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Abstract

With the development of numerical methods the numerical computations require higher

and higher accuracy. This paper is devoted to the high-order local absorbing boundary

conditions (ABCs) for heat equation. We proved that the coupled system yields a stable

problem between the obtained high-order local ABCs and the partial differential equation

in the computational domain. This method has been used widely in wave propagation

models only recently. We extend the spirit of the methodology to parabolic ones, which

will become a basis to design the local ABCs for a class of nonlinear PDEs. Some numerical

tests show that the new treatment is very efficient and tractable.
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1. Introduction

Heat equation rises from many fields, for examples, the heat transfer, fluid dynamics, as-

trophysics, finance or other areas of applied mathematics. In this paper, we consider the

numerical solutions of heat equation on unbounded spatial domains. A real challenge is the

unboundedness of the physical domains, the traditional methods (finite element method and

finite difference method) can not be used in a straight forward manner. Therefore, many math-

ematicians, engineers and physicists are attracted and devoted to the study of these problems.

In the early literatures, Givoli [8] studied the heat problems on unbounded domains, in which

the author tried to get DtN artificial boundary condition on the given artificial boundary.

Greengard and Lin [11] developed a new algorithm for solving the heat problem on unbounded

domains, the algorithm was based on the evolution of the continuous spectrum of the solution.

Li and Greengard [25] also proposed a fast solver for heat equation in free space. Strain [29]

presented efficient and accurate new adaptive methods related to the fast Gauss transform.

Han and Huang [18,19] presented an exact artificial boundary condition to reduce the original

heat equation to an initial-boundary-value problem on a finite computational domain. Wu and

Sun [32] constructed a finite difference scheme for one-dimensional case and proved that the

scheme was uniquely solvable, unconditionally stable and convergent with the order two in space

and the order 3/2 in time under an energy norm. Zheng [41] considered the approximation,
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stability and fast evaluation of 1-D heat equation. Han and Yin [22] presented the numerical

solution of 3-D parabolic problems.

The ABCs include the global ABCs and local ABCs. The global ABCs are usually the

natural integral equation, i.e., DtN mapping and hence, lead to the well-approximation and

well-posed truncated problems, but the implementation cost is expensive. For a great details

one can refer to [1, 3, 7, 12, 14, 17, 20, 21, 23, 33, 34, 36, 39, 40, 42] and references therein. On the

other hand, local ABCs are computationally efficient, but the accuracy and stability are the

main concerns. Enquist and Majda [6] proposed a whole family of local boundary conditions for

wave equation, which not only resulted in stable difference approximation, but also minimized

the unphysical reflections.

For long time simulation or when the mesh size is small enough, it needs to increase the

order of the local ABCs. The high-order method has been used in wave propagation models

[5,27,28,30,31]. Works in [6,26] suggested the higher-order paraxial approximation as artificial

boundary conditions. Based on the use of auxiliary functions, [2] proposed a family of paraxial

wave equation approximation, and Collino developed the high-order ABCs for the 2-D wave

equation and gave the boundary conditions at corners. Givoli et al [9,10] proposed a new high-

order ABCs for time-dependent wave problems in unbounded domains. More works and their

extensions [13, 15, 16], associated with ABCs, improved the work of the Givoli-Neta in some

respects (accuracy and stability).

Recently, Zhang, Xu and Wu [37,38], proposed a novel unified approach to design the local

ABCs for nonlinear Schrödinger equation. Based on the well-known operator-splitting method,

the procedure of unified approach is to approximate the linear subproblem by distinguishing the

incoming and outgoing wave; then unite the resulting approximate operator and the nonlinear

subproblem to obtain nonlinear boundary conditions. Brunner, Wu and Zhang [4] successfully

applied the method to semilinear parabolic equation on unbounded spatial domain, where the

design of local ABCs plays an important role to get the suitable approximate operator for heat

equation. In this paper we extend the spirit of the high-order methodology to constructing high-

order ABCs for heat equations, and prove that the resulting ABCs are stable. By applying

Laplace and Fourier transforms and their inverse transforms, we approximate the one-way

equation to obtain the high-order boundary conditions by padé polynomial at expansion point

z0, and introduce the specially defined auxiliary variables to avoid the high derivatives beyond

order two, which make the formula tractable when N is chosen larger.

The brief description of this paper is as follows. Section 2 is devoted to the construction

of high-order ABCs. In Section 3 the focus of the presentation is on the stability analysis for

the reduced initial-boundary-value problems. In Section 4 some numerical examples show the

tractability and effectiveness of the high-order ABCs. We end the paper with some concluding

remarks.

