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Abstract

A combined approximation for a kind of compressible miscible displacement problems
including molecular diffusion and dispersion in porous media is studied. Mixed finite el-
ement method is applied to the flow equation, and the transport one is solved by the
symmetric interior penalty discontinuous Galerkin method (SIPG). To avoid the inconve-
nience of the cut-off operator in [3,21], some induction hypotheses different from the ones
in [6] are used. Based on interpolation projection properties, a priori hp error estimates
are obtained. Comparing with the existing error analysis that only deals with the diffusion
case, the current work is more complicated and more significant.

Mathematics subject classification: 65M12, 65M60.
Key words: A priori error, Mixed finite element, Discontinuous Galerkin, Compressible
miscible displacement.

1. Introduction

We consider the following single-phase, miscible displacement problem of one compressible
fluid by another in porous media:

d(c)% +V-u= d(c)% —V - (a(c)Vp) =q, (z,t) € QxJ, (1.1)
(;5% + b(c)% +u-Ve—V-(Du)Ve) = (c—c)g, (x,t) € QxJ, (1.2)
u-n=0, (x,t)€xJ, (1.3)
Du)Ve-n=0, (x,t) €0 xJ, (1.4)
p(z,0) =po(x), x €, (1.5)
c(z,0) = co(x), =z €8, (1.6)

where (2 is a polygonal and bounded domain in R" (n = 1,2 or 3) with boundary 99, J = (0,71,
n denotes the unit outward normal vector to 99Q; u(x,t) represents the Darcy velocity of the
mixture and p(x,t) is the fluid pressure in the fluid mixture; ¢(z, t) is the solvent concentration
of interested species measured in amount of species per unit volume of the fluid mixture, ¢(z)
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is the effective porosity of the medium and is bounded above and below by positive constants,
D(u) denotes a diffusion or dispersion tensor which has contributions from molecular diffusion
and mechanical dispersion. Moreover,

D(u) = d + lul (a1 B(w) + oo (I - E(w))),
where E(u) is the tensor that projects onto the w direction, whose (7, j) component is

Ui Uy

(E(u))lJ = |u|2 )

d., is the molecular diffusivity and is assumed to be strictly positive; a; and «; are the longitu-
dinal and transverse dispersion respectively, and are assumed to be nonnegative. The imposed
external total flow rate ¢ is a sum of sources and sinks. That is to say, ¢ = ¢7 + ¢—, where
gt = max(q,0) and ¢~ = min(q,0). ¢ and % are assumed to be bounded. The notation ¢ is
the specified injected concentration ¢, at sources if ¢ > 0 and is the resident concentration c
at sinks if ¢ < 0. We assume that p, Vp, ¢ and Vc are essentially bounded.
The coefficients a(c), b(c) and d(c) are defined as:
k(z)
afc) = ma b(e) = p(z)cr(z1 — z101 — 22¢2), d(c) = ¢(x)(2101 + 22¢2),

where ¢ = ¢; = 1 — ¢2, p(c) represents the viscosity, z; denotes the constant compressibility
factor for the jth component (j = 1,2), k(x) is the permeability of the medium. a(c) and d(c)
have positive lower and upper bounds,

0<ax<a(c)<a® and 0<d, <d(c) <d",

b(c) is bounded. In addition, 8%—(;) is uniformly bounded and Lipschitz continuous with respect
to c.

It is well known that the mixed finite element (MFE) method can obtain the same optimal
order of convergence for both the pressure and the Darcy velocity and has been widely used in
the numerical simulation for porous media problems [8-10].

