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Abstract

We study the L1-error of a Hamiltonian-preserving scheme, developed in [19], for the

Liouville equation with a piecewise constant potential in one space dimension when the

initial data is given with perturbation errors. We extend the l1-stability analysis in [46]

and apply the L1-error estimates with exact initial data established in [45] for the same

scheme. We prove that the scheme with the Dirichlet incoming boundary conditions and

for a class of bounded initial data is L1-convergent when the initial data is given with a wide

class of perturbation errors, and derive the L1-error bounds with explicit coefficients. The

convergence rate of the scheme is shown to be less than the order of the initial perturbation

error, matching with the fact that the perturbation solution can be l1-unstable.
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1. Introduction

In [19], we constructed a class of numerical schemes for the d-dimensional Liouville equation

in classical mechanics:

ft + v · ∇xf −∇xV · ∇vf = 0 , t > 0, x,v ∈ Rd , (1.1)

where f(t,x,v) is the density distribution of a classical particle at position x, time t and travel-

ing with velocity v. V (x) is the potential. Such problem has applications in computational high

frequency waves [3,6,12,13,17,23,33,42,43]. The main interest is in the case of a discontinuous

potential V (x), corresponding to a potential barrier. When V is discontinuous, the Liouville

equation (1.1) is a linear hyperbolic equation with a measure-valued coefficient. Such a problem

cannot be understood mathematically using the renormalized solution by DiPerna and Lions

for linear advection equations with discontinuous coefficients [5] (see also [2]). Our approach

in [19–21] to such problems was to provide an interface condition to couple the Liouville equa-

tion (1.1) on both sides of the barrier or interface. The interface condition accounts for particle

or wave transmission and reflection. An important property of the interface condition is that

the Hamiltonian is preserved on particle trajectory in case of either transmission or reflection.

By using this property to determine the particle trajectory for constructing numerical fluxes,

* Received February, 23, 2009 / Revised version received March 16, 2010 / Accepted April 30, 2010 /

Published online September 20, 2010 /



The L
1-Error Estimates for a Hamiltonian-Preserving Scheme 27

the so-called Hamiltonian-preserving schemes were constructed in [19–21]. See also the related

work on Hamiltonian-preserving schemes [10, 11, 14–16, 18, 22–25, 40]. Schemes so constructed

provide solutions that are physically relevant for particle or wave reflection and transmission

through the barriers or interfaces.

The Liouville equation is the phase space representation of Newton’s second law:

dx

dt
= v,

dv

dt
= −∇xV,

which is a Hamiltonian system with the Hamiltonian

H =
1

2
|v|2 + V (x).

It is known from classical mechanics that the Hamiltonian remains constant across a potential

barrier. This is one of the main ingredients in the Hamiltonian-preserving schemes developed

in [19–21]. The two schemes developed in [19]–one based on a finite difference formulation

(called Scheme I) and the other on a finite volume formulation (called Scheme II) were proved,

in one space dimension with a piecewise constant potential, to be positive, and l1 and l∞-stable

for suitable initial value problems and under a hyperbolic CFL condition except the l1-stability

of Scheme I.

The more difficult issue of the l1-stability and error estimates for Scheme I was further

established in the recent work [45, 46]. We proved in [46] that, in the case of a step function

potential, Scheme I with the homogeneous Dirichlet incoming boundary conditions is l1-stable

under a certain condition on the initial data. We also presented counter examples showing

that Scheme I can be l1-unstable if the initial data condition is violated. In [45] we proved

that in the case of a step function potential and the Dirichlet incoming boundary conditions,

Scheme I is L1-convergent for a class of bounded initial data by utilizing the L1-error estimates

developed in [41,44] for the immersed interface upwind scheme to the linear advection equations

with piecewise constant coefficients. We presented the halfth order L1-error bound with explicit

coefficients. The halfth order convergence rate is sharp, since even for the discontinuous solu-

tion to linear hyperbolic equation with a smooth coefficient, the halfth order convergence rate

is already optimal for a monotone difference scheme [36]. The Liouville equation with a step

function potential belongs to hyperbolic equations with measure-valued coefficients. For the

discontinuous coefficient case, one can refer to [1, 4, 7–9, 26–32,34, 37–39] for the wide study of

the convergence of numerical schemes. The initial conditions considered in [45] can be satisfied

when applying the decomposition technique proposed in [12] for solving the Liouville equation

with measure-valued initial data arisen in the semiclassical limit of the linear Schrödinger equa-

tion. In particular, the initial data condition in [46] is more general than that in [45], which

implies that the stability results established in [46] is in consistent with the convergence results

established in [45] since a convergent scheme for the Liouville equation with the homogeneous

Dirichlet boundary condition should be l1-stable.

The error estimates for Scheme I in [45] was established under the condition that the initial

data is exactly given. In practical computation, however it is common that the initial data

is given with errors. Therefore an interesting issue is to further investigate error estimates

for Scheme I when the initial data is given with perturbation errors. In this paper we will

study this issue. Due to the linearity of Scheme I, these error estimates can be obtained by

applying the error estimates for Scheme I with exact initial data established in [45] and the

l1-norm estimates for the perturbation solutions. Therefore in this paper we will investigate the
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latter estimates. If the perturbation solution is l1-stable, then the l1-norm of the perturbation

solution can be estimated directly from that of the initial perturbation values. However we

will see that the initial perturbation values do not necessarily satisfy the condition required

for the l1-stability of Scheme I given in [46]. Therefore the perturbation solution yielded by

Scheme I can be l1-unstable. In this paper we extend the analysis in [46] to show that even if

the solution of Scheme I can be l1-unstable, the l1-norm of the solution can still be estimated

from the L∞ and L1-upper bounds of the initial data. Consequently we prove that Scheme I is

L1-convergent when the initial data is given with a wide class of perturbation errors and give

the L1-error bound with explicit coefficient. The L1-convergence rate given in this paper is less

than the order of the initial perturbation error, matching with the fact that the perturbation

solution can be l1-unstable.

This paper is organized as follows. In Section 2 we review the Hamiltonian-preserving scheme

called Scheme I proposed in [19] for the Liouville equation with a discontinuous potential in one

space dimension. In Section 3 we review the L1-error estimates for Scheme I with exact initial

data established in [45] for the Liouville equation with a step function potential. In Section

4 we present the main Theorems in this paper related to the L1-error estimates for Scheme I

with perturbed initial data which are proved in Section 5 by extending the analysis in [46]. We

conclude the paper in Section 6. In this paper we denote [x]−, [x]+ to be the largest integer no

more than x and the smallest integer no less than x respectively.

2. A Hamiltonian-Preserving Scheme

In this section we review the Hamiltonian-preserving scheme proposed in [19] to the Liouville

equation in one space dimension

ft + ξfx − Vxfξ = 0, (2.1)

with a discontinuous potential V (x).