2. Design of High-Order Absorbing Boundary Conditions

Denote the spatial coordinate by x, which for one-dimensional case is x = x, two-dimensional

case is x = (x, y), and three-dimensional case is x = (x, y, z). Denote the infinity domain by

Ω, the computational domain by Ωi, the boundary by Γ = ∂Ω, and the exterior domain by

Ωe = Ω \ Ωi. Heat equation can be written as follows:

ut = a2∆u+ f(x, t), in Ω, t > 0, (2.1)
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u(x, 0) = u0, (2.2)

u(x, t)|Γ = g, (2.3)

u→ 0, as |x| → +∞, (2.4)

where the source term f(x,t) and initial value u0 are compactly supported functions, and vanish

outside B0 = {x : |x| < r}, namely,

supp{f(x, t)} ⊂ B0 × [0, T ], supp{u0(x)} ⊂ B0.

2.1. One-dimensional case

To provide the spirit of the high-order ABCs, we restrict the problem (2.1)-(2.4) on the

exterior domain Ωe, the solution u(x, t) satisfies:

ut − a2uxx = 0, (x, t) ∈ Ωe; (2.5)

u(x, 0) = 0, (2.6)

u
∣∣
x=xl

= u(xl, t), u
∣∣
x=xr

= u(xr, t), (2.7)

u→ 0, as |x| → ∞. (2.8)

Applying Laplace transformation with respect to t, we have

sũ− a2ũxx = 0, (2.9)

where the Laplace transformation is given as

ũ(x, s) =

∫ ∞

0

e−stu(x, t)dt. (2.10)

The equation (2.9) is homogeneous and has two linearly independent solutions. The first solu-

tion ũ(1)(x) vanishes and the second solution ũ(2)(x) grows to infinity as x→ +∞. It is obvious

that condition (2.8) can be satisfied if and only if the growing solution ũ(2)(x) = ex
√

s/a2

does

not contribute to the solution ũ(x) of (2.9) in the semi-infinite interval [xr,+∞). Hence we give

up the growing solution and accept the decaying one ũ(1)(x) = e−x
√

s/a2

, which is equivalent

to the following homogeneous relations:

∂xũ±
√

s

a2
ũ = 0, (2.11)

where the plus sign in “±” corresponds to the right boundary conditions at xr, and the minus

sign to the left boundary conditions at xl. By using
√
s = s√

s
and the following formula

L−1

{
1√
s+ α

}
=

1√
πt
e−αt, (2.12)

from Eq. (2.11) we have the exact ABC at the artificial boundaries:

∂xu±
√

1

a2π

∫ t

0

1√
t− τ

∂u

∂τ
dτ = 0, (2.13)
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which is global in time. Now we consider the construction of the high-order local ABCs. In

formula (2.11), we denote z = s
a2 and expand the irrational function

√
z by using the Padé

approximation:

√
z0

√
z

z0
=

√
z0

√
1−

(
1− z

z0

)
≈ √

z0 −
√
z0

N∑

k=1

bk

(
1− z

z0

)

1− ak

(
1− z

z0

) , (2.14)

where

ak = cos2
(

kπ

2N + 1

)
, bk =

2

2N + 1
sin2

(
kπ

2N + 1

)
, k = 1, · · · , N.

The parameter z0 plays the role of the expansion point in the approximation (2.14). Fig. 2.1

shows that the expansion (2.14) at z0 = 1.0 can approximate the irrational function quickly

with the truncated number N increasing.
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Fig. 2.1. The Padé approximation to the
√
z with different N and z0.

We substitute the approximation (2.14) into (2.11) to obtain

∂xũ±


√

z0 −
√
z0

N∑

k=1

bk

(
1− z

z0

)

1− ak

(
1− z

z0

)


 ũ = 0. (2.15)

For a simple case, we first choose N = 1 and substitute z = s/a2 to obtain

(1− a1)z0∂xũ+
a1s

a2
∂xũ± (1− a1 − b1)z0

√
z0ũ± (a1 + b1)

√
z0s

a2
ũ = 0. (2.16)

Applying the inverse Laplace transformation, we have

3z0∂xu+
1

a2
∂x∂tu± z0

√
z0u± 3

√
z0

a2
∂tu = 0. (2.17)

It is easy to see that the partial derivatives with respect to time increase with the truncated

number N growing. This kind of high-order derivatives would bring us in a lot of trouble.

