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Abstract

We describe the application of the spectral method to delay integro-differential equa-
tions with proportional delays. It is shown that the resulting numerical solutions exhibit
the spectral convergence order. Extensions to equations with more general (nonlinear)
vanishing delays are also discussed.
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1. Introduction

We consider the delay integro-differential equation of the form

¥ (t) =a(t)y(t) + b()y(gt) + / Ko(t — s)y(s)ds

+ ! Ki(t—s)y(s)ds +g(t), tel:=[0,T], (1.1a)
0

y(0) =0, (1.1b)

where 0 < ¢ < 1, a(t) and b(t) are smooth functions on I := [0,7] and Ky, K1 € C(I).
The special case corresponding to Ko(t,s) = 0, Ki(t,s) = 0, g(t) = 0, yields the (variable
coefficient) pantograph equation. Results on the existence, uniqueness and regularity of solutions
may be found in [3-6].

It has been shown in [6] that the approximation of the solution of (1.1) by collocation
using piecewise polynomials of degree m > 1 and uniform meshes does not lead to the classical
O(h*™)- superconvergence at the mesh points when collocation is at the Gauss points; for
m > 2 the optimal order is only m + 2. Thus, it is of interest to investigate if the numerical
solution of (1.1) by spectral methods leads to a higher (exponential) convergence order.

It will be shown that the results on the exponential order of convergence of the spectral
method for the pantograph DDE [7] and for Volterra type integral equations [11,12] remain
valid for pantograph-type integro-differential equation (1.1).

In Section 2 we describe the spectral method for the integro-delay differential equation. This
is followed, in Section 3, by corresponding results on the attainable order of convergence of these
spectral methods and by remarks (Section 4) on their extension to equations with nonlinear
vanishing delays. Section 5 is used to illustrate the convergence results by numerical examples.
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2. Spectral Method

Let {tx}2_, be the set of the (N + 1) Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto
points in [—1,1] and denote by Py the space of real polynomials of degree not exceeding N.
Integrating (1.1a) from [0, ¢;] gives

y(ti)zyo—i—/otia() ds+/ b(s qsds+/ (/ Ko(s—v)y )dv)d

+/Oti ( Oqé Kl(s—v)y(v)dv) ds+/0 g(s)ds. (2.1)

We will describe and analyzed spectral methods on the standard interval [—1,1]. Hence using
for ¢; (i =1,---,N) the linear transformation s = t—2"9 + t—2", we get

y(ts) =yo +%/ia(%(@—i—1))y(%(9+1))d9+ %/_llb(%(w 1))y(%’5i(9+ 1))d9
. %/_11 (/Ot—z"(9+1) KO(%(H +1) — U)y(v)dv) do
L % /11 </02<9+1> . (%(9 T 1) - U)y(u)du) do + G(t;), (2.2)

where .
G(t;) = / g(s)ds.
0

Using the (N+1)-point Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto quadrature formula
relative to the Legendre weight leads to the semi-discretised spectral equations

t;
) =y +§’ am (Tir )wk + = me (qTir)w

( m K (i — U)y(v)dv) wn+ G(t), (2.3)

which we rewrite in the form

N
y(t:) ~yo + % Z a(Tig)y(Tik )wr, + — Z (rir )y (qTin )k
ti N Tie [ Tk -
B e
L S ik ' qTik qTik
+§§J< 2 /., 5 (9+1)) ( (9+1))d9) wr +G(t),  (24)
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Again using the (N + 1)-point Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto quadra-
ture formula relative to the Legendre weight for the integral term in (2.4) we get

N
y(ti)ﬁ“yoJr%Z a(Tir)y(Tik )wr + = Z (Tir )y (qTin Jwie
el al T, T,
3 (B S (- s ) o