Consider a uniform mesh with grid points at xi+ 1
2
, i ∈ Z in the x-direction and ξj+ 1

2
, j ∈ Z

in the ξ-direction. The cells are centered at (xi, ξj), (i, j) ∈ Z
2 with xi =

1
2 (xi+ 1

2
+ xi− 1

2
) and

ξj =
1
2 (ξj+ 1

2
+ ξj− 1

2
). The mesh size are denoted by ∆x = xi+ 1

2
− xi− 1

2
,∆ξ = ξj+ 1

2
− ξj− 1

2
. We

also assume a uniform time step ∆t and the discrete times are given by tn = n∆t, n ∈ N∪ {0}.
We assume that the computation is performed in a bounded rectangular domain

{
(x, y)

∣∣∣ x 1
2
≤ x ≤ xN+ 1

2
, ξ 1

2
≤ ξ ≤ ξM+ 1

2

}
. (2.2)

Let the cell averages of f be

fij =
1

∆x∆ξ

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x, ξ, t)dξdx.

The 1D average quantity fi+1/2,j is defined as

fi+1/2,j =
1

∆ξ

∫ ξ
j+1

2

ξ
j− 1

2

f(xi+1/2, ξ, t)dξ ;

and fi,j+1/2 is defined similarly.

In classical mechanics, a particle will either cross a potential barrier with a changing mo-

mentum, or be reflected, depending on its momentum and the strength of the potential barrier.
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The Hamiltonian H = 1
2ξ

2 + V is preserved across the potential barrier:

1

2
(ξ+)2 + V + =

1

2
(ξ−)2 + V −, (2.3)

where the superscripts ± indicate the right and left limits of the quantity at the potential

barrier. This property was used in [19] to provide the interface condition for (2.1) at the

barrier:

f(t, x+, ξ+) = f(t, x−, ξ−) for transmission, (2.4)

f(t, x±, ξ±) = f(t, x±,−ξ±) for reflection, (2.5)

where ξ+ and ξ− are related by the constant Hamiltonian condition (2.3) in the case of trans-

mission. With such an interface condition, we established the well-posedness of the initial value

problem to the Liouville equation with a piecewise constant wave speed in [21].

The main ingredient in the Hamiltonian-preserving schemes developed in [19], like the ear-

lier work for shallow-water equations [35], was to build into the numerical flux the interface

conditions (2.4) and (2.5) at the barrier.

We now present the first Hamiltonian-preserving scheme, called Scheme I in [19].

Assume that the discontinuous points of the potential V are located at the grid points. Let

the left and right limits of V at point xi+1/2 be V −
i+ 1

2

and V +
i+ 1

2

respectively. Note that if V is

continuous at xj+1/2 then V −
i+ 1

2

= V +
i+ 1

2

. We approximate V by a piecewise linear function

V (x) ≈ V +
i−1/2 +

V −
i+1/2 − V +

i−1/2

∆x
(x− xi−1/2) .

The flux-splitting, semidiscrete scheme (with time continuous) reads

∂tfij + ξj
f−
i+ 1

2
,j
− f+

i− 1
2
,j

∆x
−

V −
i+ 1

2

− V +
i− 1

2

∆x

fi,j+ 1
2
− fi,j− 1

2

∆ξ
= 0,

where the numerical fluxes fi,j+ 1
2
are defined using the upwind discretization. Since the charac-

teristics of the Liouville equation may be different on the two sides of a barrier, the corresponding

numerical fluxes should also be different. The essential part of the algorithm is to define the

split numerical fluxes f−
i+ 1

2
,j
, f+

i− 1
2
,j
at each cell interface, and (2.4)−(2.5) will be used to define

these fluxes.

Assume V is discontinuous at xi+1/2. Consider the case ξj > 0. Using the upwind scheme,

f−
i+ 1

2
,j
= fij . However,

f+
i+1/2,j ≡ f(x+

i+1/2, ξ
+) = f(x−

i+1/2, ξ
−),

in the case of particle transmission, where ξ− is obtained from ξ+ = ξj from (2.3). Since ξ−

may not be a grid point, we have to define it approximately. The first approach is to locate the

two cell centers that bound this velocity, then use a linear interpolation to evaluate the needed

numerical flux at ξ−. The case of particle reflection and ξj < 0 is treated in the same principle.

The algorithm to generate the numerical flux is given in [19]. Here we present the simplified

algorithm for the case

V −
i+ 1

2

> V +
i+ 1

2

being discussed in this paper.
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Algorithm I

• ξj > 0

f−
i+ 1

2
,j
= fij ,

❏ if ξj >

√
2
(
V −
i+ 1

2

− V +
i+ 1

2

)
,

ξ− =

√
ξ2j + 2

(
V +
i+ 1

2

− V −
i+ 1

2

)

if ξk ≤ ξ− < ξk+1 for some k

then f+
i+ 1

2
,j
=

ξk+1−ξ−

∆ξ fik +
ξ−−ξk
∆ξ fi,k+1

� else

f+
i+ 1

2
,j
= fi+1,k where ξk = −ξj

❏ end

• ξj < 0

f+
i+ 1

2
,j
= fi+1,j ,

ξ+ = −
√
ξ2j + 2

(
V −
i+ 1

2

− V +
i+ 1

2

)

if ξk ≤ ξ+ < ξk+1 for some k

then f−
i+ 1

2
,j
=

ξk+1−ξ+

∆ξ fi+1,k +
ξ+−ξk
∆ξ fi+1,k+1

After the spatial discretization is specified, one can use any time discretization for the time

derivative.

In [19] we proved that, when the first order upwind scheme is used spatially, and the forward

Euler method is used in time, and the potential V has a single jump, Scheme I is positive and

l∞-contracting under the CFL condition:

∆t


maxj |ξj |

∆x
+

maxi

∣∣∣
(
V −
i+ 1

2

− V +
i− 1

2

)
/∆x

∣∣∣
∆ξ


 < 1. (2.6)

In [45, 46] we further proved that when the potential is a step function, the same scheme is l1-

stable and L1-convergent under the CFL condition (2.6) and suitable conditions on the initial

data.

Note that the quantity
∣∣(V −

i+ 1
2

− V +
i− 1

2

)
/∆x

∣∣ represents the gradient of the potential at its

smooth point, which has a finite upper bound. Thus the scheme satisfies a hyperbolic CFL

condition.

3. The L
1-error Estimates for Scheme I

In this Section we review the L1-error estimates for Scheme I with exact initial data estab-

lished in [45]. We consider a step function potential V (x) with a jump −D,D > 0 at x = 0.
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Namely

V (0−)− V (0+) = D.

Let the computational domain be confined in the rectangular domain (2.2). We employ the

uniform mesh introduced in Section 2. Define mesh ratios λt
x = ∆t

∆x , λ
ξ
x = ∆ξ

∆x , assumed to be

fixed. Let the potential barrier x = 0 be at a grid point xm+ 1
2
. Then the point-wise values of

V satisfy

V −
m+ 1

2

− V +
m+ 1

2

= D, V ±
i+ 1

2

= V −
m+ 1

2

, i < m, V ±
i+ 1

2

= V +
m+ 1

2

, i > m,

where the superscripts −,+ represent the left and right limits at x = 0.