Recently, M. F. Wheeler, B. Riviere and S. Sun have devoted to using discontinuous Galerkin
(DG) solver for problems in porous media [16,20]. V. Dolejsi and M. Feistauer, have investigated
DG approximation for convection-diffusion problems (see [7,12,13]). DG methods belong to
a class of non-conforming methods (see [3,5,15,18,23-25] ) and they solve the differential
equations by piecewise polynomial functions over a finite element space without any requirement
on inter-element continuity — however, continuity on inter-element boundaries together with
boundary conditions is weakly enforced through the bilinear form. DG is very attractive for
practical numerical simulations because of its physical and numerical properties. Firstly, it is
flexible which allows for general non-conforming meshes with variable degrees of approximation.
Secondly, it is locally mass conservative and the average of the trace of the fluxes along an
element edge is continuous. Thirdly, it has less numerical diffusion and can deal with rough
coefficient problems. Finally, it is easier for the hp-adaptivity because the information over cell
boundaries is almost decoupled.

To approximate to the exact solution of (1.1)—(1.6), we shall make use of a combined mixed
finite element and DG method.

Many scholars have contributed to numerical approximations to miscible displacement prob-
lems [4,14]. Unfortunately, there are very few literature dealing with DG methods. In [21] a
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continuous in time scheme consisting of the mixed finite element and nonsymmetric interior
penalty Galerkin method for the incompressible miscible displacement problem in porous me-
dia was given, and in [22] continuous in time schemes of primal discontinuous Galerkin meth-
ods with interior penalty for the incompressible miscible displacement problem were proposed.
Compressible case was discussed in [3, 6], but only the dispersion-free case (D(u) = dp,I) is
considered. The authors have derived a priori error of a discontinuous Galerkin approximation
for a kind of compressible miscible displacement problems in [26]. In the current paper, a
priori error estimates of a combined mixed finite element and discontinuous Galerkin method
are given for the completely compressible case with molecular diffusion and dispersion. During
the error analysis, the induction hypotheses are used as tools, instead of the cut-off operator
employed in [3,21] where it is necessary to choose properly the positive constant appearing in
the operator. Moreover, the induction hypotheses here are different from the ones in [6].

The paper is organized as follows. In Section 2, we introduce the combined mixed finite
element and discontinuous Galerkin method. In Section 3, error estimates are given. Proofs of
the induction hypotheses are presented in Section 4.

2. A Combined MFE/DG Method

2.1. Notations

Let T, be a family of quasi-uniform (which means that the element is convex and that there
exists A > 0 such that if hg is the diameter of E' € 7Ty, then each of the sub-triangles (for n = 2)
or sub-tetrahedra (for n = 3) of element E contains a ball of radius Ahg in its interior), and
possibly non-conforming finite element partitions of 2 composed of triangles or quadrilaterals
if n = 2, or tetrahedra, prisms or hexahedra if n = 3.

Let I';, be the set of all interior edges (for 2 dimensional domain) or faces (for 3 dimensional
domain) for 77,. Let n be the outward unit normal vector on each edge or face v € I'y, U 99.
We assume that h = maxgep, hg the maximal element diameter over all elements with the
common edge or face v € I', U 09

The usual Sobolev inner product (-, -) and the norm || -||,,,o on Q are used. Similar notations
are suitable for the element E and face or edge 7. Specially, || - || stands for || - ||o,q. For the sake
of convenience, the notations dz and dt in [ -dz and [ -dt are omitted. We use fg (g =E,v,Q)

and fot - to represent the integrals in space [ -dz and the time integrals [ -dt, respectively.
For s > 0, we define the following broken Sobolev space

H(Th) = {veL2(Q);v|E GHS(E),EeTh}. (2.1)

Let E; € Ty, E; € T, and v = 0E; N 0E; € I'y, with n exterior to E;. For v € H*(T3),s > 1/2,
the average {v} of v on v and the jump [v] of v across 7 are defined as follows:

(vls)l + s )l
{0} = > =G

El) v (U|Ej)|’Y'

We set the discontinuous finite element space:
Do(Th) = {v € L2(Q) : v|p € P(E),E € n}, (2.2)

where P..(E) denotes the space of polynomials of total degree less than or equal to r on E.
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Next, define the spaces

V = H(div; Q) = {u € (L2(Q)", divu € L2(Q)}, (2.3)
Vo = {u € H(div;Q),u - nlon = o}, (2.4)
W = L*(Q). (2.5)

Let the approximation subspace Vi (7r) X Wi(Tz) of V- x W be the kth (k > 0) order Raviart-
Thomas space (RT}) of the partition 7;. We define V2(73,) = Vi.(7) N VY.