Naturally the auxiliary variables are introduced to overcome the above disadvantages. Let




∂xũ−√
z0ũ+

√
z0

N∑
k=1

bkϕ̃k = 0, x = xl,

(z0 − akz0 + akz)ϕ̃k = (z0 − z)ũ, k = 1, · · · , N,
(2.18)
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



∂xũ+
√
z0ũ−√

z0
N∑

k=1

bkw̃k = 0, x = xr,

(z0 − akz0 + akz)w̃k = (z0 − z)ũ, k = 1, · · · , N.
(2.19)

After using the inverse Laplace transform to Eqs. (2.18)-(2.19) and, coupling the results with

the heat equation, we have the reduced initial-boundary-value problems




ut = a2uxx + f(x, t) in Ωi, t > 0,

u(x, 0) = u0,

∂xu+
√
z0u−√

z0
N∑

k=1

bkwk = 0, x = xr,

(1− ak)z0wk + ak
1

a2
∂twk = z0u− 1

a2
∂tu, k = 1, · · · , N,

∂xu−√
z0u+

√
z0

N∑
k=1

bkϕk = 0, x = xl,

(1− ak)z0ϕk + ak
1

a2
∂tϕk = z0u− 1

a2
∂tu, k = 1, · · · , N.

(2.20)

Eq. (2.20) implies the ABCs of order N . It does not involve high-order derivatives beyond the

first-order and has no spacial derivatives for any auxiliary variable wk or ϕk. Therefore, the

auxiliary variables appear only at the artificial boundary point.

x

y

Ωi

Ωe

Γn

Γs

Γw Γe

CNECNW

CSW CSE

S

Fig. 2.2. Settings of unbounded problems.

2.2. High-dimensional cases

We have obtained the high-order ABCs for 1D spatial domain, which motivates us to apply

the spirit to multi-dimensional cases. Without loss of generality, we only discuss the two-

dimensional case, this idea can be easily extended to higher-dimensional cases. One of typical

settings for problems in unbounded domains [10] is the exterior problem (Fig. 2.2). Let us

firstly consider the problem (2.1)-(2.4) in the unbounded domain Ωe:

ut = a2△u, x ∈ Ωe, (2.21)

u(x, 0) = 0, (2.22)

u|Γ0
= u1(y, t), (2.23)

u|Γ = g, (2.24)
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where the exterior domain Ωe = {x : x ∈ (r,∞), y ∈ (−∞,∞), t ∈ (0, T ]}, the artificial

boundary Γ0 = {x : x = r, y ∈ (−∞,∞)}. Problem (2.21)-(2.24) is not a well-posed problem

since u1(y, t) is an unknown function. Applying Fourier transformation with respect to y and

Laplace transformation to t, we have:

s˜̂u = a2
(
˜̂uxx − η2˜̂u

)
, (2.25)

where the Fourier transform is

û(x, η, t) =

∫ +∞

−∞
u(x, y, t)e−iηydy,

and the Laplace transform is the same as (2.10). The Eq. (2.25) is equal to

˜̂uxx −
(
η2 +

s

a2

)
˜̂u = 0, (2.26)

and has two linearly independent solutions

˜̂u
(1)

(x) = e−x
√

η2+s/a2

, ˜̂u
(2)

(x) = ex
√

η2+s/a2

.

Thus we have the general solution of Eq. (2.26) on the right boundary

˜̂u(x, η, ζ, s) = c1e
−x

√
η2+s/a2

. (2.27)

Differentiate solution (2.27) with respect x and substitute (2.27) into the result. We obtain

∂x˜̂u+

√
η2 +

s

a2
˜̂u = 0. (2.28)

Let z = η2 + s/a2 and substitute the expansion (2.14) into (2.28). We have

∂x˜̂u+
√
z0˜̂u−√

z0

N∑

k=1

bk(z0 − z)

z0 − ak(z0 − z)
˜̂u = 0. (2.29)

For special case N = 1, we get

(1− a1) z0∂x˜̂u+a1
(
η2 +

s

a2

)
∂x˜̂u+(1−a1−b1)

√
z0z0˜̂u+(a1+b1)

√
z0

(
η2 +

s

a2

)
˜̂u = 0. (2.30)

