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Abstract

In this paper, an EM-like image reconstruction iterative formula specifically developed

for stable external sources is rewritten as a map towards a fixed point iteration. Local con-

vergence of the image reconstruction method is then proved. Finally a three-dimensional

numerical image reconstruction example is presented.
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1. Introduction

Diffuse optical tomography (DOT) is an optical imaging modality, which provides the spatial

distribution of the optical parameters inside a random media [1]. This nondestructive technique

has advantage of directly measuring the physiologically relevant tissue and blood oxygenation,

and is now widely used in breast cancer diagnostics [2,3], joint imaging [4] and blood oximetry

in human muscle and brain tissues [5, 6].

In DOT, the near-infared external sources are used to delivery the light signals. The intensity

and path-length distributions of the exiting photons provide information about the optical

properties of the transilluminated tissue by means of a physical models of the light migration.

The propagation of light in highly scattering media, such as biological tissue may be described

by the radiative transfer equation (RTE) [7]. When the medium is predominantly scattering

rather than absorption, the diffusion approximation (DA) is a good approach to the RTE, away

from sources and boundaries and it has been widely used in DOT [7,8].

Mathematically, the image reconstruction of DOT is an inverse problem solving the ab-

sorption and diffusion coefficient from the boundary measurements. Various reconstruction

methods based on DA model have been established. The analytical methods with different

boundary conditions are studied in a series of papers [9–11] and they can reconstruct optical

parameters only in simple region cases. The iterative optimization based reconstruction meth-

ods [12] are used widely since they can deal with optical parameters in complex regions. In
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these methods, the problem is regarded as the optimization of an objective function represent-

ing the sum-squared difference of the data to the model, plus additional regularization terms

representing prior knowledge. An EM-like reconstruction method for stationary sources DOT

is proposed, see, e.g., [13]. In this method, the boundary measurements are assumed to have

independent and identical Poisson distributions. The problem is regarded as the optimization

of a log-likelihood function with nonnegative constrain of optical parameters.

In this paper, we investigate the convergence of the EM-like image reconstruction which is

specifically developed for stable external sources condition. The rest of the paper is organized

as follows. In Section 2, we review the photon migration model and introduce the station-

ary sources DOT forward and inverse problems. In Section 3 we derive the EM-like image

reconstruction algorithm. In Section 4, the local convergence of this algorithm is proved. In

Section 5, a 3-D numerical example is presented.

2. DOT Forward and Inverse Problems

Let Ω ⊂ R
3 be a domain that contains the tissue to be imaged, bounded by surface Γ = ∂Ω.

Let µa(x) and µs(x) be the absorption and scattering coefficients of the tissue, respectively.

Denote D(x) as the diffusion coefficient which is expressed as

D(x) =
1

3(µa(x) + µ′
s(x))

, (2.1)

where µ′
s = (1 − η̄)µs is the reduced scattering coefficient of the media and η̄ is an anisotropy

factor (0 ≤ η̄ ≤ 1).

We consider the cases in which the tissue to be imaged is illuminated by multiple stationary

external sources. Denote S as the number of external sources. Under each irradiation, the

measurement can be collected on part of the surface Γi ⊂ Γ, i = 1, · · · , S.

Individual photons from the stationary external source migrate through the tissue and un-

dergo many scattering events or absorption events according to the local values of the tissue’s

optical parameters. Each photon may either have negligible contribution, or escape from the

surface ∂Ω, thus contributing to the boundary measurements. Under each irradiation, the

macroscopic phenomena of photons can be described with a steady state diffusion equation

(DA model)

−∇ · (D(x)∇ui(x)) + µa(x)ui(x) = 0, x ∈ Ω, (2.2)

where ui(x) is the isotropic photon density inside Ω for i = 1, · · · , S. The external source

information is contained in the boundary condition

ui(x) + 2AD(x)
∂ui

∂ν
(x) = g−i (x), x ∈ Γ, (2.3)

where g−i (x) is the total inward flux, A is a parameter that describes the mismatch between

the refractive index within Ω and the refractive index in the surrounding medium [14,15], ν is

the exterior normal. The steady-state attenuation measurements are collected on part of the

surface Γi ⊂ Γ, i = 1, · · · , S, and can be defined as the outward flux

gi(x) = −D
∂ui

∂ν
(x), x ∈ Γi, i = 1, · · · , S. (2.4)
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We use a vector

g = (g1, · · · , gS)
T (2.5)

to represent the group of boundary measurements.