Throughout the paper, we denote by K, K;(i € N) generic positive constants that are
independent of h,r and k, but might depend on the solution of PDEs. They may take different
values at different occurrences. And e will denote a fixed positive constant that can be chosen
arbitrary small.

2.2. The continuous in time scheme

For Vi € D,(Ty,), we define the bilinear form B(u;c, ) and the linear functional L(c,):

B(usc,) = Z/D w)Ve- Vip — Z/ w)Ve-n}y)]

EcTh ~yETH
—Z/{D )WVip-n}c +Z/ch1/)+JO( ),
YEl) E€Th
L(c7¢)=/ﬂ(5—0)qw- (2.6)

where h., denotes the size of -,

is the interior penalty term. o is a discrete positive function that takes constant value o, on
the edge or face v, and is bounded below by o, > 0 and above by o*.

The continuous in time numerical scheme-MFE/DG approximation to the solution of the
equations (1.1)-(1.6) which solves the flow equation by the mixed finite element method and the
concentration equation by SIPG, a primal discontinuous Galerkin method, is written: Finding
U € L=(J;VA(Th)), P e L>®(J;Wi(Th)) and C € L*®(J; D (T4)) s.t

(d(C)%—i,w) +(V-U,w) = (q,w), Yw € Wi(Th), (2.7)
(a(C)U,v) — (V-v,P) =0, Yo € V2(Th), (2.8)
(696) + (MO T ) + BWU:C.w) = L(C,w), W DATH),  (29)

with initial values C(z,0) = ¢y and U(z,0) = U which satisfies
((c)U0,) = (V-v,p0) =0, Vo € Vi (Th),

where a(c) = 1/a(c), ¢y and py are the interpolant of ¢o and pg, respectively.
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3. Error Estimates for the Combined MFE/DG Approximation

3.1. Interpolation projections and induction hypotheses

We define the interpolants u and p of functions u and p as follows:

(d(c)%,w) F (V- Bw) = (), Yw € Wi(Th), (3.1)
(a(c)i,v) — (V-v,p) =0, Yo € VO(Th), (3.2)
(»,1) = (p.1).

Let p=u—u,0 =u—U,n=p—p, m =p— P and assume that ¢(0) = 0, 7(0) = 0. Following
the method in [10], we easily find that the following projection error equations

(V~p,w):0, VwGWk(Th),
(ale)p,v) — (V-v,m) =0, Yoe V2T,

and

(V ap ) =0, Yw € Wk(’Th),

C =W
ot’
0 0 da(c) Oc
(Oé(c)a_§7v> _(v'vaa_;]):_( 8(C)Ep’v)’ V’UGVI@O(Th)

are satisfied. For p and 7, we have

hmin(kJrl,wE -1)

loll + lInll < K EkwE—_l/QHPHwE,E, (3.4)
E€Tnh
ap 877 hgin(kJrl,wEfl) ap
51+ 15l < K > kwE—,l/Q(HPHwE,E + ||a|\wE,E)v (3.5)

E€Th

where k is the order of the RT} spaces. Because ||pl|f(div:0) does not appear in the following
estimates and the L? norm estimates instead of the H(div;) norm ones are needed, we lower
the regularity of p (from k + 3 to k + 2, i.e. wg can be k + 2).