After the inverse Laplace and Fourier transforms, we obtain

3z0∂xu+ ∂x∂y∂yu+
1

a2
∂x∂tu+

√
z0z0u− 3

√
z0∂y∂yu− 3

a2
√
z0∂tu = 0. (2.31)

Clearly, the derivatives increase as the truncated number N increases, and the calculations

become tedious. To avoid this difficulty, we introduce the auxiliary variables

˜̂wk =
z0 − z

z0 − ak(z0 − z)
˜̂u. (2.32)

Then the approximation (2.29) is reduced to





∂x˜̂u+
√
z0˜̂u−√

z0
N∑

k=1

bk ˜̂wk = 0,

(z0 − akz0 + akz) ˜̂wk = (z0 − z)˜̂u, k = 1, · · · , N.
(2.33)
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Taking the inverse Fourier and Laplace transforms for (2.33), the original problem is reduced

to the following approximation problem:




ut = a2∆u+ f(x, t) in Ωi, t > 0,

u(x, 0) = u0,

u(x, t)|Γ = g,

∂xu+
√
z0u−√

z0
N∑

k=1

bkwk = 0, on Γ0,

(1− ak) z0wk + ak
(

1
a2 ∂twk − ∂y∂ywk

)
= z0u−

(
1
a2 ∂tu− ∂y∂yu

)
, k = 1, · · · , N.

(2.34)

Note that each auxiliary variable needs the datum at the two corner points, we deal with them

as √
z0bnwn = αn(∂xu+

√
z0u), n = 1, · · · , N,

where
∑N

n=1 αn = 1. Here we choose αn = 1/N. One can find that the values u at the corner

points are equal to the boundary values g at the corner points.

Remark 2.1. It can be seen from the above derivation that high-order boundary conditions

for three-dimensional case can be obtained by adding the derivative on the z direction in the

fifth equation of (2.34). Furthermore, we can obtain the corresponding ABCs at other sides.

Thus some corner boundary conditions are needed to decouple the ABCs together.

Now let us consider the 2-D heat problem (with a = 1 without loss of generality) on the

exterior domain. Based on the Fourier transform and Laplace transform, we have the dispersion

relation

s+ ξ2 + η2 = 0. (2.35)

By using the conditions u(x, t) → 0 (|x| → ∞), the following dispersion relations can be

obtained on the east and west artificial boundaries

−iξ ±
√
s+ η2 = 0, (2.36)

where the plus sign in “±” stands for the positive direction, and the minus for the negative

direction. Take z = η2 + s and expand
√
z in formula (2.14) with N = 1, substitute the result

into Eq. (2.36) and solve the obtained algebraic equation, we have

s = −−iξη2 ± 3
√
ξ0η

2 − 3iξ0ξ −
√
ξ0ξ0

−iξ ± 3
√
ξ0

. (2.37)

Similarly, we can obtain the dispersion relation at the northern and southern boundaries

s = −−iξ2η ± 3
√
ξ0ξ

2 − 3iη0η −
√
η0η0

−iη ± 3
√
η0

. (2.38)

Generally speaking, it is difficulty to obtain the suitable ABCs at corner points. We observe

that the approximation in Eq. (2.16) corresponds to the (1,1)-Padé approximation to absorb

the heat flow from the interior domain. Hence, for corners we use the (1,1)-Padé approximation

to expand ξ2 and η2 with the expansion point (ξ0, η0). At the northern-eastern (CNE) and

southern-western (CSW ) corners, we have the algebraic equation

s = −ξ0
−3iξ ±√

ξ0

−iξ ± 3
√
ξ0

− η0
−3iη ±√

η0

−iη ± 3
√
η0
. (2.39)
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At northern-western (CNW ) and southern-eastern (CSE) corners, the equations are given by

s = −ξ0
−3iξ −

√
ξ0

−iξ − 3
√
ξ0

− η0
−3iη +

√
η0

−iη + 3
√
η0
, (2.40)

and

s = −ξ0
−3iξ +

√
ξ0

−iξ + 3
√
ξ0

− η0
−3iη −√

η0

−iη − 3
√
η0
, (2.41)

respectively. Following the duality of s↔ ∂t,−iξ ↔ ∂x and −iη ↔ ∂y, the corresponding local