If the boundary measurements are known, the Robin boundary condition (2.3) on Γi can be

replaced with Dirichlet boundary condition

ui(x) = g−i (x) + 2Agi(x), x ∈ Γi. (2.6)

With the boundary condition and boundary measurements, the DOT problem is to solve the

optical parameters µa(x) and D(x) with the corresponding diffusion approximation ui, (i =

1, · · · , S) such that


















−∇ · (D(x)∇ui(x)) + µa(x)ui(x) = 0, x ∈ Ω,

ui(x) + 2AD
∂ui

∂ν
(x) = g−i (x), x ∈ Γ,

D
∂ui

∂ν
(x) = −gi(x), x ∈ Γi.

(2.7)

or


























−∇ · (D(x)∇ui(x)) + µa(x)ui(x) = 0, x ∈ Ω,

ui(x) + 2AD
∂ui

∂ν
(x) = g−i (x), x ∈ Γ \ Γi,

ui(x) = g−i (x) + 2Agi(x), x ∈ Γi,

D
∂ui

∂ν
(x) = −gi(x), x ∈ Γi.

(2.8)

Since ui can be determined by the following mixed boundary value problems (MBVPs):

DOT(P)















−∇ · (D(x)∇ui(x)) + µa(x)ui(x) = 0, x ∈ Ω, i = 0, · · · , S,

ui(x) + 2AD
∂ui

∂ν
(x) = g−i (x), x ∈ Γ \ Γi, i = 0, · · · , S,

ui(x) = g−i (x) + 2Agi(x), x ∈ Γi, i = 0, · · · , S.

(2.9)

We define a DOT forward operator Fi[µa, D] : L2(Ω)× L2(Ω) → H−1/2(Γi) as follows

Fi[µa, D] = −D
∂ui

∂ν

∣

∣

∣

∣

Γi

, i = 0, · · · , S, (2.10)

where ui is the solution of the MBVP (2.9). Therefore the forward problem of DOT can be

expressed as

g = F [µa, D], (2.11)

where

F = (F1,F2, · · · ,FS)
T. (2.12)

Assume that the boundary measurements are of independent and identical Poisson distributions.

Similarly to the formulation in [20], we define a log-likelihood function

Φ[µa, D] =

S
∑

i=1

∫

Γi

{

gi logFi[µa, D]−Fi[µa, D]
}

dΓ. (2.13)

With maximum likelihood estimation (MLE) method in statistics, the inverse problem of DOT

can be defined as the optimization of the log-likelihood function

arg max
µa≥0,D>0

Φ[µa, D]. (2.14)
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3. EM-Like Image Reconstruction Algorithm

To solve the optimization problem, the Fréchet derivative of the objective function should

be considered. Let Φ′[µa, D] = (Φ′
µa
[µa, D],Φ′

D[µa, D]) be the Fréchet derivative of Φ[µa, D].

According to [13],

Φ′[µa, D] =

(

−
S
∑

i=1

(ψi − φi)ui, −
S
∑

i=1

∇(ψi − φi) · ∇ui

)

, (3.1)

where ui is the solution to (2.9), and ψi and φi satisfy






















−∇ · (D∇ψi) + µaψi = 0, in Ω,

ψi + 2AD
∂ψi

∂ν
= 0, on Γ \ Γi,

ψi =
gi

Fi[µa, D]
, on Γi,

(3.2)

and














−∇ · (D∇φi) + µaφi = 0, in Ω,

φi + 2AD
∂φi

∂ν
= 0, on Γ \ Γi,

φi = 1, on Γi,

(3.3)

respectively. With the Kuhn-Tucker condition [16] in the following:

∃ µ0(x), µ1(x), µ2(x) ≥ 0, µ0(x)
2 + µ1(x)

2 + µ2(x)
2 6= 0, for x ∈ Ω, (3.4)

such that

µ0(x)Φ
′
D

[

µa(x), D(x)
]

+ µ1(x) = 0, (3.5a)

µ0(x)Φ
′
µa

[

µa(x), D(x)
]

+ µ2(x) = 0, (3.5b)

and

µ1(x)D(x) = 0, µ2(x)µa(x) = 0, (3.6)

we arrive at

µa(x)Φ
′
µa

[

µa(x), D(x)
]

