = · · · = tn = t, namely,

h(n)(t) =

n
∑

m=1

f (m)(g(t))Bn,m

(

g′(t), g′′(t), · · · , g(n)(t)
)

,

where Bn,m is the exponential partial Bell polynomial defined as

Bn,m(x1, x2, · · · , xn) =
∑

c1+2c2+···+ncn=n
c1+c2+···+cn=m

n!

c1!(1!)c1c2!(2!)c2 · · · cn!(n!)cn
xc11 x

c2
2 · · ·xcnn .

Further, we define

en,m(φ, {ti}
n
i=0)

=



















∑

m=ν0≤ν1≤···≤νm=n

m
∏

i=1

φ[ti−1, tνi−1 , tνi−1+1, · · · , tνi ], 1 ≤ m ≤ n,

0, m > n or 0 = m < n,

1, m = n = 0.

(2.1)
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Write

en,m(φ, t) =
∑

k1+k2+···km=n
k1,k2,··· ,km≥1

m
∏

i=1

φ(ki)(t)

ki!
, 1 ≤ m ≤ n,

and for n ≥ 1 put en,0(φ, t) = 0, e0,0(φ, t) = 1 by convention. Moreover, denote

Bn,m(φ, t) = Bn,m(φ′(t), · · · , φ(n)(t)).

If t0 = t1 = · · · = tn = t, then en,m(φ, {ti}
n
i=0) reduces to en,m(φ, t) and we have

en,m(φ, t) =
m!

n!
Bn,m(φ, t). (2.2)

Hence, from Eq. (2.1), Proposition 2.1 can be rewritten as

h[t0, t1, · · · , tn] =

n
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]en,m(g, {ti}
n
i=0). (2.3)

In addition, let the lower triangular matrices be of the form:

En(φ, {ti}
n
i=0) =











e1,1(φ, {ti}
1
i=0) 0 · · · 0

e2,1(φ, {ti}
2
i=0) e2,2(φ, {ti}

2
i=0) · · · 0

...
...

. . .
...

en,1(φ, {ti}
n
i=0) en,2(φ, {ti}

n
i=0) · · · en,n(φ, {ti}

n
i=0)











,

E(φ, {ti}
∞
i=0) =







e1,1(φ, {ti}
1
i=0) 0 · · · 0

e2,1(φ, {ti}
2
i=0) e2,2(φ, {ti}

2
i=0) · · · 0

...
...

. . .
...






,

En(φ, t) =











e1,1(φ, t) 0 · · · 0

e2,1(φ, t) e2,2(φ, t) · · · 0
...

...
. . .

...

en,1(φ, t) en,2(φ, t) · · · en,n(φ, t)











,

E(φ, t) =







e1,1(φ, t) 0 · · · 0

e2,1(φ, t) e2,2(φ, t) · · · 0
...

...
. . .

...






,

Bn(φ, t) =











B1,1(φ, t) 0 · · · 0

B2,1(φ, t) B2,2(φ, t) · · · 0
...

...
. . .

...

Bn,1(φ, t) Bn,2(φ, t) · · · Bn,n(φ, t)











,

B(φ, t) =







B1,1(φ, t) 0 · · · 0

B2,1(φ, t) B2,2(φ, t) · · · 0
...

...
. . .

...






,

and write the determinant

det
1≤i,j≤n

(aij) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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3. Matrix Identities for Composite Functions

This section deals with some interesting matrix identities for composite functions. It is well

known that the Leibniz formula for higher derivatives is basic and important in calculus. A

divided difference form of this formula is given [13] is stated below.

Lemma 3.1. Let χ(x) = ϕ(x)ψ(x). If ϕ and ψ are sufficiently smooth functions, then for

arbitrary nodes x0, x1, · · · , xn, we have

χ[x0, x1, · · · , xn] =

n
∑

ν=0

ϕ[x0, x1, · · · , xν ]ψ[xν , xν+1, · · · , xn].

The above is called the Steffensen formula which is a generalization of the Leibniz formula. If

x0 = x1 = · · · = xn = x, then the Leibniz formula holds, namely,

χ(n)(x) =

n
∑

ν=0

(

n

ν

)

ϕ(ν)(x)ψ(n−ν)(x).