=0
(q;’ ﬁ:K1<%k(2q9nQ))y(qﬂk(9 +1)) >Wk+G(ti)~ (2.5)

y(t) =Y (1) =Y y(t)Fi(t),  te[0,T], (2.6)

where Fj(t) is the standard Lagrange interpolation polynomial associated with the Gauss-
Legendre, or Gauss-Radau, or Gauss-Lobatto points {tk}{c\]:o. The efficient way to compute
F;(s) is to express it in terms of the Legendre functions ([3,9]). It follows from (2.3) that the
numerical scheme for solving (1.1a) is given by

f N N N
=Yyo + 51 > (Z Fj(Tir)a(rir )w ) ZY <Z F} quk)b(Tik)Wk>
i=0 k=0

k=0
+EXN:Y, ﬁ:zN:qTikK (E(Q_ 0, — ))F (an(e +1)>w w
2j=0] n:0k=02 2 R "
t; ol & Tik Tik Tik
23V, DKo (51— 00)) Fy (50 + 1) Jwnior | + Glt). (2.7)
j=0 k=0n=0

Setting Y := [Yp, -, Yn]T and Fy := [yo, - ,y0]T + [G(to), -+ ,G(tn)]T, we obtain a more
compact form of (2.7),

— (A1 4+ A2+ A3+ A4)Y = Fy, (2.8)

where the entries of the matrices A1, ..., Ay € RWNTDX(N+D are given by:
P
Ay(i, ) = é kz_: Fy(rir)a(Tir )wi,
AQ(Zaj) =
t; NN T; Ti T,
As(i,j) = 5’2 3 %’“KO<%€(1 - Gn)>F ( * (0, + 1)>wnwk,
e

N N
t; qTik Tik qm

o | S
T
M=
o
A
—
=)
2
-
~—
=
s
x>
€
x>

A4(ivj)




52 I ALI
3. Convergence Analysis

To carry out the convergence analysis of our method we first introduce some useful lemmas.

Lemma 3.1. ([3]) (Integration error for Gauss quadrature) Assume that a (N +1)-point
Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto quadrature formula relative to the Legendre
weights is used to integrate the product yo, wherey € H™(I) with I := (—1,1) and some m > 1,
and ¢ € Pn. Then there exists a constant C not depending on N such that

1
‘/ y(z)¢p(x)dr — (%¢)N‘ <CON""Wlg,, vz, (3.1)
-1
where
N 5
_ 2
ol z2(r) kz:% ST 7Pk (3.2a)
1/2
Wl v = > Iy ™ 01220, ; (3.2b)
k=min(m,N+1)
N
(v, @) = > _ wiy(zr)d(r), (3:2¢)

k=0
where ¢y, are discrete Legendre coefficients.

Lemma 3.2. (Estimates for interpolation error) Assume that y € H™(I) and denote by
Inu the interpolation polynomial associated with the (N +1) Gauss-Legendre, Gauss-Radau, or
Gauss-Lobatto points {t;}_,. Then

ly = InyllLzay < ON""ylg,, ) (3.3a)
ly = Inyllzey < CNY* "yl oy (3.3b)

Proof. The estimate (3.3a) is given on p. 289 of [3]. The estimate

ly = Inyllgr ) < CN'T™|y

Hm,N(I)’ 1§5Sm7

can also be found in [3]. Using the above estimate and the inequality

1 1/2 1/2
lolleaty < /5= + 200l e 0y V0 € H'(a,D),

we readily obtain (3.3b). O

From [4], we have the following result on the Lebesgue constant for Lagrange interpolation
based on the zeros of the Legendre polynomials.

Lemma 3.3. (Lebesgue constant for the Legendre series) Assume that {Fj(x)} are
the Lagrange interpolation polynomials with respect to the Gauss-Legendre, Gauss-Radau, or
Gauss-Lobatto points {x;}. Then

[Mnlloo = max Z |Fj(z)] = O(VN). (3-4)
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Lemma 3.4 (Gronwall inequality) Let T > 0 and C1,Cs,C5,Cy > 0. If a non-negative
continuous function E(t) satisfies

B <C / " B(s)ds + s / ' Blgs)ds + Cs /O t /O " B(w)dvds

qs
+ 04/ / v)dvds + H(t), vt € [0,T], (3.5)
where 0 < g < 1 is a constant and H(t) is a continuous function, then
1Bl L1y < CllH| Lo 1)- (3.6)