= 0, (3.7a)

D(x)Φ′
D

[

µa(x), D(x)
]

= 0. (3.7b)

Equivalently, we have

µa

S
∑

i=1

ψiui = µa

S
∑

i=1

φiui, (3.8a)

D

S
∑

i=1

∇ψi · ∇ui = D

S
∑

i=1

∇φi · ∇ui. (3.8b)

Therefore the following iterative formulas can be used to update the diffusion coefficients and

absorption coefficients:

µ(n+1)
a = µ(n)

a

∑S
i=1 φ

(n)
i u

(n)
i

∑S
i=1 ψ

(n)
i u

(n)
i

, (3.9a)

D(n+1) = D(n)

∑S
i=1 ∇ψ

(n)
i · ∇u

(n)
i

∑S
i=1 ∇φ

(n)
i · ∇u

(n)
i

. (3.9b)
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From the iterative formulas, the optical parameters might overshoot at one step, then in

the next step, the value of forward operator Fi might be negative and ψi would be negative

afterwards. When the optical parameters are overshooting, we have to roll back to the previous

step and add a positive constant to the third equation of (3.2) and (3.3).

4. Convergence Analysis

To simplify the notations, we denote

p = (µa, D) ∈ L2(Ω)× L2(Ω), (4.1)

as a pair of real-valued optical parameters. We analyze the behavior of iterative formulas (3.9a)

and (3.9b) in a neighborhood of the maximum point p∗. According to the properties of the

log-likelihood function, p∗ exists and occurs in the interior of the feasible region. Rewrite the

iterative formulas (3.9b) and (3.9a) as

p(n+1) = p(n) + C[p(n)] · Φ′[p(n)], (4.2)

where

C[p] =

(

µa
∑S

i=1 ψiui
,

−D
∑S

i=1 ∇φi · ∇ui

)

. (4.3)

We can view the iterations given by (4.2) as a map moving toward a fixed point

G[p] = p+ C[p] · Φ′[p]. (4.4)

To analyze the convergence of the iterative formulas (3.9a) and (3.9b) for image reconstruc-

tion of DOT, we need the following lemmas.

Lemma 4.1. ([17, 18]) Let X be a Banach space, A a smooth (nonlinear) operator in X with

fixed point x∗, and A′ the Fréchet derivative of the operator A. The fixed point x∗ may be

obtained as the limit

x∗ = lim
n→∞

xn,

where xn is given by the successive approximations

xn+1 = Axn (n = 0, 1, · · · )

for any initial value x0 sufficiently close to x∗, provided that the spectral radius of the Fréchet

derivative A′(x∗) of A at x∗ is strictly less than 1.

Lemma 4.2. Assume that operators A : X → X and B : X → X are positive definite, A− B :

X → X is non-negative definite. Then the spectral radius of the operator A−1(A−B) : X → X

lies on [0, 1).

Proof. Let λ be the eigenvalue of operator A−1(A − B) : X → X and ξ ∈ X be the

corresponding eigenfunction. We have

A−1(A− B)ξ = λξ, (4.5)
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which gives

(A− B)ξ = λAξ, (4.6)

Let K = A− B. Then A = K + B, which yields

(1− λ)Kξ = λBξ. (4.7)

The inner product of ξ and the above equation in X is

〈(1− λ)Kξ, ξ〉X = 〈λBξ, ξ〉X , (4.8)

i.e.

(1− λ)〈Kξ, ξ〉X = λ〈Bξ, ξ〉X . (4.9)

Since the operators B is positive definite and K is non-negative definite, we have (1 − λ)λ > 0

or λ = 0. Then 0 ≤ λ < 1. Hence the spectral radius of the operator A−1(A−B) lies on [0, 1).

This completes the proof. �

The following lemma is about the Fréchet derivative of the forward operator Fi, (i =

1, · · · , S).

Lemma 4.3. ( [13,19]) Consider the MBVPs (2.9). Let p = (D,µa) be a pair of real functions

defined in L2(Ω)× L2(Ω), which satisfies

0 < mD ≤ D(x) ≤MD, 0 ≤ µa(x) ≤Mµ, (4.10)

where mD,MD,Mµ > 0. Let h = (hD, hµa
) be a pair of bounded functions defined in L2(Ω) ×

L2(Ω), and hD = 0 on Γ. Then the Fréchet derivative of the forward operator is defined as

DF ih = −D
∂vi

∂ν
, on Γi, (4.11)

where vi is the solution of the following MBVP















−∇ · (D∇vi) + µavi = ∇ · (hD∇ui)− hµa
ui, in Ω,

vi + 2AD
∂vi

∂ν
= 0, on Γ \ Γi,

vi = 0, on Γi.