Hence, using the Steffensen formula, we have the following theorem.

Theorem 3.1. Let h(t) = f(g(t)). For arbitrary nodes t0, t1, · · · , tn, if f and g are sufficiently

smooth functions, then we have

En(h, {ti}
n
i=0) = En(g, {ti}

n
i=0)En(f, {g(ti)}

n
i=0). (3.1)

In the special case t0 = t1 = · · · = tn = t, we have

En(h, t) = En(g, t)En(f, g(t)),

Bn(h, t) = Bn(g, t)Bn(f, g(t)).

Proof. Assume initially that the ti are distinct. Let ω0(t) = 1, ωk(t) =
∏k−1

i=0 (t − ti) for

k ≥ 1. The Newton interpolation of the function Ph,r(t) =
∏r−1

i=0 (h(t) − h(ti)), r ≥ 1, at the

nodes t0, t1, · · · , tn can be written as

Nn(Ph,r, {ti}
n
i=0; t) =

n
∑

k=0

Ph,r[t0, · · · , tk]ωk(t).

Using the Steffensen formula, we have

Ph,r[t0, · · · , tk] =

k
∑

j=0

ωr[t0, · · · , tj ]H [tj , · · · , tk],

where H(t) =
∏r−1

i=0 h[t, ti]. Since

ωr[t0, · · · , tj] =

{

0, j 6= r,

1, j = r,

it follows that

Ph,r[t0, · · · , tk] =

{

0, k < r,

H [tr, · · · , tk] = ek,r(h, {ti}
k
i=0), k ≥ r.
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Thus, the Newton interpolation of Ph,r(t) at the nodes t0, · · · , tn can be rewritten as

Nn(Ph,r, {ti}
n
i=0; t) =

n
∑

k=r

ek,r(h, {ti}
k
i=0)ωk(t).

Let x = g(t), xi = g(ti), i = 0, 1, · · · , n. Then

Ph,r(t) =

r−1
∏

i=0

(f(x) − f(xi)).

Similarly, the Newton interpolation of Ph,r(t) at the nodes x0, · · · , xn is

Nn

(

Ph,r, {xi}
n
i=0;x

)

=

n
∑

ν=r

eν,r

(

f, {xi}
ν
i=0

)

ων(x) =

n
∑

ν=r

eν,r

(

f, {g(ti)}
ν
i=0

)

Pg,ν(t), (3.2)

where Pg,ν(t) =
∏ν−1

i=0 (g(t) − g(ti)). Replacing Pg,ν(t) in (3.2) by its Newton’s polynomial
∑n

k=ν ek,ν(g, {ti}
k
i=0)ωk(t) yields

Pn(t) =

n
∑

ν=r

eν,r(f, {g(ti)}
ν
i=0)

n
∑

k=ν

ek,ν(g, {ti}
k
i=0)ωk(t)

=
n
∑

k=r

ωk(t)
k
∑

ν=r

ek,ν(g, {ti}
k
i=0)eν,r(f, {g(ti)}

ν
i=0),

which is a polynomial of degree less than n+ 1. It is not difficult to check that

Pn(ti) = Nn(Ph,r, {ti}
n
i=0; ti), i = 0, 1, · · · , n.

Therefore, by the uniqueness of the interpolation polynomials, one readily has

Pn(t) = Nn(Ph,r, {ti}
n
i=0; t).

Hence, equating the coefficients of Nn(Ph,r, {ti}
n
i=0; t) and Pn(t) yields

ek,r(h, {ti}
k
i=0) =

k
∑

ν=r

ek,ν(g, {ti}
k
i=0)eν,r(f, {g(ti)}

ν
i=0). (3.3)

We can let the ti coalesce in (3.3) provided g is smooth enough. This completes the proof. �

Theorem 3.1 can be rewritten as

En(h, {ti}
n
i=0)

T = En(f, {g(ti)}
n
i=0)

TEn(g, {ti}
n
i=0)

T .