ABCs can be obtained: on Γe and Γw

3ξ0∂xu− ∂x∂
2
yu+ ∂x∂tu±

√
ξ0
(
ξ0u+ 3∂tu− 3∂2yu

)
= 0; (2.42)

on Γn and Γs

3η0∂yu− ∂y∂
2
xu+ ∂t∂yu±√

η0
(
η0u+ 3∂tu− 3

√
η0∂

2
xu
)
= 0; (2.43)

at CNE and CSW

∂t∂x∂yu+ (3ξ0 + 3η0)∂x∂yu± 3
√
ξ0∂t∂y ± 3

√
η0∂t∂xu+ 9

√
ξ0η0∂tu

±√
η0(9ξ0 + η0)∂xu±

√
ξ0(9η0 + ξ0)∂yu+ 3

√
ξ0η0(ξ0 + η0)u = 0; (2.44)

at CNW and CSE

∂t∂x∂yu+ (3ξ0 + 3η0)∂x∂yu± 3
√
ξ0∂t∂x ±

√
ξ0(9η0 + ξ0)∂xu− 9

√
ξ0η0∂tu

3
√
ξ0η0(ξ0 + η0)u = ±3

√
η0∂t∂yu±√

η0(9ξ0 + η0)∂yu. (2.45)

Thus we are successful to design the corresponding local ABCs at boundaries and corners,

which are the special case of high-order boundary conditions with N = 1. But the arbitrary

high-order approximation at corners is still not solved. The obtained third-order local ABCs

play an important role in designing the corresponding local ABCs for some nonlinear problems,

e.g., semilinear parabolic problems with blow-up solutions on unbounded spatial domains [4].

3. Stability Analysis

In this section we consider the stability of the reduced initial-boundary-value problems.

3.1. One-dimensional case

Firstly, we prove the stability of the systems (2.20). Denote notation || · ||Ω the usual norm

in the Banach space Wm,p(Ω) with m = 0 and p = 2 and introduce the Gronwall′s Lemma

(refer to [24]):

Lemma 3.1. Suppose that y ∈ C1[0, T ] and ψ ∈ C[0, T ] satisfy

y
′

(t) ≤ cy(t) + ψ(t), 0 ≤ t ≤ T,

for some c ≥ 0. Then

y(t) ≤ ect
{
y(0) +

∫ t

0

|ψ(τ)|dτ
}
, 0 ≤ t ≤ T.
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The stability of problem (2.20) is given by the following theorem.

Theorem 3.1. Assume that the initial values are smooth enough. Then the Cauchy problem

(2.20) has a unique weak solution and the energy estimate holds:

||u||2Ωi×[0,t] ≤ et
(
||u0||Ωi

+

∫ t

0

φ(τ)dτ

)
, (3.1)

where

φ(t) = ||u0||2Ωi
+ ||f ||2Ωi×[0,t]. (3.2)

Proof. The unique solution follows from the energy estimate. Here we focus on the energy

estimate based on the Galerkin method.

(i) Multiply the first equation in (2.20) by u, and integrate the result by part over Ωi × [0, t],

we arrive at

1

2
||u||2Ωi

+ a2||ux||2Ωi×[0,t]

=
1

2
||u0||2Ωi

+ a2
∫ t

0

u(r, t)ux(r, t)dt− a2
∫ t

0

u(l, t)ux(l, t)dt+

∫ t

0

∫

Ωi

fudxdt. (3.3)

(ii) Multiply the third equation of (2.20) by u and integrate from 0 to t, we have

∫ t

0

u(r, t)ux(r, t)dt+
√
z0

∫ t

0

u2(r, t)dt−√
z0

N∑

k=1

bk

∫ t

0

wk(t)u(r, t)dt = 0. (3.4)

(iii) Multiply the forth equation of (2.20) by akwk(t) + u(r, t) and integrate from 0 to t, we

obtain

a2
∫ t

0

ak(1 − ak)z0w
2
k(t)dt+

1

2

(
akwk(t) + u(r, t)

)2
− 1

2

(
akw

0
k + u0(r)

)2

+ a2
∫ t

0

(1− 2ak)z0wk(t)u(r, t)dt− a2
∫ t

0

z0u
2(r, t)dt = 0. (3.5)

(iv) Noting that u0 is a smooth function with compact support, the initial data u0 and w0
k

vanish at the artificial boundary, we multiply (3.5) by bk and sum the resulting identities from

1 to N to have

a2
N∑

k=1

∫ t

0

bkak(1− ak)z0w
2
k(t)dt+

N∑

k=1

1

2
bk(akwk(t) + u(r, t))2

+ a2
N∑

k=1

∫ t

0

bk(1 − 2ak)z0wk(t)u(r, t)dt − a2
N∑

k=1

∫ t

0

bkz0u
2(r, t)dt = 0. (3.6)