(4.12)

Lemma 4.4. Let h = (hD, hµa
) be a pair of bounded function defined in L2(Ω)×L2(Ω), hD =

0 on the boundary Γ, and Φ be the log-likelihood function defined in Eq. (2.13). Let p∗ =

(D∗, µ∗
a) be the extremum point of Φ[p]. Then the second Fréchet derivative of Φ[p] at p∗ is

D2Φ[p∗]h2 =

S
∑

i=1

∫

Γi

−gi
F2

i [p
∗]

(

−D∗ ∂v
∗
i

∂ν

)2

dΓ, (4.13)

where v∗i is the solution of MBVP (4.12) with the optical parameters p∗.

Proof. Let

f(t) = Φ[p∗ + th], for t ∼ 0. (4.14)
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Direct calculations give

d2

dt2
f(t)

∣

∣

∣

∣

t=0

=
d

dt

S
∑

i=1

∫

Γi

{

gi
1

Fi[p∗ + th]
− 1

}

d

dt
Fi[p

∗ + th]dΓ

∣

∣

∣

∣

t=0

=

S
∑

i=1

∫

Γi

−gi
F2

i [p
∗]

(

d

dt
Fi[p

∗ + th]

)2
∣

∣

∣

∣

∣

t=0

dΓ +

S
∑

i=1

∫

Γi

(

gi

Fi[p∗]
− 1

)

d2

dt2
Fi[p

∗ + th]

∣

∣

∣

∣

t=0

dΓ

=

S
∑

i=1

∫

Γi

−gi
F2

i [p
∗]

(

−D∗∂v
∗
i

∂ν

)2

dΓ +

S
∑

i=1

∫

Γi

(

gi

Fi[p∗]
− 1

)

d2

dt2
Fi[p

∗ + th]

∣

∣

∣

∣

t=0

dΓ. (4.15)

Since we have

Φ′[p∗] = 0, (4.16)

on the extrumum point p∗ and according to Eq. (3.1), we obtain

gi = Fi[p
∗]. (4.17)

Finally we arrive at

d2

dt2
f(t)

∣

∣

∣

∣

t=0

=

S
∑

i=1

∫

Γi

−gi
F2

i [p
∗]

(

−D
∂v∗i
∂ν

)2

dΓ. (4.18)

This completes the proof of the lemma. �

It follows from Lemma 4.1 that the fixed point p∗ of (4.4) is locally attractive provided that

the spectral radius of the differential dG is strictly less than 1. In the following, we estimate

the spectral radius of dG and give the convergence analysis of the reconstruction method.

Since Φ′[p∗] = 0, we have

dG[p∗] = I + C[p∗]D2Φ[p∗]

= C[p∗]
(

C−1[p∗] +D2Φ[p∗]
)

, (4.19)

where D2Φ[p∗] represents the second Fréchet derivative. According to Lemma 4.2, when C−1[p∗]

and −D2Φ[p∗] are positive definite, C−1[p∗] + D2Φ[p∗] is non-negative definite. Consequently,

the spectral radius of dG is strictly less than 1.

Consider the following MBVPs















−∇ · (D∇vi) + µavi = qi, in Ω, i = 1, · · · , S,

vi + 2AD
∂vi

∂ν
= 0, on Γ \ Γi, i = 1, · · · , S,

vi = 0, on Γi. i = 1, · · · , S.

(4.20)

Define linear bounded operators Λi : L
2(Ω) → Γi as [20]

Λi[qi] = −D
∂vi

∂ν
. (4.21)

Let ‖Λi‖ = Ti. Let C be the constant that satisfies

‖∇ · (ξ2∇ui)‖ ≤ C‖ξ2,∇ui‖, ∀ξ = (ξ1, ξ2) ∈ L2(Ω)× L2(Ω), ξ 6≡ 0.
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Theorem 4.1. For i = 1, · · · , S, let gi,min = minx∈Γi
gi(x), p

∗ = (D∗, µ∗
a) be the pair of optical

parameters in extremum point. The iterative reconstruction method (3.9) is local convergent if

the following properties are satisfied

φi ≥ g−1
i,minT

2
i µ

∗
aui, (4.22)

−∇ui · ∇φi ≥ g−1
i,minT

2
i C

2D∗∇ui · ∇ui, (4.23)

where C and Ti are the constants defined above.

