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Abstract

Based on a reformulation of the complementarity problem as a system of nonsmooth

equations by using the generalized Fischer-Burmeister function, a smoothing trust re-

gion algorithm with line search is proposed for solving general (not necessarily monotone)

nonlinear complementarity problems. Global convergence and, under a nonsingularity as-

sumption, local Q-superlinear/Q-quadratic convergence of the algorithm are established.

In particular, it is proved that a unit step size is always accepted after a finite number of

iterations. Numerical results also confirm the good theoretical properties of our approach.
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1. Introduction

Let F : Rn → Rn be continuously differentiable. The nonlinear complementarity problem,

denoted by NCP(F ), is to find a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0. (1.1)

where 〈·, ·〉 is the Euclidean inner product. If F is an affine function of x, then NCP(F )

reduces to a linear complementarity problem (LCP). The NCP is theoretically and practically

useful, and has been used to study and formulate various equilibrium problems in economics and

engineering, such as Nash equilibrium problems, traffic equilibrium problems, contact mechanics

problems and so on [1, 2].

There have been many methods proposed for the solution of NCP(F ). Among them, one

of the most popular and powerful approaches that has been studied intensively recently is to

reformulate NCP(F ) as a system of nonlinear equations [10], as an unconstrained minimization

problem using suitable merit functions [7], or as a parametric problem. Here we concentrate on

the equation-based method, where the NCP(F ) can be written equivalently as

Φ(x) = 0 (1.2)

for a suitable equation operator Φ : Rn → Rn. Recently, for solving complementarity problems,

various equivalent equation-based reformulations have been proposed and seem attractive. For
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more details of these reformulations, please see [6,10,12,14,15,19]. Generally the operator Φ is

locally Lipschitz continuous but not differentiable, so that we cannot apply the classical Newton

method directly to solve Eq. (1.2). Nevertheless, recent research shows that one can still design

globally and locally fast convergent algorithms for the solution of Eq. (1.2). Most of these

methods are classified by Kanzow and Pieper [20] into three categories: namely, nonsmooth

Newton methods, Jacobian smoothing methods and smoothing (Newton) methods. We refer

the interested reader to [20] and references therein.

In this paper, we aim to develop a trust region-type method for solving nonsmooth equations

(1.2). Trust region methods for solving nonsmooth equations have been studied in [3, 9, 11].

The algorithm proposed in [3] was devoted to solving a semismooth equation reformulation for

generalized complementarity problems by adopting the squared natural residual of the semis-

mooth equations as a merit function. Actually, it used a trust region strategy for solving the

following unconstrained minimization problem

min
x∈Rn

Φ̃(x),

where its merit function Φ̃(x) := ‖Φ(x)‖22/2. In their method, the trust region subproblem was

the following minimization problem





min ∇Φ̃(xk)Td+
1

2
dTV T

k Vkd

s.t. ‖d‖ ≤ ∆k,

where ∆k was the trust region radius and Vk was an arbitrary element in the Clarke’s [13]

generalized Jacobian of Φ at xk. Global convergence and, under a nonsingularity assumption,

local Q-superlinear (or Q-quadratic) convergence of this trust region method were established.

Inspired by Jiang et al.’s work [3], we develop a smoothing trust region method for solving

the NCPs. The method is based on the recently presented smoothing technique which is to

construct a smoothing approximation function Φµ : Rn → Rn of Φ such that for any µ > 0, Φµ

is continuously differentiable and

‖Φ(x)− Φµ(x)‖ → 0, as µ ↓ 0 for all x ∈ Rn.

The parameter µ is called smoothing parameter. Based on the smoothing function Φµ, we

define a merit function

θµ(x) :=
1

2
‖Φµ(x)‖2 (1.3)

and propose a trust region method where, at each iterate point xk, the trial step dk is obtained

by solving the following trust region subproblem,





min Θ(d) :=

1

2
‖Φµk

(xk) + JΦµk
(xk)d‖2

s.t. ‖d‖ ≤ ∆k.
(1.4)

And define the actual reduction and the predicted reduction as follows:

Aredk := θµk
(xk)− θµk

(xk + dk),

P redk := Θ(0)−Θ(dk).
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The trust region radius ∆k is updated according to the value of the ratio

rk :=
Aredk
Predk

. (1.5)

In the algorithm presented in [3], at each iteration step, if the trial step dk is not successful,

one rejects the trial step, reduces the trust region radius, and resolves the subproblem. This

process is repeated until dk is a sufficiently descent direction of its merit function at the point

xk. Thus, at each iteration step of the algorithm presented in [3], the subproblem needs to be

solved many times. This strategy is quite adequate for small problems. However, if the number

of variables is large, resolving the trust region problem can be costly.