In order to estimate the error of the transport equation, the following known hp ap-
proximation results [1,2,6] are used. For E € T, w € HM(T4), there exists a sequence
zh e P.(E), r=1,2,--- (where P,.(E) denotes the polynomial of degree less than or equal
to r on E), and there exists a constant K depending on A but independent of w, r, hg, such
that for 0 < ¢ < X and g = min(r + 1, A),

A h#*q
o =2 llg < K- lwlly g, A >0, (3.6)
pn—=36—1/2 1
||w*2f||é,6E§K7f_57_1/2||w||/\,E, A>5 46 =01 (3.7)

In our work, we will use the above estimates for ¢ = 1 and ¢ = 2. At the same time, the hp
approximation results for the function w being the function which is the derivative with respect
to the time variable .

Let ¢ be the interpolant of ¢, satisfying the above optimal hp approximation properties. Let
(=c—7¢and £ =¢— C and we assume that £(0) = 0.
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During the analysis, the induction hypotheses are needed, which can be proved in section 4.
h2||a| — 0, if h—0, (3.8)
—-n/2 o .
h ||EHL2(L2(Q)) — 0, if h—0. (3.9)
Also, we shall make use of the following trace inequalities and inverse inequalities [18,19].

Lemma 3.1. For Vv € H'(E), we have

013 0 < K (h5" 1ol 5+ hslol 5

Vv nlf o5 < K(hEIIIVUH%,E + [ Vollo,gl| V0]

O,E)a

where n is the unit normal vector on an edge or face OF of E.
Lemma 3.2. Let x be a polynomial of degree r on the element E. Then,
IxXllo.0m < Krhi|lx]lo.e
—1/2
IVx-nlloos < Krhg | Vxlo.z.

where n is the unit normal vector on an edge or face OF of E.

3.2. A priori error estimate for the flow equation

Subtracting (2.7)-(2.8) from (3.1)-(3.2) respectively, we get

(U T )+ (V-0,w) = ((dC) — d(e) 2, w) — (d(e) 2L w), Yoo € WalTh),  (310)
(a(C)o,v) = (V-v,71) = ((a(C) — a(c))u,v), Vo e VP(Th). (3.11)
Taking w = % in (3.10) leads to
(d(C)%, %) +(V-o, %) = ((acc) - d(c))%, %) - (d(c%, %). (3.12)
By differentiating (3.11) with respect to the time variable ¢ and choosing v = &, we have
(%,a) —(V-ao, %) = (%((a(C) - a(c))a),a). (3.13)
Recall that
0 1d 1 /0a(C) 0C
(a (a(C)a),a) = 55(04(0)0,0) + 5( 3C Ea,a)

Substitute the above equality into (3.13) to obtain

%%(a(c)a,g) (V.o %) - (%((a(c*) ~a()a),o) - %(ag(co) %—fa,a). (3.14)

Adding (3.12) and (3.14), we see that

or 877) 1d (a(C)a,a)

(4% 50) * 52
= (@) - o) 3. 57) - (03] 5 + (7 (o0 - at)i).0) - 556 o)
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Next, we shall bound the right hand side of the above equation by virtue of Cauchy-Schwartz
inequality, Cauchy’s inequality with &, the boundedness of p, the assumption of a(c), and the
induction hypothesis (3.8).

(d(c) - de) 2, o k(P + el
ot’ ot

(o5 5l <o H+

Note that ||%—EHOO is bounded [10]. So,
(5 ((0(@ - atoi).0)| < | @5 57 ~ 55250 + a0 - ate) o)

I+ JSIT 1 e ).

If h is sufficiently small, by using the induction hypothesis (3.8), we have

(55| = (%5 5oe-e) - (5 5em-o)]|

<Kol + K| 2| o < £|| 55"+ Ko

H il

Note that o(-,0) = 0. Collecting the above bounds and integrating with respect to t yields
t a,ﬂ_ 2 /t 2 /t 8C 2

- 5 - + K -

/0 H ot o o (H ot

3.3. A priori error estimate for the transport equation

ﬂ.(m@

Let (p,u,c) be the solution of (1.1)-(1.6). They satisfy the following weak formulation in
the discontinuous finite element space D, (774):

0 0
(655 %) + (b0 50 v) + Bie.) = Lle,v), Yo e D(Ta), te  (316)
Note that [10]

_ ~ - . if >0,
(C_C)_(C_C):{o(<+g) %Zio.