The above form seems better than (3.1) since h = f ◦ g. From Eq. (3.3), we also obtain another

matrix identity.

Theorem 3.2. Let h(t) = f(g(t)). For arbitrary nodes t0, t1, · · · , if f and g are sufficiently

smooth functions, then we have

E(h, {ti}
∞
i=0) = E(g, {ti}

∞
i=0)E(f, {g(ti)}

∞
i=0). (3.4)

In the special case t0 = t1 = · · · = t, we have

E(h, t) = E(g, t)E(f, g(t)),

B(h, t) = B(g, t)B(f, g(t)).
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It is worth noting that, from the first columns of matrices En(h, {ti}
n
i=0) and E(h, {ti}

∞
i=0), we

can recover the divided difference form of the Faà di Bruno’s formula because en,1(f, {ti}
n
i=0) =

f [t0, t1, · · · , tn]. More generally, assume that α ≥ 0 is an integer. We let f<0>(t) = t and

denote by f<α> the α − 1 times compositions for the function f . For example, f<1> = f ,

f<2> = f ◦ f . Then we have

En

(

f<α>, {ti}
n

i=0

)

=
α−1
∏

k=0

En

(

f,
{

f<k>(ti)
}n

i=0

)

,

E
(

f<α>, {ti}
∞

i=0

)

=
α−1
∏

k=0

E
(

f,
{

f<k>(ti)
}∞

i=0

)

.

Thus, we only need to compute the elements in the first columns of En(f
<α>, {ti}

n
i=0) or

E(f<α>, {ti}
∞
i=0), and can get the explicit expressions for arbitrary order divided differences of

f<α>. For instance, if α = 3, then we have

f<3>[t0, t1, · · · , tn]

=

n
∑

m=1

f
[

f<2>(t0), f
<2>(t1), · · · , f

<2>(tm)
]

n
∑

k=m

en,k

(

f, {ti}
n
i=0

)

ek,m

(

f, {f(ti)}
k
i=0

)

.

Further, if we denote by f<−1> the inverse function of f , then it follows that

In = En (f, {ti}
n

i=0)En

(

f<−1>, {f(ti)}
n

i=0

)

,

In = En

(

f<−1>, {ti}
n

i=0

)

En

(

f,
{

f<−1>(ti)
}n

i=0

)

,

where In is the identity matrix of order n. Similarly, we have

I = E (f, {ti}
∞

i=0)E
(

f<−1>, {f(ti)}
∞

i=0

)

,

I = E
(

f<−1>, {ti}
∞

i=0

)

E
(

f,
{

f<−1>(ti)
}∞

i=0

)

,

where I is the infinite identity matrix.

4. Determinant Identities for Composite Functions

As early as in 1900s, Mina [12] proposed a beautiful determinant identity as follows

det
0≤i,j≤n

[

dj

dxj
(f(x))

i

]

= (f ′(x))
n(n+1)

2

n
∏

k=0

k!.

Recently, several extensions of this classical result, involving formal power series and the Van-

dermonde determinant, have appeared in the literature [3,11,19]. In this section, by mean of the

divided difference form of the Faà di Bruno’s formula, we give some new determinant identities

via divided differences, which include recent results as special cases.

Theorem 4.1. Let hi(t) = fi(g(t)), i = 0, 1, · · · , n. If fi(t) and g(t) are smooth enough, then

we have

det
0≤i,j≤n

[

hi[t0, t1, · · · , tj ]

]

= det
0≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

∏

0≤i<j≤n

g[ti, tj ],
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det
1≤i,j≤n

[

hi[t0, t1, · · · , tj ]

]

= det
1≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

∏

0≤i<j≤n

g[ti, tj ].