By the same argument, we can obtain the corresponding equations at the left artificial boundary,

which are similar to (3.4) and (3.6).
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(v) Combining (3.3), (3.4), (3.6) and the corresponding equations at x = xl yields

1

2
||u||2Ωi

+ a2||ux||2Ωi×[0,t] +
1

2

N∑

k=1

bk√
z0

[
(akwk(t) + u(r, t))

2
+ (akϕk(t) + u(l, t))

2
]

=
1

2
||u0||2Ωi

− a2
√
z0

(
1−

N∑

k=1

bk

)(
||u(r, t)||2[0,t] + ||u(l, t)||2[0,t]

)

− a2
√
z0

N∑

k=1

bkak(1− ak)
(
||wk(t)||2[0,t] + ||ϕk(t)||2[0,t]

)

+ a2
√
z0

N∑

k=1

∫ t

0

2bkak (wk(t)u(r, t) + ϕk(t)u(l, t)) dt+

∫ t

0

∫

Ωi

fudxdt

=
1

2
||u0||2Ωi

− 2a2
√
z0

2N + 1

N∑

k=1

ak

(
||u(r, t)− (1 − ak)wk(t)||2[0,t] + ||u(l, t)− (1− ak)ϕk(t)||2[0,t]

)

− a2
√
z0

2N + 1

(
||u(r, t)||2[0,t] + ||u(l, t)||2[0,t]

)
+

∫ t

0

∫

Ωi

fudxdt, (3.7)

where bk = 2(1 − ak)/(2N + 1). By using 2uf ≤ u2 + f2 in (3.7), and denoting by y(t) =

||u(x, t)||2Ωi×[0,t], we arrive at

y′(t) ≤ y(t) + φ(t).

The Gronwall’s Lemma results in directly the desired estimate (3.1). �

3.2. Two-dimensional case

The purpose of this subsection is to prove the stability of systems (2.34).

Lemma 3.2. Suppose that u ∈ C1[0, 1]. Then

||u||2∞ ≤ ||u||2[0,1] + 2||u||[0,1]||ux||[0,1].

One can refer to [24] for the proof.

Theorem 3.2. Assume that the initial values are smooth enough, then the Cauchy problem

(2.34) has a unique weak solution and the following energy estimate holds:

||u||2Ωi×[0,t] ≤ et
(
||u0||Ωi

+

∫ t

0

φ(τ)dτ
)
, (3.8)

where φ(τ) is given by

φ(t) = ||u0||2Ωi
+ Ca2||g||2Γ0×[0,t] + ||f ||2Ωi×[0,t]. (3.9)

Proof. By the same argument as the proof of Theorem 3.1, we can obtain the energy

estimate. Only step (iii) need to be modified since two corner values appear and can be

estimated by using Lemma 3.2. So we require a strong regularity for the datum at the corners,

i.e., which can be bounded by a constant C. �

Remark 3.1 The conclusion of Theorem 3.2 can be extended to the reduced problems with

ABCs (2.42)-(2.45), which is considered as a special case in Theorem 3.2 with N = 1.
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4. Numerical Approximation and Examples

In the computational domain [e, b]× [c, d], let ∆x = (b − e)/I, ∆y = (d − c)/J, ∆t = T/L

denote the spatial mesh sizes of variables x,y and the time size of time t, respectively, where

I, J, L are positive integers. Let the grid points and temporal mesh points be

xi = e+ i∆x, yj = c+ j∆y, tι = ι∆t

with i = 0, 1, · · · , I, j = 0, 1, · · · , J, ι = 0, 1, · · · , L. Denote the operators D+, D− and D0 by

forward, backward and centered differences, respectively, S+, S− and S0 by forward, backward

and centered sums, I by the identity operator; for example,

Dx
+u

ι
i = (uιi+1 − uιi)/∆x, S

t
+u

ι
i = (uι+1

i + uιi)/2, Iuιi = uιi.

Then we obtain the finite difference scheme of the heat equation

(
Dt

+ − a2Dx
+D

x
−S

t
+ − a2Dy

+D
y
−S

t
+

)
uιi,j = f(xi, yj , tι+ 1

2

),

with i = 1, · · · , I−1, j = 1, · · · , J−1, ι = 1, · · · , L−1 and the initial data u0i,j = u0 (xi, yj , 0) .