We consider the typical situation that ξ1 < −
√
2D, ξM >

√
2D, so that all possible particle

behaviors, including both transmission and reflection, are included. We choose the mesh such

that 0 and ±
√
2D are grid points in the ξ-direction.

Define the index Ib satisfying

ξIb− 3
2
< −

√(
ξ 1

2

)2
− 2D ≤ ξIb− 1

2
,

and the domain

Db =
{
(x, ξ)

∣∣∣ x < 0, ξ < ξIb− 1
2

}
.

The computational domain is chosen to be

DC =
{
(x, ξ)

∣∣∣ x 1
2
≤ x ≤ xN+ 1

2
, ξ 1

2
≤ ξ ≤ ξM+ 1

2

}
\Db,

since Db represents the area where particles come from outside of the domain [x 1
2
, xN+ 1

2
] ×

[ξ 1
2
, ξM+ 1

2
] and thus is excluded from the computational domain, as discussed in [19,45]. Fig. 5.1

depicts the sets DC and Db.

We consider the Dirichlet boundary conditions at the incoming boundaries and assume that

the initial data satisfy these boundary conditions:

f(x 1
2
, ξ, t) = f(x 1

2
, ξ, 0), 0 < ξ < ξM+ 1

2
, (3.1)

f(xN+ 1
2
, ξ, t) = f(xN+ 1

2
, ξ, 0), ξ 1

2
< ξ < 0. (3.2)

The expression of the exact solution f(x, ξ, t), (x, ξ) ∈ DC , t > 0 can be obtained from the

initial data f(x, ξ, 0) and boundary conditions (3.1), (3.2) by the method of characteristics.

One can refer to [45] for the concrete expression of f(x, ξ, t). Let

µj = λt
x |ξj | , 1 ≤ j ≤ M, (3.3)

which are less than 1 under the CFL condition (2.6).

With the first order numerical flux, the forward Euler method in time and the boundary

conditions (3.1), (3.2), Scheme I on DC is given by:

1) if 0 < ξj < ξM+ 1
2
, i 6= m+ 1, then

gn+1
ij = (1 − µj)g

n
ij + µjg

n
i−1,j ; (3.4)

2) if ξIb− 1
2
< ξj < 0, i < m or ξ 1

2
< ξj < 0, i > m, then

gn+1
ij = (1− µj)g

n
ij + µjg

n
i+1,j ; (3.5)
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3) if
√
2D < ξj < ξM+ 1

2
, then

gn+1
m+1,j = (1− µj)g

n
m+1,j + µj

(
cj,1g

n
m,dj

+ cj,2g
n
m,dj+1

)
; (3.6)

4) if 0 < ξj <
√
2D, then

gn+1
m+1,j = (1− µj)g

n
m+1,j + µjg

n
m+1,dj

; (3.7)

5) if ξIb− 1
2
< ξj < 0, then

gn+1
mj = (1− µj)g

n
mj + µj

(
cj,1g

n
m+1,dj

+ cj,2g
n
m+1,dj+1

)
, (3.8)

where 0 ≤ cj,1, cj,2 ≤ 1 and cj,1 + cj,2 = 1. dj ’s in (3.6)-(3.8) are determined according to

Algorithm I by

ξdj
≤
√
(ξj)

2 − 2D < ξdj+1, for dj in (3.6), (3.9)

ξdj
= −ξj , for dj in (3.7), (3.10)

ξdj
≤ −

√
(ξj)

2 + 2D < ξdj+1, for dj in (3.8). (3.11)

The initial and incoming boundary values of the numerical solution are given by

g0ij =
1

∆x∆ξ

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+1

2

ξ
j− 1

2

f(x, ξ, 0)dξdx, (xi, ξj) ∈ DC , (3.12)

gn0,j =
1

∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x 1
2
, ξ, 0)dξ, 0 < ξj < ξM+ 1

2
, (3.13)

gnN+1,j =
1

∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

f(xN+ 1
2
, ξ, 0)dξ, ξ 1

2
< ξj < 0. (3.14)

We introduce

g(x, ξ, t) = gnij , for (x, ξ, t) ∈ [xi− 1
2
, xi+ 1

2
)× [ξj− 1

2
, ξj+ 1

2
)× [tn, tn+1), (xi, ξj) ∈ DC .

In [45] we have established the L1-error estimates for Scheme I under the following initial

data assumption:

Assumption 3.1. The initial data f(x, ξ, 0) have bounded variation in the x-direction and is

Lipschitz continuous in the ξ-direction. Namely

‖f(., ξ, 0)‖BV ([x 1
2

,x
N+1

2

]) ≤ A, ∀ξ ∈ [ξ 1
2
, ξM+ 1

2
], (3.15)

|f(x, ξ′, 0)− f(x, ξ′′, 0)| ≤ B|ξ′ − ξ′′|, ∀x ∈
[
x 1

2
, xN+ 1

2

]
, ξ′, ξ′′ ∈

[
ξ 1

2
, ξM+ 1

2

]
. (3.16)

These initial data conditions can be satisfied by applying the decomposition technique pro-

posed in [12] for solving the Liouville equation with measure-valued initial data arisen in the

semiclassical limit of the linear Schrödinger equation.

Let T = tL = L∆t. The main theorem given in [45] is as follows:
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Theorem 3.1. Under Assumption 3.1 on the initial data, the CFL condition (2.6) and the

following mesh size restriction

∆ξ ≤ 3− 2
√
2

2

√
2D, (3.17)

Scheme I (3.4)-(3.14) has the following L1-error bound compared to the exact solution:

‖g(·, ·, T )− f(·, ·, T )‖L1(DC) ≤ C1

√
∆x + C2 ln

(
1

∆x

)
∆x+O(∆x), (3.18)

where

C1 =
(
4A+ 2

√
2DB

)√T +∆t

2e


 ξM+ 1

2

(2D)
1
4

√
ξM+ 1

2
−
√
2D

λt
x

+ 2
∣∣∣ξ 1

2

∣∣∣
[(

ξ 1
2

)2
− 2D

] 1
4




+
[(

ξM+ 1
2
+
∣∣∣ξ 1

2

∣∣∣+
√
2D
)
A+ 4DB

]√T +∆t

2eλt
x

, (3.19)

C2 =
(
2A+

√
2DB

) [
2
(
ξM+ 1

2

)2
Tλξ

x/
√
D +

∣∣∣ξ 1
2

∣∣∣
]
. (3.20)

4. The L
1-error Estimates for Scheme I with Perturbed Initial Data

In this section we present the main Theorems in this paper for the L1-error estimates for

Scheme I with perturbed initial data. We consider the same problem setup as in the previous

section except we assume the initial data have some perturbation error. Assume the exact

initial data f(x, ξ, 0) satisfies Assumption 3.1 and denote f̂(x, ξ, 0) to be its perturbed values.