Proof. We analyze the convergence of the reconstruction method for absorption and diffusion

coefficients, respectively. For the iteration of absorption coefficient, we have

〈−D2
µa
Φ[p∗]ξ1, ξ1〉L2(Ω) = −D2

µa
Φ[p∗]ξ21 =

S
∑

i=1

∫

Γi

g−1
i Λ2

i [−ξ1ui]dΓ > 0, (4.24)

〈C−1
µa

[p∗]ξ1, ξ1〉L2(Ω) =

∫

Ω

∑S
i=1 uiψi

µa
ξ21dx =

S
∑

i=1

∫

Ω

uiφi

µa
ξ21dx > 0 (4.25)

where in the second last step we have used the fact ψ = φ at p∗. Moreover, we have

〈(C−1
µa

[p∗] +D2
µa
[p∗])ξ1, ξ1〉L2(Ω)

=

S
∑

i=1

(
∫

Ω

uiφi

µa
ξ21dx−

∫

Γi

g−1
i Λ2

i [uiξ1]dΓ

)

≥

S
∑

i=1

∫

Ω

(

uiφi

µa
ξ21 − g−1

i,minT
2
i u

2
i ξ

2
1

)

dx

=

S
∑

i=1

∫

Ω

uiξ
2
1

(

φi

µa
− g−1

i,minT
2
i ui

)

dx ≥ 0. (4.26)

It follows from Lemma 4.2 that the spectral radius of operator dG[p∗]µa
is strictly less than 1.

For the iteration of diffusion coefficient, we have

〈−D2
DΦ[p∗]ξ2, ξ2〉L2(Ω) = −D2

DΦ[p∗]ξ22 =

S
∑

i=1

∫

Γi

g−1
i Λ2

i [∇ · (ξ2∇ui)]dΓ > 0. (4.27)

For i = 1, · · · , S, ui and φi are the solution to two different MBVPs with external sources at

different boundary, hence we have ∇ui · ∇φi < 0. It follows that

〈C−1
D [p∗]ξ2, ξ2〉L2(Ω) =

∫

Ω

∑S
i=1 ∇ui · ∇φi

−D
ξ22dx =

S
∑

i=1

∫

Ω

∇ui · ∇φi
−D

ξ22dx > 0, (4.28)

and

〈(C−1
D [p∗] +D2

D[p∗])ξ2, ξ2〉L2(Ω)

=
S
∑

i=1

(
∫

Ω

∇ui · ∇φi
−D

ξ22dx−

∫

Γi

g−1
i Λ2

i [−∇ · (ξ2∇ui)]dΓ

)

≥

S
∑

i=1

∫

Ω

(

∇ui · ∇φi
−D

ξ22 − g−1
i,minT

2
i (−∇ · (ξ2∇ui))

2

)

dx
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≥

S
∑

i=1

∫

Ω

(

∇ui · ∇φi
−D

ξ22 − g−1
i,minT

2
i C

2ξ22∇ui · ∇ui

)

dx

=

S
∑

i=1

∫

Ω

ξ22

(

∇ui · ∇φi
−D

− g−1
i,minT

2
i C

2∇ui · ∇ui

)

dx ≥ 0. (4.29)

According to Lemma 4.2, the spectral radius of operator dG[p∗]D is strictly less than 1. �

Remark 4.1. When the conditions (4.22) and (4.23) in Theorem 4.1 are not satisfied, the local

convergence may be obtained by modifying the boundary conditions (3.2) and (3.3) to

ψi =
gi

Fi[p]
+ c, on Γi,

φi = 1 + c, on Γi.

If the constant c is sufficiently large, the conditions (4.22) and (4.23) still hold.

5. Numerical Example

We use a 3-D numerical experiment to test the performance of the reconstruction algorithm.