The boundary conditions are introduced to make the systems complete, and approximated by:

3uιI,j − 4uιI−1,j + uιI−2,j

2∆x
+
√
z0IuιI,j −

√
z0

N∑

k=1

bkw
ι
k,j = 0,

(1− an) z0S
t
+w

ι
n,j + an

(
1

a2
Dt

+ −Dy
+D

y
−S

t
+

)
wι

n,j = z0IuιI,j −
(

1

a2
Dt

+ −Dy
+D

y
−S

t
+

)
uιI,j,

where j = 1, 2, · · · , J − 1 and n = 1, 2, · · · , N . For corner points (I, 0) and (I, J), the strategies

are given by

wι
n,j =

1√
z0N ∗ bn

(
3u(I, j)ι − 4u(I − 1, j)ι + u(I − 2, j)ι

2∆x
+
√
z0u

ι(I, j)

)
, j = 0 or J.

By restricting the discretization in the initial-boundary-value problem (2.20), we have

(
Dt

+ − a2Dx
+D

x
−S

t
+

)
uιi = f

(
xi, tι+ 1

2

)
, 0 < ι ≤ L, 1 ≤ i < M.

The equations on the boundary points are approximated by

−3uι0 + 4uι1 − uι2
2∆x

−√
z0Iuι0 +

√
z0

N∑

k=1

bkϕ
ι
k = 0, x = xl,

(
(1 − ak)z0S

t
+ +

ak
a2
Dt

+

)
ϕι
k −

(
z0S

t
+ +

1

a2
Dt

+

)
uι0 = 0, 1 ≤ k ≤ N,

3uιM − 4uιM−1 + uιM−2

2∆x
−√

z0IuιM +
√
z0

N∑

k=1

bkw
ι
k = 0, x = xr,

(
(1− ak) z0S

t
+ +

ak
a2
Dt

+

)
wι

k −
(
z0S

t
+ +

1

a2
Dt

+

)
uιM = 0, 1 ≤ k ≤ N.

Example 4.1. In problem (2.20), let T = 1, xl = −1, xr = 0, f(x, t) = u0 = 0, u(xl, t) =

erfc( 1
2
√
t
) with

erfc(x) =
2√
π

∫ ∞

x

e−λ2

dλ.
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Fig. 4.1. Error |u(x, 1) − uh(x, 1)| with N = 10 on time line t = 1.
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Fig. 4.2. The evolution of error |u(0, t)− uh(0, t)| for different N with M = 64.

Table 4.1: Error |u(0, t)− uh(0, t)| with different times and mesh sizes, (a, z0, N)=(1.0, 1.0, 1.0).

M = 16 order M = 32 order M = 64 order M = 128 order

t = 0.1875 3.7596e-4 – 9.7266e-05 1.9506 2.37066e-05 2.0366 5.5784e-06 2.087

t = 0.5625 2.2603e-4 – 5.4063e-05 2.0638 1.37673e-05 1.9734 3.7925e-06 1.860

t = 1 1.6704e-4 – 4.0759e-05 2.0350 1.01853e-05 2.0006 2.5537e-06 1.996

Table 4.2: Error max0<t≤1 |u(0, t)− uh(0, t)| with different N and z0; ∆t = ∆x = 1

1280
.

z0 \N 1 3 5 7 10 20 40

0.5 7.9724e-3 8.5670e-4 1.5466e-4 3.7578e-5 6.0739e-6 1.2135e-7 6.5340e-8

1.0 3.7415e-3 2.5887e-4 3.2635e-5 5.9071e-6 7.7980e-7 6.8840e-8 6.5454e-8

10 3.0156e-3 1.1527e-5 1.2945e-7 6.4662e-8 6.5490e-8 6.5454e-8 6.5454e-8

20 1.6289e-2 4.6717e-5 2.2295e-7 6.5520e-8 6.5454e-8 6.5454e-8 6.5454e-8

50 4.2946e-2 4.3900e-3 2.0057e-4 2.8664e-6 6.5454e-8 6.5454e-8 6.5454e-8

100 6.5010e-2 1.5785e-2 2.7822e-3 7.2136e-6 6.5454e-8 6.5454e-8 6.5454e-8
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The exact solution of the problem is

u(x, t) = erfc(
x+ 2

2
√
t
). (4.1)

In the calculation, let ∆t = ∆x and z0 = 1.0. Fig. 4.1 plots the absolute error |u(x, 1)−uh(x, 1)|
with N = 10, M = 16, 32, 64, 128. Fig. 4.2 shows the evolution of the absolute error |u(0, t)−
uh(0, t)| on the boundary point with a = 1.0, M = 64 and different parameters N .