Since f(x, ξ, 0) is bounded in L∞-norm, the same should be true for f̂(x, ξ, 0). Thus we consider

the initial perturbation error satisfying
∣∣∣f(x, ξ, 0)− f̂(x, ξ, 0)

∣∣∣ < D̂, ∀(x, ξ) ∈ DC , (4.1)
∥∥∥f(·, ·, 0)− f̂(·, ·, 0)

∥∥∥
L1(DC)

< Ĉ(∆x)r , r > 0. (4.2)

Let ĝnij be the numerical solutions computed by Scheme I with the initial data f̂(x, ξ, 0) and

the exact Dirichlet boundary condition, namely

ĝ0ij =
1

∆x∆ξ

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+1

2

ξ
j− 1

2

f̂(x, ξ, 0)dξdx, (xi, ξj) ∈ DC , (4.3)

ĝn0,j =
1

∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x 1
2
, ξ, 0)dξ, 0 < ξj < ξM+ 1

2
, (4.4)

ĝnN+1,j =
1

∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

f(xN+ 1
2
, ξ, 0)dξ, ξ 1

2
< ξj < 0. (4.5)

The errors for the numerical solutions with inexact boundary conditions can be estimated by

comparing the numerical solutions with exact and inexact boundary conditions and will not be

discussed in this paper. Introduce

ĝ(x, ξ, t) = ĝnij , for (x, ξ, t) ∈ [xi− 1
2
, xi+ 1

2
)× [ξj− 1

2
, ξj+ 1

2
)× [tn, tn+1), (xi, ξj) ∈ DC .

Recall T = L∆t. We have the following main theorem for the error estimates for the numerical

solutions ĝLij with the perturbed initial data:
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Theorem 4.1. Assume the initial data f(x, ξ, 0) satisfies Assumption 3.1, and its perturba-

tion f̂(x, ξ, 0) satisfies conditions (4.1), (4.2). Then the numerical solutions ĝLij computed by

Scheme I with the perturbed initial data f̂(x, ξ, 0) and the exact Dirichlet boundary condition

are L1-convergent to f(x, ξ, T ) under the CFL condition (2.6). Furthermore under the mesh

size restrictions (3.17) and

∆ξ <
1

6λt
x

, ∆ξ < min

(
ξM ,

√
(6λt

x)
−2

+ 2D

)
−
√
2D, (4.6)

∆x ≤ 1

16
max

(
T

λt
x

, xm+ 1
2
− x 1

2
,

4

λξ
x (λt

x)
2 √

2D

)
, (4.7)

the error estimates for ĝLij are given by

‖ĝ(·, ·, T )− f(·, ·, T )‖L1(DC)

≤C1

√
∆x+ C2 ln

(
1

∆x

)
∆x + C3(∆x)

2
3
r +O(∆x), (4.8)

where C1, C2 are given in (3.19), (3.20), C3 is a bounded coefficient being given by

C3 = C30(∆x)
1
3
r +max

(
C31(∆x)

1
3
r, C32

)
, (4.9)

C30 =


4 +

(1 + λt
x∆ξ)

2λt
x

(√
2D −∆ξ

)


 Ĉ, (4.10)

C31 =
45Ĉ

√
1/3λt

x + 2∆ξ

28 (λt
x)

2 √
D
(
ξC − 1

2∆ξ
) 3

2

, (4.11)

ξC = min

(
ξM ,

√
(1/3λt

x −∆ξ)2 + 2D

)
−
√
2D, (4.12)

C32 =
Ĉ

2
3 D̂

1
3 max

(
T,
(
xm+ 1

2
− x 1

2

)
λt
x,

4λt
ξ

(λt
x)

2
√
2D

+∆t
)

(
5
√
2D

63

) 1
3

(λt
x)

5
3

(
xm+ 1

2
− x 1

2

) 2
3

. (4.13)

Remark 4.1. The error estimate (4.8) can also be used in the case that the initial perturbation

error does not converge to zero in L1-norm with mesh refinement, for example a fixed initial

perturbation error. In this case we do not have the convergence of the numerical solution

ĝ(x, ξ, T ) to the exact solution f(x, ξ, T ), but we can get the error bound between ĝ and f by

setting r = 0 and Ĉ to be the bound of the L1-norm of the initial perturbation error in (4.8).

Define the discrete l1-norm of numerical solutions gnij to be

|gn|1 = ∆x∆ξ
∑

(xi,ξj)∈DC

∣∣gnij
∣∣ . (4.14)

Theorem 4.1 can be proved with Theorem 3.1 and the following theorem.

Theorem 4.2. Assume the numerical approximations of the initial values satisfy

∣∣g0ij
∣∣ < D̂, (xi, ξj) ∈ DC , (4.15)

∣∣g0
∣∣
1
< Ĉ(∆x)r , r > 0. (4.16)
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Then under the CFL condition (2.6) and the mesh size restrictions (4.6), (4.7) and

∆ξ <
√
2D/4, (4.17)

the discrete l1-norm of the numerical solutions computed by Scheme I with these initial values

and the zero Dirichlet boundary condition are estimated by

∣∣gL
∣∣
1
< C3(∆x)

2
3
r +O(∆x), (4.18)

where C3 is given in (4.9).

Remark 4.2. In the case that Scheme I is l1-stable, the discrete l1-norm of the computed

solutions can be directly estimated from that of the numerical solutions initial values. In [46]

we have established the l1-stability of Scheme I under the initial data assumption

Assumption 4.1. There exists a positive constant ξz such that

∀(i, j) ∈ Sz =
{
(i, j)

∣∣∣ xi < xm+ 1
2
, 0 < ξj < ξz

}
, (4.19)

it holds that ∣∣g0ij
∣∣ ≤ C1

∣∣g0
∣∣
1
. (4.20)

However we also show in [46] that Scheme I can be l1-unstable if the Assumption 4.1 is violated

by the initial data. It can be seen that the initial data satisfying conditions (4.15), (4.16)

do not necessarily satisfy the Assumption 4.1. Therefore the discrete l1-norm estimates in

Theorem 4.2 can not be obtained by applying the l1-stability result of Scheme I established

in [46]. In fact, the order of the mesh size in the upper bound (4.18) of the computed solutions

being less than that in the upper bound (4.16) of the initial data indicates that the numerical

solutions computed by Scheme I from the initial data satisfying conditions (4.15), (4.16) can

be l1-unstable. The proof for Theorem 4.2 is extended from the analysis in [46] and composes

the main part of this paper.

5. Proof for the Main Theorems

In this Section we present the proof for Theorems 4.1, 4.2 in this paper. The proof for

Theorem 4.1 is relatively straightforward by applying Theorems 3.1 and 4.2. Therefore the key

part in this section is to prove Theorem 4.2.

5.1. Proof for Theorem 4.2

Introduce some notations

S2
m =

{
k
∣∣∣ξk > 0, ∃ ξj >

√
2D, s.t.