Proof. For E > 0, we have

/Uﬂwms=§oﬁE@mssééﬂmﬁﬁ
// dvds/ot(tv) ()dv<C’/t E(v)dv,

qs at
/ E(v)dvds = E(v )(t—quv<C/E v,
0

which, together with (3.5), yield the standard Gronwall inequality,

t
E(t) < C/ E(v)dv + H(t).
0
Consequently, the desired estimate (3.6) is obtained. O

Theorem 3.1. Consider the delay integro-differential equation (1.1a) and its spectral approzi-
mation method (2.7). Then

1Y = yllgoo(ry SCNY2~™(Dy + Do + By + By)|lyl|
L ON-Y2- m(ly

H,, n(0,T) + |K0y Hp n(I) + |K1y Hyon(T )), (37)

where Y is the polynomial of degree N associated with the spectral approzimation (2.7), and C,
D1, Dy, By B are constants independent of N.

Proof. Following the notations of (2.7), let

Then
[[ }Né = éz_: (Tzk Z: (Tzk (0 + 1)) )wk. (3.8)

The second term on the right-hand side of (2.7) can be written as [Y]x ¢s. It follows from the
numerical scheme (2.7) that

Yi = g0+ [a¥ v + 0 s + | [Ko(s = o)V In |+ [Kas—o)YIna] 0 (39)

,S N,qs
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’;/lla(’; 9+1) (%(M1))d9+%/_llb(%(ﬂl))l/(%“(@ﬂ))d@
+%/11 </02(9+1) (t (0+1)—v)Y (U)du) d
/

P 7(9+1)
5 / (9 +1) - U)Y(v)dv do + G(t;)
1 0
—Lix—lLig—Iiz— 14, (3.10)

n=% [ 11a(%<0+ D) (564 1)d0 - V..

ne=% [ 11b(%(0 F)7 (G0 +0)d0 - Yy

La=5 [ 11 < / s Ko(20+1) - v)Y(v)dv) 48~ [[Kols = )Yl
= () (o - g ) - [ise -],

It follows from (2.1) and (2.2) that

which gives

+

Y(t;) =Yo + /Oti a(s)Y (s)ds + /Oti b(s)Y (¢s)ds + /Oti /OS Ko(s —v)Y (v)dvds

+ /Oti OQS Ki(s—=v)Y(v)dvds — Iy — Lo — I3 — I« + G(t;). (3.11)

Using Lemma 3.1 gives
Ll < ON"™alg, IV llzery < ON~alg o (lellos + lgll=), (312a)
[Lial < ON"™lg, IV 2y < ON™Blz, oy (llellz= + lyllzz)- (3.12b)

For the other two terms, that is |I; 3| and |I; 4| we have,

hal= [ ([ Hals = 0¥ o (Kol — )Y 1, ) s

+ /Oti {Ko(s — v)Y} Nyvds - [[KO(S - ’U)Y]Nyv}

g/ot (CN are

+ONTY e a2 Ko (5= 56+ 1) Fy (56,4 D))]

N,s

g ¥ |2 ) ds

Hig e

o )+o<n]<N} K0<5 S (6 +1)> ( (0 +1))

(0,:

Ko(s —v)

)

[CR)

scNm|Y||L2(
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<N (llellz + llyllz2)

s s s
i 0<n SN ‘iKO (8 B 5(9" + 1)) Fj (5(9” + 1)) ‘HE’S,#)> ;o (313)

(0,5)

X (‘Ko(s — )

where we have used Lemma 3.1, and

K3 N,s
<0N—m‘(K0(s —0)Y )|
(0,¢53)
N S S
n=0 m
(0,t3)
N N S S S

=CN™™ Zyj 5Ko(s— 5(9n+1))Fj (5(9n+1))wn

7=0 n=0 m

H(Oefi)

N N s s
<CN"3 N Ko (s 5 (0n + 1)) F; (5(% +1) Yjwy,

J=0n=0 Hzgefi)

S S
(0,t3)
Similarly
qs qs s
< — - _ (=
|I’L74| - (‘Kl(s qv)‘H(’gys) + OSIE?)SCN‘ 2 K1(S 2 (9n * 1))F](2(9n + 1) HZ&%))
x ON""(Jlellz + Ilyllz2). (3.15)