Subtract (2.9) from (3.16) to get
(28 Y o ((()—b(O))@,w)+(b( )a("+”)7w)
+ 3 [ (o Ve Vi — Z/{ ) Ve -}y

EeTh e,
—7;}/{ (U)) V¢ -n}(c] E; / w-Ve—U- VO
+Zraw/c_ [c—C Z/D V(C+E) Vi

~EeTlR EeTh

- Z/{D V(Ct6)- Z/{D )V - n}[C +

YELR vyel'y
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—/Q(C+€)q+w7 Vi € D(Th),t € J.

Taking 1) = 6—§ in the above equation, we have

(¢% % Z /D )VE -V §+§E(/ TRSERARIY

- (o5 %M((M@—b@»?ﬁ ) (55 - (b@%%)

> | 0w - D) ve-n} 3 -z [ (oW - D) ve- v
+W§/{ )) } E; / p+o)- Vc—
E;}/U VHS_iE; /D Ve vag+7;/{D V(C+E)- n}[%}
( ) 7;/{ V_"}“f /C* —/9%52
iT VY € Dr(Th)t € J, (3.17)

where we have used the following equalities

o 1d Oqt
/ S T q+§2—— Q—f,
r%av 1d ,
- = ——J 'S )y
L [5][5]) 57 0(8:6)

rav 1d
LTS
u-Ve—U-VC=u—-U) -Ve+U -V(c—C)=(p+0) -Vc+U-V(+¢).

Y€, YEl)

Note that

[Uloe < [tlloo + llollo < l[2]loe + KB |a]l, (3.18)
ou Oou oo

- Kh="/?
[Eve 5 lL2(L= () < En + Fn

L2 (L>=(92))

: (3.19)
L2(12(9))

where the inverse inequality |[v]|.c < Kh™"/2||v||,Yv € Vj is used. Due to the induction
hypotheses (3.8) and (3.9), when h is chosen to be sufficiently small, both the second item in
(3.18) and the second item in (3.19) tend to zero. Furthermore, according to [10], ||u| s and
Hg—’zﬂLz(Lm(Q)) are bounded. Therefore,

<M

— )

L2 (L= ()

Ul < M, H@

where M is some positive constant. Note that u —U = p 4 . It is obvious that

[u = Ul < ol + lloll, (3.20)

Ou—U)| _| ], [0
A EE

(3.21)
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Next, let us bound the terms T;, ¢ = 1,--- ,15. By virtue of Cauchy-Schwartz inequality,
we obtain
OE |12 ¢ |2
T <e|& K‘— ,
Tl =ellzll + |5
012
ol <& | S ||+ & (Ilel® +11¢112).
IE |12 ony|2
T <l |2 K‘—H
Il <<|5 ] +
0112
ol <e| & + Kk } H
Tyl <e ot + Ko
012
15l <el| ||+ K (el + lll?).
98|12 2 2
ol <el|Fo|| + & (VeI +11vel?),
¢ 1|2 2 2
Tal <e| 5 || +EICIE,  |Tis| < K€"

Recall that
[DU)| < dp, + max(ay, a)|U| < M

according to the definition of D(u). By reason of the setting {(z,0) = 0, integrate Tho with
respect to t and apply integration by parts to get

Tlo_/OEET/D v)ve v
E;/D )V - VE(H) /OEET/D Ve v /OEET/ ) e . ve

<EZ/|V§| +KZ/|V§| +K/ Z/Ivél2

EcTh EeTh E€Th

2
vk [0 [V [ 1) S el 1)

0 EeTy
t
<K [ (I98lP +19I).

For T1,-T13, by virtue of integration by parts, Cauchy-Schwartz inequality, boundedness of

o, I and the inverse inequalities in Lemma 3.2, we obtain

/t(TM + Th3)