Proof. We only prove the first identity because the proof of the second identity is similar to

that of the first one. By definition, we have

ej,m(g, {tk}
j
k=0) =

∑

m=ν0≤ν1≤···≤νm=j

m
∏

k=1

g[tk−1, tνk−1
, tνk−1+1, · · · , tνk ] = 0,

for 0 = m < j or m > j. By Proposition 2.1 one readily verifies that

hi[t0, t1, · · · , tj ]

=

n
∑

m=0

fi[g(t0), g(t1), · · · , g(tm)]
∑

m=ν0≤ν1≤···≤νm=j

m
∏

k=1

g[tk−1, tνk−1
, tνk−1+1, · · · , tνk ]

=

n
∑

m=0

fi[g(t0), g(t1), · · · , g(tm)]ej,m(g, {tk}
j
k=0),

where 0 ≤ i ≤ n, 1 ≤ j ≤ n. Hence

det
0≤i,j≤n

[

hi[t0, t1, · · · , tj ]

]

= det
0≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

det
0≤i,j≤n

[

ei,j(g, {tk}
i
k=0)

]

.

Noting that det0≤i,j≤n[ei,j(g, {tk}
i
k=0)] is upper triangular,

e0,0(g, {tk}
0
k=0) = 1, ej,j(g, {tk}

j
k=0) =

j
∏

k=1

g[tk−1, tj ] for 1 ≤ j ≤ n,

we obtain

det
0≤i,j≤n

[

hi[t0, t1, · · · , tj ]

]

= det
0≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

∏

0≤i<j≤n

g[ti, tj ].

Therefore, the proof is complete. �

Letting t0 = t1 = · · · = tn = t in Theorem 4.1, we get the following two identities due to

Chu [3] obtained by using the Faà di Bruno’s formula.

Corollary 4.1. If fi(t), i = 0, 1, · · · , n, and g(t) are smooth enough, then

det
0≤i,j≤n

[

dj

dtj
hi(t)

]

= det
0≤i,j≤n

[

f
(j)
i (g(t))

]

(g′(t))
n(n+1)

2 , (4.1)

det
1≤i,j≤n

[

dj

dtj
hi(t)

]

= det
1≤i,j≤n

[

f
(j)
i (g(t))

]

(g′(t))
n(n+1)

2 . (4.2)

Theorem 4.2. If g(t) is smooth enough and gi(t) = (g(t))i, i = 0, 1, · · · , n, then

det
0≤i,j≤n

[

gi[t0, t1, · · · , tj]

]

=
∏

0≤i<j≤n

g[ti, tj ], (4.3)

det
1≤i,j≤n

[

gi[t0, t1, · · · , tj]

]

=
∏

0≤i<j≤n

g[ti, tj ]. (4.4)
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In particular, if t0 = t1 = · · · = tn = t, then

det
0≤i,j≤n

[

dj

dtj
gi(t)

]

= det
1≤i,j≤n

[

dj

dtj
gi(t)

]

= (g′(t))
n(n+1)

2

n
∏

k=1

k!.

Proof. We take fi(x) = xi, i = 0, 1, · · · , n. Consider the divided difference of fi(x) at

the nodes g(t0), g(t1), · · · , g(tj), j = 0, 1, · · ·n, respectively. By the fundamental proper-

ties of divided differences we find that, for j > i, fi[g(t0), g(t1), · · · , g(tj)] is equal to 0 and

fi[g(t0), g(t1), · · · , g(tj)] is equal to 1 when j = i. Thus, det0≤i,j≤n[fi[g(t0), g(t1), · · · , g(tj)]]

is lower triangular and all of the terms on the main diagonal are equal to 1. Since gi can be

viewed as the composition of fi and g, it follows from Theorem 4.1 that

det
0≤i,j≤n

[

gi[t0, t1, · · · , tj]

]

=
∏

0≤i<j≤n

g[ti, tj ].

Clearly, g0[t0] = 1 and g0[t0, t1, · · · , tj ] = 0, j = 0, 1, · · · , n. Hence, the identity (4.4) is also

obtained and the proof is complete. �

In fact, when t0, t1, · · · , tn are distinct,
∏

0≤i<j≤n g[ti, tj] can be regarded as a quotient of

two Vandermonde determinants which are det0≤i,j≤n[(g(ti))
j ] and det0≤i,j≤n[t

j
i ]. In the rest of

this section we will present weighted determinant identities.