∣∣∣∣ξk −
√
ξj

2 − 2D

∣∣∣∣ < ∆ξ

}
, (5.1a)

D2
m = {(m, j)|j ∈ S2

m}, D4
m+1 = {(m+ 1, j)|ξj < −

√
2D +∆ξ}, (5.1b)

S2,1
m =

{
j ∈ S2

m

∣∣∣ξj ≥ ξ̂z ≡ 1

3λt
x

}
, S2,2

m =

{
j ∈ S2

m

∣∣∣ξj < ξ̂z ≡ 1

3λt
x

}
, (5.1c)
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D2,1
m = {(i, j) ∈ D2

m|j ∈ S2,1
m }, D2,2

m = {(i, j) ∈ D2
m|j ∈ S2,2

m }, (5.1d)

S11 =

L−1∑

n=0





∑

(i,j)∈D2,1
m

|fn
ij |



 , S12 =

L−1∑

n=0





∑

(i,j)∈D2,2
m

|fn
ij |



 ,

S2 =

L−1∑

n=0





∑

(i,j)∈D4
m+1

|fn
ij |



 , (5.1e)

Sr = {(i, j)| xi > xm+ 1
2
, (m+ 1, j) ∈ D4

m+1}, (5.1f)

Sl =

{
(i, j)

∣∣∣∣ xi < xm+ 1
2
, (m, j) ∈ D2

m

}
, (5.1g)

S2
l = {(i, j) ∈ Sl|j ∈ S2,2

m }. (5.1h)

Fig. 5.1 depicts a sketch of the sets D2
m and D4

m+1. Let Ns be the number of elements in

S2,2
m . We name the elements in S2,2

m as ki, i = 1, 2, · · · , Ns such that k1 < k2 < · · · < kNs
.

Consequently µk1
< µk2

< · · · < µkNs
, where µj , 1 ≤ j ≤ M are defined in (3.3).

Db

x 1
2

xm+ 1
2
= 0 xN+ 1

2

ξ 1
2

ξIb− 1
2

ξM+ 1
2

DC

(xi, ξj) s.t.
(i, j) ∈ D2

m

(xi, ξj) s.t.
(i, j) ∈ D4

m+1

Fig. 5.1. Sketch of the sets DC , Db, D
2
m, D4

m+1.

With the zero incoming boundary condition, repeatedly using the scheme (3.4) yields

gnij =
∑

(p,q)∈Sl

γijn0
pq g0pq, (i, j) ∈ Sl. (5.2)

Under the hyperbolic CFL condition (2.6), γijn0
pq ≥ 0. γijn0

pq 6= 0 only when p ≤ i and q = j due

to the upwind flux and the constant potential. Define

Tpq =

L−1∑

n=0

γmqn0
pq , (p, q) ∈ Sl. (5.3)

The following Lemma is part of Lemma 3.2 in [46]:

Lemma 5.1. Under the hyperbolic CFL condition (2.6), Tpq defined in (5.3) satisfy

Tp+1,q ≥ Tp,q, for p < m, (5.4a)

Tp,q <
1

µq
, for (p, q) ∈ Sl. (5.4b)

The following two Lemmas can be proved similarly to Lemmas 3.1, 3.3 in [46]:
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Lemma 5.2. Under the hyperbolic CFL condition (2.6), the mesh size restriction

∆ξ <
√
2D/2 (5.5)

and the zero incoming boundary condition, Scheme I given by (3.4)-(3.8) satisfies

∣∣gL
∣∣
1
≤
∣∣g0
∣∣
1
+∆x∆ξ (S11 + S12) +

(
1

2
+

1

2
λt
x∆ξ

)
∆x∆ξS2. (5.6)

Lemma 5.3. Under the hyperbolic CFL condition (2.6), the mesh size restriction (5.5) and the

zero incoming boundary condition, S11 and S2 defined in (5.1e) satisfy

S11 <

∣∣g0
∣∣
1

λt
xξ̂z∆x∆ξ

≡
3
∣∣g0
∣∣
1

∆x∆ξ
, S2 <

∣∣g0
∣∣
1

λt
x

(√
2D −∆ξ

)
∆x∆ξ

. (5.7)

We also prove the following lemma:

Lemma 5.4. Let Nm ≤ Ns. Then under the mesh size restriction (4.17) one has

∆ξ

Nm∑

i=1

1

ξki

<
3

(2D)
1
4

√
(Nm + 1)∆ξ. (5.8)

Proof. Denote Nm,2 =
[
Nm

2

]+
. Define the set

Sm
R =

{
k

∣∣∣∣
√
2D < ξk <

√
2D +Nm,2∆ξ

}
. (5.9)

Then the number of elements in Sm
R is Nm,2. We name the elements in Sm

R as kmi satisfying

ξkm
i

=
√
2D + (i − 1

2 )∆ξ, i = 1, 2, · · · , Nm,2.

Under the mesh size restriction (4.17), ∆ξ < 1
2

√(
ξkm

1

)2 − 2D. One has

∆ξ

Nm∑

i=1

1

ξki

<∆ξ

Nm,2∑

i=1

1√(
ξkm

i

)2 − 2D
+∆ξ

Nm,2∑

i=1

1√(
ξkm

i

)2 − 2D −∆ξ

<3∆ξ

Nm,2∑

i=1

1√(
ξkm

i

)2 − 2D

<
3

(8D)
1
4

Nm,2∑

i=1

∆ξ√
(i− 1

2 )∆ξ
<

3

(8D)
1
4

∫ Nm,2∆ξ

0

1√
y
dy

=
6

(8D)
1
4

√
Nm,2∆ξ ≤ 3

(2D)
1
4

√
(Nm + 1)∆ξ. (5.10)

With the above preparation, we now give the proof for Theorem 4.2

Proof of Theorem 4.2: Applying Lemmas 5.2 and 5.3, under the hyperbolic CFL condition

(2.6), the mesh size restriction (5.5) and the zero incoming boundary condition one has

|gL|1 ≤


4 +

(1 + λt
x∆ξ)

2λt
x

(√
2D −∆ξ

)


 |g0|1 +∆x∆ξS12. (5.11)
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Thus the following task is to estimate S12. Substituting (5.2) into the expression of S12 in

(5.1e) gives

S12 ≤
∑

(p,q)∈S2
l




L−1∑

n=0

∑

(i,j)∈D2,2
m

γijn0
pq


 |g0pq| =

∑

(p,q)∈S2
l

Tpq|g0pq|, (5.12)

where S2
l and Tpq are defined in (5.1h) and (5.3).

Now introduce some notations. Define

L2 =

[
4

(λt
x)

2 √
2D∆ξ

]+
, Lm = max (L,m,L2), (5.13a)

k̃q = min

([
7

5
µqLm

]+
,m

)
, p̃q = m− k̃q, for q ∈ S2,2

m . (5.13b)

Define the set

J =

{
(p, q) ∈ S2

l

∣∣∣∣ p̃q + 1 ≤ p ≤ m

}
. (5.14)

Let NJ be the number of elements in J , and define

NB =

[
Ĉ(∆x)r−1

D̂∆ξ

]+
. (5.15)

We will prove the following two estimates.