The reconstruction is implemented on an IBM laptop T60(Intel (R) Core(TM)2 CPU T7200

2.00GHz with 2.00GB RAM) and the operator system is Ubuntu 7.10 with GNU compiler

GCC4.0. All the elliptic boundary value problems are solved with the finite element package

AFEPack (http://dsec.pku.edu.cn/∼rli/software e.php).

The phantom used here is a cylinder with height 30 mm and radius 15 mm. Inside the

cylinder, there are three cylinders with height 3 mm and radius 5 mm. The center of the three

cylinders are (0,0,6) mm, (0,0,0) mm and (0,0,-6) mm, respectively. The optical parameters of

the phantom are list in Table 5.1. All the optical parameters chosen here are similar to the

optical parameters of mouse’s lung (L), heart (H) and muscle (M) tissues (NIR 500 nm-800

nm), respectively [21]. The appearance of the phantom is show in Fig. 5.1.

Assume that the experiment is taken in a black circumstance and no photon travels into

the tissue except for the external sources. We set 40 sources on the side of the cylinder. The

position of the sources on the expanded diagram of cylinder is in Fig. 5.2. The boundary

measurements are assumed to be detected on half of the cylinder’s side opposite to the current

source. Boundary measurements are calculated from Eq. (2.4) and re-sampled in the resolution

of 159 × 101 with a grid size of 0.3 mm. Since the finite element method is used to solve

the forward problem in the experiment, the boundary measurements are corrupted by the

approximation error [22, 23] caused by sparse meshes although extra noises are not added.

Table 5.1: Information of the phantom.

center µa µs
Region

[mm] [mm−1] [mm−1]

1 (L) (0,0,6) 0.023 2.000

2 (H) (0,0,0) 0.011 1.096

3 (L) (0,0,-6) 0.023 2.000

background (M) (0,0,0) 0.007 1.031



70 C. F. WANG AND T. ZHOU

Fig. 5.1. The numerical phantom.

The phantom is a cylinder of 30 mm height

and 30 mm diameter centered at (0, 0, 0)

mm. The small cylinders inside the phan-

tom are with the radius 5 mm and are at

(0,0,6) mm, (0,0,0) mm and (0,0,-6) mm,

respectively.

z
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Fig. 5.2. Position of sources.

For the i-th source (i = 1, · · · , S), the center of the

source is (R cos ϑ0, R sinϑ0, z), where R is the radius

of the cylinder, ϑ0 and z satisfy

{

z = −12 + 0.6(i − 1),

ϑ0 = π/12 + mod (i− 1, 8) · π/4.
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Fig. 5.3. The value of objective function is plotted against the iterations.

We assume that the internal structure of the phantom is known and the optical parameters

are piecewise constant. The iteration is started with the optical parameters (0.015,0.25)mm−1,

(0.007,0.3211)mm−1 and (0.015,0.25)mm−1 in three different regions, respectively. The iter-

ation is set to be a constant. The iterative formulas in (3.9) are for the updating of optical

parameters on different points. With the prior of information of the regions, the reconstruction

procedure is to determine the value of the optical parameters in different regions. During each

iteration, the optical parameters in different regions are updated by integration on the region

and followed by division. To avoid overshooting of optical parameters, we add a constant which

equals to the iteration number plus 1 to the third equation of Eqs. (3.2) and (3.3).

The value of objective function in each iteration is shown in Fig. 5.3. The relative error of

the absorption coefficient and diffusion coefficient of the three regions are shown in Fig. 5.4.

From Fig. 5.4, we find that the relative error of the absorption coefficients first decreases

and after several iterations, it begins to increase. For the small cylinder centered at the origin,
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the diffusion coefficient is close to the diffusion coefficient of the background, the relative error

between the two coefficients is less than 7%. It approximates to the computation error of the

underlying PDEs. Hence we can not get a reasonable solution of this region (cf. the second

figure of Fig. 5.4). When the diffusion coefficient is fixed, we only reconstruct the absorption

coefficient. With the same setting of the previous numerical experiment, we get the value of

objective function and the relative error of absorption coefficient in each iteration (see Fig. 5.5).

From Fig. 5.5, we find that the value of objective function and relative error of absorption

coefficient in each iteration is similar in this numerical experiment and the previous one.