Multiplying F;(t) on both sides of (3.11) and summing up from 0 to IV yield

v =t ([ atovus) + o ([ o7 asias)

+ Iy (/Ot /O Ko(s — U)Y(v)dvds)

s (/O O Ka(s— U)Y(v)dvds) Fyo + Gt + i (0)

=t ([ ot (w161 +et60)ts) = 1 ([ 066) (00 + et )

+In </Ot /OS Ko(s — v)(y(v) + e(v))dvds) + G(t;)
+In </Ot Oqs Ki(s— v)(y(v) + e(v))dvds) +yo + Ji(t), (3.16)

qt

where we have used Z?LO F;(t) =1, and the notation J; means:

Ji(t) == Z (IM + Lo+ L+ Ii,4)Fi(t)-

N
=0
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Defining;:
e(t) :=Y(t) —y®),  elqt):=Y(qt) —ylqt),
and combining (3.16) with (2.1) gives

e(t) = /Ot ae(s)ds + /O1t be(gs)ds + /Olt /05 Ko(s —v)e(v)dvds

+ / " (s — w)e(o)duds + I (8) + a(t), (3.17)
0 0

where

Ja(t) =y ( /O t ay(s)ds) - /O ay(s)ds + In ( /O t ae(s)ds) - /O " ae(s)ds
ci (] thy<qs>d> / "hua s 1w (5 [ the<qs>ds) - he(gs)ds
( / Ko(s —v) dvds) f/ / Ko(s —v)y(v)dvds
+IN< / Kols — v)e(u )dvds) - /O /O Kos — v)e(v)duds
(]

+ Iy

t gs
+In K1 (s —v)y (v)dvds) - / Ki(s —v)y(v)dvds
0 Jo
t qs
+ 1IN (/ Kl(s - U)e(v)dvds) - / K1(s —v)e(v)duds. (3.18)
o Jo 0o Jo
It follows from the Gronwall inequality Lemma 3.4 that
el < C(ITllz= + 1l (3.19)
Next we will be concerned by the estimation of ||.J1|| () and || Jo|[ oo (r). First
11l Lo (1)
N
<C(Miallzoen) + Wil + Misllzosen + Mialleen ) SOIF G e
=0
<CN'Y2"(llell g1y + (1)) (D1 + D2 + Bo + By ), (3.20)

where we have used Lemma 3.3 and where D; , Dy , By and B; are constants depending on
the given functions a, b, Ky and K;. Next, we have (using Lemma 3.2)

2l oo (1)
SCNTY2Mylg oy FONTYE (gt g, oo+ ONTP T Koyl v
+CNTV2 M Kyylg oy + CONTV2 el + ONTV2le(gs) | oo
+ CN V2| Koe(s)|| L= + CN 2| Kie(gs)]| L (3.21)

The above two estimates, together with (3.19), yields:
llell Loy SCNY?~"™(Dy + Dy + By + Bl)(||e||L°°(I) + ||y||L°°(I)>
+CONTE Myl oy HONTE T () g, o

+CONTV2 Koylg, ooy +CONTV2T Koy

Hon(I)?
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which leads to the desired estimate (3.7), provided that N is sufficiently large. U

4. Nonlinear Vanishing Delays

In the preceding analysis we considered the delay integro-differential equation (1.1) with
linear proportional delay 6(t) = gt (0 < ¢ < 1). A close look at the proof of the convergence
theorem in Section 3 reveals that the analysis and hence the spectral convergence results remain
valid for smooth nonlinear delay function 6 that are subject to the following assumptions:

(i) 6(0) = 0; 0 is strictly increasing on [0, T7;
(i) 0(t) < quit, t € [0,T], for some ¢q; € (0,1);
(iii) € is smooth on [0, T].

The proof of Theorem 3.1 is then readily adapted to hold for such integro-differential equations
with these vanishing nonlinear delays, since assumption (ii) leads to error inequalities that are
classical Gronwall inequalities in which ¢ is replaced by q;. We leave the details of the proof to
the reader.