1) ∆x∆ξS12 < C31(∆x)r , if NB > NJ , (5.16a)

under the mesh size restrictions (4.17), (4.6), where C31 is given in (4.11).

2) ∆x∆ξS12 < C32(∆x)
2
3
r +O(∆x), if NB ≤ NJ , (5.16b)

under the mesh size restrictions (4.17), (4.7), where C32 is given in (4.13).

We begin with the estimate (5.16a). Combining (5.12), (5.4b) and (4.15), and applying

Lemma 5.4 give

S12 ≤
∑

(p,q)∈S2
l

Tpq|g0pq| <
∑

q∈S2,2
m

m∑

p=1

1

µq
D̂ < D̂m

Ns∑

i=1

1

µki

<
D̂m

λt
x∆ξ

3

(2D)
1
4

√
(Ns + 1)∆ξ. (5.17)

From the definition of S2,2
m one has

(Ns − 1)∆ξ < ξ̂z. (5.18)

Combining (5.17) and (5.18) gives

S12 <
D̂m

λt
x∆ξ

3

(2D)
1
4

√
1

3λt
x

+ 2∆ξ. (5.19)

We now estimate the number NJ . By definition

NJ =
∑

q∈S2,2
m

k̃q ≥
∑

q∈S2,2
m

7

5
µqm. (5.20)
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Define the set

SR =

{
k

∣∣∣∣
√
2D < ξk ≤ min

(
ξM ,

√(
ξ̂z −∆ξ

)2
+ 2D

)}
. (5.21)

Let NR be the number of elements in SR. Then

(NR +
1

2
)∆ξ +

√
2D > min

(
ξM ,

√(
ξ̂z −∆ξ

)2
+ 2D

)
, (5.22)

which gives

NR∆ξ > ξC − 1

2
∆ξ (5.23)

with ξC defined in (4.12). Under the mesh size restrictions (4.6) one has ξC − 1
2∆ξ > 1

2ξC .

We name the elements in SR as k′i satisfying ξk′

i
=

√
2D+ (i− 1

2 )∆ξ, i = 1, · · · , NR. Define

the map

T̃ (k) = j s.t. 0 ≤ ξj −
√
(ξk)

2 − 2D < ∆ξ, for k ∈ SR.

Then T̃ (k) ∈ S2,2
m , ∀k ∈ SR. Denote

T ′
i = T̃ (k′i), i = 1, 2, · · · , NR.

From (5.20) one has

NJ ≥7

5
m
∑

q∈S2,2
m

µq ≥ 7

5
mλt

x

NR∑

i=1

ξT ′

i
≥ 7

5
mλt

x

NR∑

i=1

√(
ξk′

i

)2 − 2D

>
7

5
mλt

x(8D)
1
4

NR∑

i=1

√(
i− 1

2

)
∆ξ >

7

5
mλt

x(8D)
1
4

1

∆ξ

∫ NR∆ξ

0

√
y dy

=
14

15
(8D)

1
4
mλt

x

∆ξ
(NR∆ξ)

3
2 . (5.24)

Combining (5.24) and (5.23) gives

NJ >
14

15
(8D)

1
4
mλt

x

∆ξ

(
ξC − 1

2
∆ξ

) 3
2

. (5.25)

Now if

NB > NJ ⇒ Ĉ(∆x)r−1

D̂∆ξ
> NJ . (5.26)

From (5.19) and (5.16) one has

S12 <
D̂m

λt
x∆ξ

3

(2D)
1
4

√
1

3λt
x

+ 2∆ξ <
D̂m

λt
x∆ξ

3

(2D)
1
4

√
1

3λt
x

+ 2∆ξ
15

14(8D)
1
4

(
ξC − 1

2∆ξ
) 3

2

∆ξ

mλt
x

NJ

<
D̂

(λt
x)

2

45
√

1
3λt

x
+ 2∆ξ

28
√
D
(
ξC − 1

2∆ξ
) 3

2

Ĉ(∆x)r−1

D̂∆ξ
, (5.27)

which gives the estimate (5.16a).
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We then prove the estimate (5.16b). By definition of S2,2
m one has µq <

1
3 for q ∈ S2,2

m . Since√
2D is located at mesh interface in ξ-direction one has for ∀q ∈ S2,2

m

µq ≥µk1
= λt

xξk1
> λt

x



√(√

2D +
1

2
∆ξ

)2

− 2D −∆ξ




>λt
x

[
(2D)

1
4 −

√
∆ξ
]√

∆ξ

=λt
x

[
(2D)

1
4 −

√
∆ξ
] 1√

λt
ξ

√
T√
L

= λt
x

[
(2D)

1
4 −

√
∆ξ
]√

λξ
x

√
xm+ 1

2
− x 1

2√
m

=λt
x

[
(2D)

1
4 −

√
∆ξ
] max

( √
T√
λt
ξ

,
√
λξ
x
√
xm+ 1

2
− x 1

2
,
√
L2

√
∆ξ

)

√
Lm

≡ Ĉ1√
Lm

, (5.28)

where

Ĉ1 = λt
x

[
(2D)

1
4 −

√
∆ξ
]
max

(√
T/λt

ξ,

√
λξ
x

√
xm+ 1

2
− x 1

2
,
√
L2

√
∆ξ

)
.

Under the mesh size condition (4.17), Ĉ1 satisfies

Ĉ1 > λt
x

(2D)
1
4

2

√
L2∆ξ ≥ λt

x

(2D)
1
4

2

√
4

(λt
x)

2 √
2D

= 1.

Thus one has
1√
Lm

< µq <
1

3
, ∀q ∈ S2,2

m .

It follows from the definition of k̃q, p̃q in (5.13b), for p̃q ≥ 1, that k̃q =
[
7
5µqLm

]+
. By

Lemma A.1 in Appendix one has for p̃q ≥ 1

γmq,Lm,0
p̃q,q

= C
k̃q

Lm
(1− µq)

Lm−k̃qµq
k̃q <

6

5
µq, (5.29)

under the conditions

Lm ≥ 16, (5.30a)

1.1
1√
2π

√
10

7

5

6

Lm
1
4

e0.036
√
Lm

< 1, (5.30b)

where the notation C with both subscript and superscript denotes the binomial coefficient.

Condition (5.30b) is satisfied for ∀Lm ∈ N. Condition (5.30a) is satisfied under the mesh size

restriction (4.7).

For k̃q + 1 ≤ n ≤ Lm one has

γmqn0
p̃q,q

γmq,n−1,0
p̃q ,q

=
n

n− k̃q
(1− µq) ≥

Lm

Lm − k̃q
(1− µq)

≥ Lm

Lm − 7
5µqLm

(1− µq) =
1− µq

1− 7
5µq

. (5.31)
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Notice that γmqn0
p̃q ,q

= 0 when n < k̃q. From (5.29) and (5.31) one has

Tp̃q,q =

L−1∑

n=0

γmqn0
p̃q,q

=

L−1∑

n=k̃q

γmqn0
p̃q ,q

<

Lm∑

n=k̃q

γmqn0
p̃q ,q

<
6

5
µq




Lm−k̃q∑

i=0

(
1− 7

5µq

1− µq

)i



<
6
5µq

1−
(

1− 7
5
µq

1−µq

) < 3, q ∈ S2,2
m , if p̃q ≥ 1.