:/ Z/{D V(C+E)- {8t]+/0 Z/{ }[<+£]

YETL RISINS

Z/{D VC ) €] ) L/V{wa% }[s}‘

(20}

IN

RISINS
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A g poemte] 24 i
}g]‘

+ 3 [ove e

yEDL 7

8
zz}Zlﬂ
i=1

AEL{

Note that

Fi <KZ/< 0”)_1{Vg.n}2(t)+sz

Y€l YELR

<K Z r72hs |[VCmlo (1) + 5 (£,)(1),

(s <) {v— Yok [ 5 [

Fip SK/
0 T, ol

<K/ > r%h,

yely

Rk [ 'U'WH%ZJH Z/\{Vc nh]

I
. / 7(6,6)

76F
T O’7 2 2
[ 2 [(5) wen +K/ 5
—2
<K/ grjr hy||VC - n||0 +K/ JJ(£,6),
Fiy <K Z/(?‘ 07> {VE-n}2(t
vyeTy, “/GF
<Ki( 7Héurn oy)” E; / |V§| +Kv§h ||i77(t);
2
0y 2 72 Oy | 96
F15<K/7§/< ) {Vgn}+K/7;/ {]

<K / |V§|2+K/

0 EeTy
ﬂ\zﬂwm

0 yel'y

Fo<k [ 0|
[(72) wemr ok [ 3 [ 5200

<K /
O yer, ’veF;

Kpe) ! [ 5 [iveren [ Sl

E€Th YElR

sl




A Priori Error Estimates of a Combined MFE/DG

F17<KZ/( ”) (Ve -n)2(t +EZ/T}:7

vElR YETR

<K1(m1n o)~ Z /|V§| ) +eJ5 (& 6)(1),

EeTh
Fis <K / 01 |5 H > S [ivene

Ko [ Z/'W'“K/*’O“

0 geT)

101

Integrating T1o by parts with respect to the time variable t, we see that

‘/otTu\ = Z %/m[sm/t Z ho

<eJg (&t +KZ How
yel'n
ac1ll?
VK| IO+ K > +H[—] )
[ / > 5 (v, <[ (5],

Noting that [¢] = 0, we find 77 = 0. It remains to estimate the terms T5—Ts. Apply the
integration by parts to get

T+ T, - dt; [ -pwvenya - 3 [ (o D)V nle
-y /{%(D(u) ~D(U))Ve-n}[e] + (%(D(u) - D(U))Ve, V¢)

- 2 ((D@) - DW)) Ve, Ve) + ((D(w) - D(U))V%, ve)

According to the definition of D(u), Cauchy-Schwartz inequality with ¢, Lemma 3.2 and inte-
grating I, I, I, Is with respect to ¢ yields

[inir S [ (G2 v+ 52 o)

YETR

<Ko (lpl*(®) + lol*(1) + 5 (€, €) (),

[ <k [ 198 S -0

~ETR
SKU;I/O <||p|\2+|\o|\2>+K/O T (,€),
t
/0 I <K|ju—U|| - [Velluo - | VE]I(8)

<Is(|lpl2(¢) + llo | 2(1)) + || V| (¢
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t t
0
J sl <K [ a0 195 e Ve
0 0
t t
<& ol + 11+ & [ [|ve]”

For I3 and I, we have

ou
JACED oY (] B R P e .
~eTy, L2(L2(7)) L2 (L (7))
NVl Loy - Y MElllzaz2 )
YETR

2
ou
L2(L>(9))

2111111(k+1 wp—1) 8])
<K/ J5 (€6 + K Z W |p|wEaE+Hat

EcTh
¢ 0
[ < ([ o0

|IVel Lo mo= )y - 1VEllL2(22(0))
2m1n(k+1 wp—1)

o 2
< [ Vel + 5 S A (1ol +1 2 )

E€Th

ot

+llu=Ullpor2) IU| L2 () H
L2(L2(2))

where Cauchy-Schwartz inequality, the estimates (3.4)-(3.5), (3.20)-(3.21), and the induction
hypotheses (3.8)-(3.9) are used.
Recalling that &(x,0) = 0, we have

[x Ly [oumcr [ [

EeT E€Th
Using the definition of D(u), we have

/D )VE - V—: V§~V§.