Theorem 4.3. Let hi(t) = fi(g(t)) and sij(t) = hi(t)ωj(t), i, j = 0, 1, · · · , n. For 0 ≤ i ≤ n,

if fi, ωi and g are smooth enough, then

det
0≤i,j≤n

[

sij [t0, t1, · · · , tj ]

]

= det
0≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

∏

0≤i<j≤n

g[ti, tj]

n
∏

k=0

ωk(tk). (4.5)

In particular, for t0 = t1 = · · · = tn = t, we have

det
0≤i,j≤n

[

dj

dtj
sij(t)

]

= det
0≤i,j≤n

[

f
(j)
i (g(t))

]

(g′(t))
n(n+1)

2

n
∏

k=0

ωk(t).

Proof. By the Steffensen formula, it follows that

sij [t0, t1, · · · , tj ] =

j
∑

k=0

hi[t0, · · · , tk] · ωj [tk, · · · , tj ].

Hence,

det
0≤i,j≤n

[

sij [t0, t1, · · · , tj ]

]

= det
0≤i,j≤n

[

hi[t0, t1, · · · , tj ]

]

det
0≤i,j≤n

[ai,j ],

where det0≤i,j≤n[ai,j ] is upper triangular, and ai,i = ωi(ti), i = 0, 1, · · · , n. Then

det
0≤i,j≤n

[ai,j ] =

n
∏

k=0

ωk(tk). (4.6)
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From Theorem 4.1, there holds

det
0≤i,j≤n

[

hi[t0, t1, · · · , tj]

]

= det
0≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

∏

0≤i<j≤n

g[ti, tj ]. (4.7)

In view of (4.6) and (4.7), we obtain (4.5). This completes the proof. �

Now we establish a similar identity with weaker weight functions as follows.

Theorem 4.4. Let hi(t) := fi(g(t)), and sij(t) = hi(t)ωj(t), i, j = 1, 2, · · · , n. If the weight

function ωi is a polynomial of degree less than i, fi and g are smooth enough for 1 ≤ i ≤ n,

then

det
1≤i,j≤n

[

sij [t0, t1, · · · , tj ]

]

= det
1≤i,j≤n

[

fi[g(t0), g(t1), · · · , g(tj)]

]

∏

0≤i<j≤n

g[ti, tj]

n
∏

k=1

ωk(tk).

In particular, for t0 = t1 = · · · = tn = t, we have

det
1≤i,j≤n

[

dj

dtj
sij(t)

]

= det
1≤i,j≤n

[

f
(j)
i (g(t))

]

(g′(t))
n(n+1)

2

n
∏

k=1

ωk(t).

Proof. The key of the proof is that, for i < j,

ωi[t0, t1, · · · , tj] = 0.

The rest of the proof is similar to that of Theorem 4.3. �

Finally, we close this section by stating two more theorems without giving proofs.

Theorem 4.5. For i, j = 0, 1, · · · , n, let gi(t) = (g(t))i and sij(t) = gi(t)ωj(t). If g and ωi

(i = 0, 1, · · · , n) are smooth enough, then

det
0≤i,j≤n

[

sij [t0, t1, · · · , tj ]

]

=
∏

0≤i<j≤n

g[ti, tj ]

n
∏

k=0

ωk(tk).

Especially for t0 = t1 = · · · = tn = t, we have

det
0≤i,j≤n

[

dj

dtj
sij(t)

]

= (g′(t))
n(n+1)

2

n
∏

k=0

k!ωk(t).

Theorem 4.6. For i, j = 1, · · · , n, let gi(t) = (g(t))i and sij(t) = gi(t)ωj(t). If g is smooth

enough and ωi is a polynomial of degree less than i for each 1 ≤ i ≤ n, then

det
1≤i,j≤n

[

sij [t0, t1, · · · , tj ]

]

=
∏

0≤i<j≤n

g[ti, tj ]

n
∏

k=1

ωk(tk).

Especially for t0 = t1 = · · · = tn = t, we have

det
1≤i,j≤n

[

dj

dtj
sij(t)

]

= (g′(t))
n(n+1)

2

n
∏

k=1

k!ωk(t).
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More determinant identities on derivatives of composite functions and formal power series iter-

ations can be found in [3].
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