5. Numerical Examples

In the following, we use two examples to illustrate the accuracy and efficiency of the spectral
method (2.7). In our computations, we use T = 7 and the Legendre-Gauss quadrature with

weights
2

(1 =)Ly ()2

wj = 0<]§N

Example 5.1. Let a(t) = cos(t),b(t) = sin(t), Ko(t — s) = (t — s)? and K;i(t — s) = (t — s).
Choose
g(t) :é cos(t/q) — cos(t) sin(t/q) — (sin?(t)) — 2¢> cos(t/q)
— qt? +2¢3 + qt cos(t) — ¢t cos(t) + ¢*sin(t) — qt,

Table 5.1: Example 5.1: The point-wise error for ¢ = 0.01 using (2.7).

N | L®(¢g=0.01) | N | L*(¢=0.01) error | N | L*(q = 0.01) error
6 8.552e-2 6 4.511e-2 6 5.440e-2
12 1.460e-2 12 5.306e-3 12 7.187e-3
14 1.429e-3 14 6.887e-4 14 8.623e-4
16 1.001e-4 16 4.568e-5 16 5.642e-5
18 8.686e-6 18 2.922e-6 18 3.651e-6
20 6.572e-7 20 2.148e-7 20 2.840e-7

Table 5.2: Example 5.1: The point-wise error for ¢ = 0.5 using (2.7).

N | L®(¢g=05) | N | L'(¢=0.5) error | N | L?*(g = 0.5) error
6 6.847e-03 6 1.924e-03 6 2.570e-03
12 1.506e-08 12 8.505e-09 12 9.903e-09
14 1.845e-10 14 7.941e-11 14 9.923e-11
16 1.376e-12 16 6.199e-13 16 7.521e-13
18 1.432e-14 18 5.876e-15 18 7.120e-15
20 4.465e-15 20 8.137e-16 20 1.357e-15
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Fig. 5.1. Example 5.1: L* (o), L?(<) and L'(¢) errors obtained by using (2.7) for ¢ = .99.

such that the exact solution is given by

y(t) = sin(t/q).

The point-wise error (for different norms) between the numerical solution and the exact solution
for ¢ = 0.01,¢g = 0.5,¢ = .99 and for different values of IV, is shown in Fig. 5.1 and Tables 5.1
and 5.2, respectively.

Example 5.2. Choose a(t) =t , b(t) = et Ko(t — s) = 1= Ky (t — s) = 4% and
1 1
g(t) = qe? cos(t/q) — e sin(t/q) — te?* cos(t/q) — cos(t) — —e? sin(t/q) — eTqsin(t).
q q

For these data the exact solution is

y(t) = e cos(t/q).

The point-wise error (in different norms) between the numerical solution and the exact solution
for ¢ = 0.01,¢q = 0.5,¢ = .99 and for different values of NV, is shown in Figs. 5.2 and 5.3 and
Table 5.3, respectively.

L L L L L L L
4 6 8 10 12 14 16 18 20

Fig. 5.2. Example 5.2: L (o), L*(<) and L'(¢) errors against N obtained by using (2.7) for ¢ = 0.01.
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Fig. 5.3. Example 5.2: L> (o), L*(<) and L'(¢) errors against N obtained by using (2.7) for ¢ = .99.

Table 5.3: Example 5.2: The point-wise error for ¢ = 0.5 using (2.7).

N | L®(¢q=05) | N | L*(¢=0.5) error | N | L*(g = 0.5) error
6 1.286e+4-00 6 1.658e-01 6 3.671e-01
12 1.645e-07 12 1.987e-08 12 4.154e-08
14 3.390e-09 14 4.749e-10 14 8.150e-10
16 1.941e-11 16 3.669e-12 16 5.068e-12
18 9.530e-13 18 1.083e-13 18 2.163e-13
20 6.750e-14 20 7.605e-15 20 1.601e-14

6. Concluding Remarks

We have shown that the spectral method yields an efficient and very accurate numerical
method for the approximation of solutions to integro-differential equation with proportional
delay. The method has spectral accuracy, which means that a very accurate solution can be
obtained using relatively few collocation points. The method is readily extended to pantograph-
type integro-differential equations with nonlinear vanishing delays.
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