EE€Th

DU)VE - VE(t) = (dm + ar[U]) Vet
E;h/ t EETh/

[y <[ ||U|oo|§|ooE€2ﬂ/E\vg-vg\ < [ vl

Let 0., be large enough, so that 4K; < miner, 0. Integrating with respect to ¢ for (3.17) and
combining all the above inequalities, we deduce the following estimation

EeT

JII%| -+ ivei + ke + 56 o

m/H \+K/<WH+WHHM\HM\HWM%HWH+H

+K/J0££+K/Z

YELR

H o 2>+K||V<| () + (Kz+ ><||p| () + lo?(t))

OIS =
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w3 (BIve-niR. 0 || . ® )*K/ 7;} (”K]”f’“m%} Zv)

YER
2m1n(k+1 wp—1) 9 2
P
K Y (IIplle,E+Ha E) : (3.22)
Ee€Th wE,

3.4. A priori error estimate for the coupled system

We shall state and prove the final result, which estimates the coupled system of flow and
transport.

Theorem 3.1. Let the integers X\, u and w be the reqularity orders of functions c, % and p
and they take values \g, ug and wg on element E, respectively. The integer rg denotes the
order of discontinuous finite element space for ¢ on element E and k is the order of RT}, space.

We assume that
hIEIliIl(’!‘E,)\E—1,;LE—1,UJE—171€+1) _ O(hn/Q), VE c Th. (3'23)

Let (p,u,c) be the solution of (1.1)-(1.6), which satisfy the following reqularity requirements:

pe LP(LHT), e 120 H(T),

de
ce L*(J; HNTh)), 5 € L3(J; H*(Th)).

We also assume that p, Vp, ¢ and Vc are essentially bounded. Then there exists a positive
constant K independent of hg, rg and k, such that

1/2 1/2
(LN i+ ([ 1%
1/2
HIVE|(t) + [|1E||(t) + (J§ (Bes Ee)(8)) ™ + || Eal|(2)
mln(kJrl wp—1) )
p
79D L ca—— I T
EeTh
mln('rE,AE 1) min(rg,pg—1) dc
E
K (WHCIIAE,E+W‘5 )
EeTh g beE
Proof. Multiplying (3.15) by (K2 4+ 1) and adding it to (3.22), we get
a 2 2 .
= &+ [ |5 2(1) + [IEIP @) + I8 (6, 6)(®)

0

< [ (|51 )
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vk 3 [iveorr [C3 () (Ivenli, |5

EeTh ~yEly

+Hv

ot
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e [0 2 (e, +[E]] )+ xS (e iveenl, o a2l )
~ET), 0y vETR
2mm(k+1 wp—1) 9 2
+K Y W(||PHW,E+H8—IZ ) .
EeTh wg,E
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Note that the following trivial inequality

e = [ el = [Capeeol [ 52 < [0 e 1o

holds for any v which satisfies v(0) = 0 and recall the facts £(-,0) = 0 and 7 (-,0) = 0. Applying
this inequality to £ and 7w, we obtain

JUGT oo+ 15

ot

t 8C 2 87] 2
SK/O (HE +HE +||C||2+||§||2+||7T||2+Hp”2+|\a||2)
t o P 9
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0
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t t 2\ !
wx (e X [weox [ X (1) (Ivenli, + [v5 n
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o

2
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2 )
0,y

E€Ty RSN
K r? 2 ¢ : 2 2 1.2 2
+ K / > h—(H[de+ H [a] ) + K 3 (2 IVCml () + b3 IR A ()
0 ~er, 7 0,y RISV
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EeT