Due to the relation (5.4a), one has

Tpq < 3, q ∈ S2,2
m , 1 ≤ p ≤ p̃q, if p̃q ≥ 1. (5.32)

Define

Tm
pq =

{
3, (p, q) ∈ S2

l \J,
1
µq

, (p, q) ∈ J.
(5.33)

According to the definition of J , if (p, q) ∈ S2
l \J , then 1 ≤ p ≤ p̃q. Thus from (5.32) and

(5.4b) one has

Tpq < Tm
pq , ∀(p, q) ∈ S2

l . (5.34)

Denote

ς0 = 0, ςj =

j∑

i=1

k̃ki
, j = 1, · · · , Ns, (5.35a)

τ0 = ςNs
, τj = ςNs

+

j∑

i=1

(
m− k̃ki

)
, j = 1, · · · , Ns. (5.35b)

One has ςNs
= NJ , τNs

= N2
s ≡ mNs. For 1 ≤ j ≤ N2

s , define

T̂m
j =

{
Tm
m−j+ςl−1+1,kl

, ςl−1 + 1 ≤ j ≤ ςl, l = 1, · · · , Ns,

Tm
τl−j+1,kl

, τl−1 + 1 ≤ j ≤ τl, l = 1, · · · , Ns.
(5.36)

From the definition of Tm
pq in (5.33), T̂m

j , 1 ≤ j ≤ N2
s is a permutation of Tm

pq , (p, q) ∈ S2
l

which is in descendent order, namely T̂m
j ≥ T̂m

j+1, 1 ≤ j ≤ N2
s − 1. Define

g̃0j = g0pq, if T̂m
j is assigned as Tm

pq in (5.36), 1 ≤ j ≤ N2
s . (5.37)

Now if NB ≤ NJ , then NB ≤ N2
s . Using (5.12), (5.34), (5.36), (5.37), (4.15) and (4.16), S12

can be estimated by

S12 ≤
∑

(p,q)∈S2
l

Tpq|g0pq| <
∑

(p,q)∈S2
l

Tm
pq |g0pq| =

N2
s∑

j=1

T̂m
j |g̃0j |

=

NB∑

j=1

T̂m
j |g̃0j |+

N2
s∑

j=NB+1

T̂m
j |g̃0j | =

NB∑

j=1

T̂m
j D̂ −

NB∑

j=1

T̂m
j

(
D̂ − |g̃0j |

)
+

N2
s∑

j=NB+1

T̂m
j |g̃0j |

≤
NB∑

j=1

T̂m
j D̂ − T̂m

NB

NB∑

j=1

(
D̂ − |g̃0j |

)
+ T̂m

NB

N2
s∑

j=NB+1

|g̃0j |



42 X. WEN

=

NB∑

j=1

T̂m
j D̂ + T̂m

NB





N2
s∑

j=1

|g̃0j | −NBD̂





<

NB∑

j=1

T̂m
j D̂ + T̂m

NB

{
Ĉ(∆x)r

∆x∆ξ
− Ĉ(∆x)r−1

D̂∆ξ
D̂

}
=

NB∑

j=1

T̂m
j D̂. (5.38)

Since NB ≤ NJ , denote lB ∈ {1, 2, · · · , Ns} s.t. ςlB−1 < NB ≤ ςlB . From definition of T̂m
j

in (5.36), the expression (5.38) can be written as

NB∑

j=1

T̂m
j D̂ =D̂

{
lB−1∑

l=1

1

µkl

k̃kl
+

1

µklB

(NB − ςlB−1)

}
≤ D̂

lB∑

l=1

1

µkl

k̃kl

<D̂

lB∑

l=1

1

µkl

(
7

5
µkl

Lm + 1

)
= D̂

(
7

5
LmlB +

lB∑

l=1

1

µkl

)
. (5.39)

Applying Lemma 5.4 one has

∆ξ

lB∑

l=1

1

ξkl

<
3

(2D)
1
4

√
(lB + 1)∆ξ. (5.40)

In the next we estimate the number lB. From the definition of lB one has

NB > ςlB−1 =

lB−1∑

i=1

k̃ki
≥

lB−1∑

i=1

7

5
µki

m ≥ 7

5
mλt

x

[
lB−1

2

]
−

∑

i=1

ξT ′

i
. (5.41)

Similar to the deduction of (5.24), one gets from (5.41) that

NB >
14

15
(8D)

1
4
mλt

x

∆ξ

([
lB − 1

2

]−
∆ξ

) 3
2

≥14

15
(8D)

1
4

(
xm+ 1

2
− x 1

2

)
λt
x

∆x∆ξ

[(
lB
2

− 1

)
∆ξ

] 3
2

. (5.42)

By definition of NB, one has

NB <
Ĉ(∆x)r−1

D̂∆ξ
+ 1. (5.43)

Combining (5.42) and (5.43) gives

[(
lB
2

− 1

)
∆ξ

] 3
2

<
15∆x∆ξ

14(8D)
1
4

(
xm+ 1

2
− x 1

2

)
λt
x

[
Ĉ(∆x)r−1

D̂∆ξ
+ 1

]

⇒ lB∆ξ < A3(∆x)
2
3
r +O(∆x), (5.44)

where

A3 = 2


 15Ĉ

14(8D)
1
4

(
xm+ 1

2
− x 1

2

)
λt
xD̂




2
3

. (5.45)
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Combining (5.38)−(5.40) and (5.44) one has

∆x∆ξS12 <D̂


7

5
Lm∆xlB∆ξ +

3

(2D)
1
4

√
(lB + 1)∆ξ

λt
x

∆x




<D̂

(
7

5
Lm∆xA3(∆x)

2
3
r

)
+O(∆x) ≤ C32(∆x)

2
3
r +O(∆x),

where C32 is given in (4.13). Thus we derive the estimate (5.16b).

Now combining (5.11), (4.16), (5.16a) and (5.16b) gives the estimate (4.18). �

5.2. Proof for Theorem 4.1

With Theorems 3.1 and 4.2 we now can give proof for Theorem 4.1.

Proof. Let gnij be the numerical solutions computed with the exact initial data f(x, ξ, 0).