The semi-convergence phenomenon [24,25] occurs in both numerical experiments. However,

this phenomenon is not contrary to the convergence of the reconstruction algorithm due to

the initial guess of optical parameters and the non-uniqueness of the problem. To reduce the

semi-convergence behavior, we have to find a proper initial value of the optical parameters and

stopping rule or specify perturbation parameters during iteration. Moreover, the accuracy of

the PDE solvers should be increased so as to obtain reasonable solutions of the DOT. These

will be considered in future works.
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Fig. 5.4. The relative error of absorption and diffusion coefficients plotted against the iteration. Left:

the relative error of absorption coefficient and right: the relative error of diffusion coefficient.
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Fig. 5.5. The value of objective function and the relative error of absorption plotted against the

iteration. Left: the objective function and right: the relative error of absorption coefficient.

Acknowledgments. The results presented in this work are based on part of the Caifang

Wang’s Ph.D. thesis written at Peking University, and the final results are improved by Tie



72 C. F. WANG AND T. ZHOU

Zhou. This work is supported by NBRPC (2006CB705700), NSFC (60872078, 60532080,

60628102) and Microsoft Research Asia.

References

[1] J. Beuthan, C. Mahnke, U. Netz, O. Minetb and G. Müller, Optical molecular imaging: Overview

and technological aspects,Medical Laser Application, 17:1 (2002), 25–30.

[2] D. Leff, O. Warren, L. Enfield, A. Gibson, T. Athanasiou, D. Patten, J. Hebden, G. Yang and

A. Darzi, Diffuse optical imaging of the healthy and diseased breast: A systematic review, Breast

Cancer Research and Treatment, 108:1 (2008), 9–22.

[3] S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F.

Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. van der Mark, P. Luijten and

W. Mali, Diffuse optical tomography of the breast: preliminary findings of a new prototype and

comparison with magnetic resonance imaging, European Radiology, 19:5 (2009), 1108–1113.

[4] A. Scheel, M. Backhaus, A. Klose, B. Moa-Anderson, U. Netz, K. Hermann, J. Beuthan, G. Muller,

G. Burmester and A. Hielscher, First clinical evaluation of sagittal laser optical tomography for

detection of synovitis in arthritic finger joints, Annals of the Rheumatic Diseases, 64:2 (2005),

239–245.

[5] T. Austin, A. Gibson, G. Branco, R. Yusof, S. Arridge, J. Meek, J. Wyatt, D. and Delpy and

J. Hebden, Three dimensional optical imaging of blood volume and oxygenation in the neonatal

brain, Neuroimage, 31:4 (2006), 1426–1433.

[6] H. Dehghani, B. White, B. Zeff, A. Tizzard and J. Culver, Depth sensitivity and image reconstruc-

tion analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,

Applied Optics, 48:10 (2009), D137–D143.

[7] S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15:2 (1999), R41–R93.

[8] A. Gibson, J. Hebden and S. Arridge, Recent advances in diffuse optical imaging, Physics in

Medicine and Biology, 50:4 (2005), R1–R43.

[9] V. Markel and J. Schotland, Inverse problem in optical diffusion tomography. I. Fourier-Laplace

inversion formulas, Journal of the Optical Society of America A. Optics, Image Science, and

Vision, 18:6 (2001), 1336–1347.

[10] V. Markel and J. Schotland, Inverse problem in optical diffusion tomography. II. Role of boundary

conditions, Journal of the Optical Society of America A. Optics, Image Science, and Vision, 19:3

(2002), 558–566.

[11] V. Markel, V. Mital and J. Schotland, Inverse problem in optical diffusion tomography. III. In-

version formulas and singular-value decomposition, Journal of the Optical Society of America A.

Optics, Image Science, and Vision, 20:5 (2003), 890–902.

[12] S. Arridge and M. Schweiger, A gradient-based optimisation scheme for optical tomography, Optics

Express, 2:6 (1998), 213–226.

[13] C. Wang and M. Jiang, An EM-like optimization scheme for diffuse optical tomography, in Pro-

ceedings of the SPIE - The International Society for Optical Engineering, 2008, 707608 (12 pp.).

[14] W. Egan, T. Hilgeman and J. Reichman, Determination of absorption and scattering coefficients

for nonhomogeneous media.2: Experiment, Applied Optics, 12:8 (1973), 1816–1823.

[15] M. Keijzer, W. Star and P. Storchi, Optical diffusion in layered media, Applied Optics, 9:27 (1988),

820-1824.

[16] K.C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-

Verlag, C. H. Morales, 2005.
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