One can see that the error on boundary point decreases quickly whenM and N are endowed

with larger and larger values. Table 4.1 presents the error in L∞-norm withM = 16, 32, 64, 128

at different times.

From Table 4.1, it can be seen that the absolute error |u(0, t) − uh(0, t)| in L∞-norm has

the second-order convergence rate with respect to h = ∆x, i.e., there exists a constant C such

that

||u(0, t)− uh(0, t)||∞ ≈ Ch2.

We now investigate the error max0<t≤1 |u(0, t)− uh(0, t)| with different parameters z0 and N .

Taking ∆t = ∆x = 1
1280 , some results are shown in Table 4.2.

From Table 4.2, one can see that the parameter z0 has an important influence on the

effectiveness of the high-order ABCs. For the adaptive choice of the parameter, one can refer

to [35, 37, 38] and references therein.

Example 4.2. To show the tractability and effectiveness of the method, we let T = 0.9,

f(x, y, t) = 0, u0 = u(x, y, 0),

g(x, y, t)|Γ =
1

4a2π (t+ t0)
exp

(
− x2 + y2

4a2 (t+ t0)

)∣∣∣∣
Γ

.

The exact solution of the system (2.34) with the above initial-value and boundary condition is

u (x, y, t) =
1

4a2π (t+ t0)
exp

(
− x2 + y2

4a2 (t+ t0)

)
.

We choose e = c = −2, b = d = 2 and a = 1 and let ∆t = ∆x = ∆y, t0 = 0.1. Without loss of

generality, we take z0 = 1.0 in the following calculation. Denote by the L1-norm

L1 =
1

(I + 1)(J + 1)(L+ 1)

L∑

n=0

I∑

i=0

J∑

j=0

∣∣u(xi, yj, tn)− unij
∣∣ .

Firstly we check the influence of truncated numbers N on the ABCs. Fig. 4.3 shows the

evolution of the L1-norm for different truncated number N with mesh size 128×128. Fig. 4.4

presents the evolution of the L1-norm under different meshes when truncated number N chosen

to 5.

Table 4.3: L1-norms and convergence order for different meshes and N .

32× 32 order 64× 64 order 128 × 128 order 256× 256 order

N = 1 7.338e-4 – 2.428e-4 1.706 9.804e-5 1.198 6.869e-5 0.513

N = 3 7.153e-4 – 1.885e-4 1.924 5.050e-5 1.901 1.614e-5 1.645

N = 10 7.158e-4 – 1.891e-4 1.921 4.988e-5 1.922 1.419e-5 1.813
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Fig. 4.3. The evolution of L1-norm with different N at mesh 128 × 128.
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Fig. 4.4. Comparison of the evolution of L1-norm at different meshes and N = 10.

Table 4.3 presents the L1-error and convergence order with mesh sizes from I ×J = 32× 32

to 256×256 and different N . It can be seen that the error in L1-norm decreases with truncated

number N growing and trends to the second-order convergence rate. Despite L1−norm plays

an important role in testing the efficiency of the method, sometimes one need to check the

maximum value of point errors when the mesh is refined or N is chosen different values. The

infinity norm L∞ for the fixed time level l is defined by

L∞ = max
i,j

|u(xi, yj , tl)− ulij |, 0 ≤ i ≤ I , 0 ≤ j ≤ J.

Fig. 4.5. The evolution of L∞ with different N and mesh = 128× 128.
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Fig. 4.6. The evolution of L∞ with different meshes and N = 10.

Fig. 4.5 shows the evolution of global L∞-norm for different truncated number N with mesh

size 128×128. One can see that the error in L∞−norm deceases with N increasing. Fig. 4.6

presents the L∞-norm under different mesh sizes at each time line when N is fixed with 10.

5. Conclusion

We have obtained the high-order artificial boundary conditions for the heat equation and

proved that the reduced initial-boundary-value problems are stable. This approach provides

the considerable insight into the construction of the local ABCs for linear equations. We expect

that these results would be useful for the numerical study on a family of nonlinear PDEs.

Acknowledgments. This research is supported in part by RGC of Hong Kong and FRG of

Hong Kong Baptist University. We thank the referees for their careful reading of the paper and

for suggestions that led to an improved version of the paper.

References

[1] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, A Review of Transparent and Arti-
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