Denote znij = gnij− ĝnij . Due to the linearity of Scheme I, znij is the numerical solutions computed

by Scheme I with zero incoming boundary condition. Under the conditions (4.1), (4.2), the

initial values z0ij satisfy

∣∣z0ij
∣∣ =
∣∣g0ij − ĝ0ij

∣∣ = 1

∆x∆ξ

∣∣∣∣∣∣

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+1

2

ξ
j− 1

2

(
f(x, ξ, 0)− f̂(x, ξ, 0)

)
dξdx

∣∣∣∣∣∣

≤ 1

∆x∆ξ

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

∣∣∣f(x, ξ, 0)− f̂(x, ξ, 0)
∣∣∣ dξdx < D̂, (xi, ξj) ∈ DC , (5.46)

∣∣z0
∣∣
1
=∆x∆ξ

∑

(xi,ξj)∈DC

∣∣g0ij − ĝ0ij
∣∣

=
∑

(xi,ξj)∈DC

∣∣∣∣∣∣

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

(
f(x, ξ, 0)− f̂(x, ξ, 0)

)
dξdx

∣∣∣∣∣∣

≤
∥∥∥f(·, ·, 0)− f̂(·, ·, 0)

∥∥∥
L1(DC)

< Ĉ(∆x)r . (5.47)

Thus applying Theorem 4.2 gives under the CFL condition (2.6) and the mesh size restrictions

(4.6), (4.7), (4.17)

‖g(·, ·, T )− ĝ(·, ·, T )‖L1(DC) =
∣∣zL
∣∣
1
< C3(∆x)

2
3
r +O(∆x), (5.48)

where C3 is given in (4.9).

Applying Theorem 3.1 and (5.48) completes the proof for Theorem 4.1. �

6. Conclusion

In this paper we derived the L1-error estimates for a Hamiltonian-preserving scheme called

Scheme I, developed in [19], for the Liouville equation with a piecewise constant potential in

one space dimension when the initial data is given with perturbation errors. The Hamiltonian-

preserving scheme is designed by incorporating into the numerical fluxes the particle behavior–

transmission and reflection– at the potential barrier. We proved that, with the Dirichlet incom-

ing boundary conditions and for a class of bounded initial data, the numerical solution with a
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wide class of initial perturbation errors by Scheme I converges in L1-norm to the solution of

the Liouville equation defined by the particle transmission and reflection interface condition.

We derived the L1-error bounds with explicit coefficients.

Due to the linearity of Scheme I, the error estimates in this paper were obtained by applying

the error estimates for the same scheme with exact initial data established in [45] and the l1-

norm estimates for the perturbation solutions. The latter estimates composes the main part

of this paper. Since the initial perturbation errors may violate the condition required for the

l1-stability of Scheme I given in [46], the perturbation solution can be l1-unstable. Therefore

the l1-norm estimates for the perturbation solutions can not be obtained by applying the l1-

stability result of Scheme I presented in [46]. In this paper we extended the analysis in [46] to

show that even when the solution of Scheme I can be l1-unstable, the l1-norm of the solution

can still be estimated from the L∞ and L1-upper bounds of the initial data. Based on this

result we proved that Scheme I is L1-convergent given with a wide class of initial perturbation

errors. The L1-convergence rate we derived in this paper is less than the order of the initial

perturbation error, which is in consistent with the fact that the perturbation solution can be

l1-unstable.

Appendix

Lemma A.1. Let N ∈ N, C√
N

< µ < 1
3 , k = [ 75µN ]+. Then

Ck
N (1− µ)N−kµk < Ĉµ, (A.1)

where Ck
N denotes the binomial coefficient, if N satisfies the conditions

N ≥ 16max

(
1

C2
, 1

)
, (A.2)

1.1
1√
2π

√
10

7

1

C
3
2 Ĉ

N
1
4

e0.036C
√
N

< 1. (A.3)

Proof. For N ≥ 2 one can check k − µN > 0, N − k > 0, k > 0. According to Stirling

formula,

1 <
n!

nne−n
√
2πn

< 1.1, ∀n ∈ N.

Thus one has

Ck
N (1− µ)N−kµk =

N !

(N − k)!k!
(1− µ)N−kµk

<1.1(1− µ)N−kµk NNeN
√
2πN

(N − k)N−keN−k
√
2π(N − k)kkek

√
2πk

=1.1
1√
2π

√
N√

(N − k)k

(N − µN)N−k(µN)k

(N − k)N−kkk

=1.1
1√
2π

√
N√

(N − k)k

(
1 +

k − µN

N − k

)N−k (
1− k − µN

k

)k

=1.1
1√
2π

√
N√

(N − k)k

[
(1 +A)

1
A (1−B)

1
B

]k−µN

, (A.4)
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where

A =
k − µN

N − k
, B =

k − µN

k
.

By Taylor expansion one has

(1 +A)
1
A < e1−

A
2
+A2

3 , (1 −B)
1
B < e−1−B

2 , for A,B > 0. (A.5)

Combining (A.4) and (A.5) one has

Ck
N (1− µ)N−kµk < 1.1

1√
2π

√
N√

(N − k)k

[
e−

B
2
+A2

3

]k−µN

= 1.1
1√
2π

√
N√

(N − k)k
e−I1 , (A.6)

where

I1 =
(k − µN)2

2k
− (k − µN)3

3(N − k)2
. (A.7)

We then estimate the term I1. Define function

F1(x) =
x2

2k
− x3

3(N − k)2
.

Then I1 = F1(k − µN). Now we check the sign of F ′
1(x) when x ∈ [ 25µN, k − µN ].

F ′
1(x) =

x

k
− x2

(N − k)2
=

x

k(N − k)2
((N − k)2 − kx)

≥ x

k(N − k)2

(
(N − k)2 − k(k − µN)

)
=

x

k(N − k)2
(N2 − 2kN + kµN)

>
2xN

k(N − k)2

(
N

2
− [

7

5
µN ]+

)
≥ 2xN

k(N − k)2

(
N

2
−
[
7

15
N

]+)
≥ 0, for N ≥ 14.

Thus one has F1(k − µN) ≥ F1(
2
5µN), namely

I1 ≥ (25µN)2

2k
− (25µN)3

3(N − k)2
. (A.8)

The right hand side of (A.8) decreases when k increases, so

I1 >
(25µN)2

2
(
7
5µN + 1

) −
(
2
5µN

)3

3
(
N − 7

5µN − 1
)2 = µN




(25 )
2

2
(

7
5 + 1

µN

) −
(
2
5

)3

3
(

N−1
µN − 7

5

)2


 . (A.9)

If one imposes the condition (A.2), then µN ≥ 4, N−1
µN > 3× 15

16 , which gives I1 > 0.036µN >

0.036C
√
N . Under this condition, from (A.6) one has

Ck
N (1− µ)N−kµk < 1.1

1√
2π

√
N√

(N − k)k
e−I1 < 1.1

1√
2π

√
N√

(N − k)k
e−0.036C

√
N

<1.1
1√
2π

√
N√

(N − 1
2N)(75µN)

e−0.036C
√
N < 1.1

1√
2π

√
10

7

1√
CN

1
4

e−0.036C
√
N . (A.10)
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Thus if one further imposes the condition

1.1
1√
2π

√
10

7

1√
CN

1
4

e−0.036C
√
N <

ĈC√
N

, (A.11)

which is equivalent to condition (A.3), then (A.1) is satisfied. �
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