)2
wpg,E

Applying Lemma 3.1, Lemma 3.2, the projection error estimates (3.4)-(3.5), the approximation
properties (3.6)-(3.7), and Gronwall’s inequality to the above equation, we find

[z et [

hmin(kJrl,wEfl)
B

9p
§K< > o1z <|P|wE,E + HE

2
+HIIVENP() + IElP @) + ]2 () + J§ (€, )(1)

L))

or

ot

9

ot

E€Th
hIEnin('r'E,)\E—l) hIEnin('r'E,uE—l) de 2
+K( > (WHCHAE,EJFW Fn : (3.24)
EE€Th TE TE pe,E

By means of the triangle inequality and the estimates for p, n and {, we get the desired
result, which completes the proof. ]

Remark 3.1. Theorem 3.1 gives an error estimate in L2(H!) and L°(L?) norm for concen-
tration, and also gives a L°°(L?) rate of convergence for velocity.

4. Proofs of the Induction Hypotheses

We need to verify the induction hypotheses (3.8)-(3.9). Using the assumption (3.23) and
the inequality (3.24), we find that when h tends to zero,
wE,E) >

min(rg,Ag—1) hmin(rE,,ulEfl)

_ h
+ Kh n/2< Z < E AE73/2_||C||/\E’E+_E —3
Ee€Th TE L)

hmin(kJrl,wEfl)

Ip

—n/2 —n/2 E e

R N Y L |
Ee€Th
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ot

)) — 0.
ne,E
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This shows the induction hypothesis (3.8). To prove the induction hypothesis (3.9), we shall
use the estimate of 22. Differentiating Egs. (3.10) and (3.11) with respect to the time variable
o

t and taking w = 57 and v = %—‘: respectively, leads to

1d or Om Jo Om

5@(“0)5’5%@'%&)
_ (9(d(C) —d(©))gy) om\ _(0d(c)den 0P Or\ 1 (0d(C)IC Ox on
N ot T ot dc Ot Ot ot2’ ot oC ot ot’ ot
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ot ot ot ot ot "ot ac ot ot
Consequently,
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1 (9d(C) 9C dx Or 9a(C) OC 0o
"2\ 7aC ot ot ot ac ot ot

5
Zm. (4.1)

Next, we shall bound all the items on the right-hand side of (4.1). Using Cauchy-Schwartz
inequality, Young’s inequality with €, we get

B ad(C) o0C  dd(c )80 op &%p orn
|Y1|‘<< oC B e o O — )G 5
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804( )oC  Oa(c du Jo
|Y3|< < oC ot dc > DE’E)‘
do o S 2 2
<e|=— = = .
<12+ k(| 2] + %]+ eie + nare)
By the assumption (3.23) and the inequality (3.24), we see that
h=n/? gﬂ — 0.
QUZIZI)
Thus, if h is chosen sufficiently small, then
v -|L(24C) (9 _ 06 or on
1702 ao at ot 8t’8t
/2 as o | 2|
ot ol )
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Applying the induction hypothesis (3.8) to Y5, we see that when h is chosen sufficiently small,
da(C) (0c  0¢ Jo
Y| = —_— _ = -
¥s| ‘( ac (8t at )% ot

<G e [31]) <

Combining all the above inequalities yields
do|® d or O
‘ at|| * a(d@a’ 5)
ac||?
<K 2+ -
(151 H s

Recall that ¢(0) = 0,7(0) = 0. Use Gronwall’s lemma and the estimate (3.24) to get

o))

oo ||?
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87] 2 2
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h§in(rE,AEfl) h§in(rE,,uEfl) dc
+ K( Z ( e—3/2 HCH/\EE + HE—3/2 ot :
Ee€Th E E e, E

Thus, when h is chosen sufficiently small, the induction hypothesis (3.9) is satisfied by virtue
of the assumption (3.23). O
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