In contrast to Jiang et al.’s work [3], in our approach, we incorporate backtracking line

searches in a trust region method, so as to avoid resolving the subproblem when the trial step dk

is not accepted. Specifically, at each iteration step, we only solve the trust region subproblem

(1.4) once. If dk is failed, then we take advantage of a line search strategy to determine a

steplength tk such that d̃k := tkd
k provides a descent direction of the merit function θµk

at xk.

The next iterate is obtained by letting xk+1 = xk + d̃k.

Obviously, the algorithm proposed in this paper enjoys the following advantages:

• It shares the advantages of trust region methods. The trust region subproblem (1.4)

always has a solution whether JΦµk
(xk) is nonsingular or singular. So our algorithm is well

defined for general nonlinear complementarity problem without requiring that F is a P0

function. It is well known that JΦµk
(xk) is nonsingular if F is a P0 function [17, 18].

• At each iteration step, the trust region subproblem (1.4) is solved once only but need

not be resolved when the trial step dk is not accepted. It reduces the computational cost

very much.

The remainder of this paper is organized as follows: In the next section, we summarize

some preliminary results and important properties of smoothing reformulation equation based

on the generalized Fischer-Burmeister function. In section 3, a smoothing trust region method

is proposed for solving NCP(F ) in detail. We proceed in section 4 by proving the global

convergence of this algorithm. In section 5, the locally Q-superlinear/Q-quadratic convergence

of the algorithm will be established under a nonsingularity assumption. Extensive and very

encouraging numerical results are reported in section 6. Finally, in the last section we make

some conclusive remarks.

We close this section by giving a list of the NOTATION employed.

All vectors are column vectors, the subscript T denotes transpose, Rn (respectively, R)

denotes the space of n-dimensional real column vectors (respectively, real numbers), Rn
+ and

Rn
++ denote the nonnegative and positive orthants of Rn, respectively. R+ (respectively, R++)

denotes the nonnegative (respectively, positive) orthant in R. We define N := {1, 2, · · · , n} and

N := {0, 1, 2, · · · }.
For any vector y ∈ Rn, we denote by diag{yi : i ∈ N} the diagonal matrix whose ith

diagonal element is yi and by vec{yi : i ∈ N} the column vector y. The matrix I represents

the identity matrix of arbitrary dimension. ei indicates the i-th column of the n-dimensional

identity matrix.
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If x ∈ Rn, we denote by ‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. For a

given M ∈ Rn×n and a nonempty set of matrices M ∈ Rn×n, ‖M‖ denotes the spectral norm

of M and dist(M,M ) := inf
B∈M

‖M−B‖ denotes the distance of M to M . For any continuously

differentiable mapping G : Rn → Rm, the Jacobian of G at x is denoted by JG(x) ∈ Rm×n.

If m = 1, the symbol ∇G is used for the gradient of G. sgn(·) is the sign function. Landau

symbols o(·) and O(·) are defined in usual way.

2. Reformulation and Preliminaries

Throughout this paper, we assume that F is continuously differentiable on Rn.

A function φ̄ : R2 → R is called an NCP-function if it satisfies

φ̄(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2.1)

We concentrate on one particular reformulation of the NCP(F ) and fully exploit the (addi-

tional) properties of this special reformulation. It is based on the generalized Fischer-Burmeister

function [4, 5] , i.e., φ : R2 → R given by

φ(a, b) := ‖(a, b)‖p − (a+ b), (2.2)

where p is any fixed real number in the interval (1,+∞) and ‖(a, b)‖p denotes the p-norm of

(a, b), i.e., ‖(a, b)‖p = p
√
|a|p + |b|p. Notice that in the function φ, the 2-norm of (a, b) in the

original Fischer-Burmeister function is replaced by more generally a p-norm of (a, b) with p > 1.

This function φ is still an NCP-function as was noted in Tseng’s paper [8]. Then it is well known

and easy to see that the NCP(F ) is equivalent to a system of nonsmooth equations

Φ(x) :=




φ(x1, F1(x))
...

φ(xn, Fn(x))


 = 0. (2.3)

Its natural merit function θ : Rn → R is given by

θ(x) :=
1

2
‖Φ(x)‖2. (2.4)

Let µ > 0 be the smoothing parameter, then the corresponding smooth operator Φµ : Rn → Rn

is defined similarly by

Φµ(x) :=




φµ(x1, F1(x))
...

φµ(xn, Fn(x))


 ,

where φµ : R2 → R denotes the smooth approximation

φµ(a, b) := ‖(a, b, µ)‖p − (a+ b), µ > 0, (2.5)

of the generalized Fischer-Burmeister function.

Note that Φ is locally Lipschitz on Rn and Fréchet differentiable on the set Ω, where

Ω := {x ∈ Rn|(xi, Fi(x)) 6= 0, i ∈ N}.
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However, Φ is not necessarily differentiable at x 6∈ Ω. Let ∂Φ(x) denote the Clarke’s generalized

Jacobian of Φ at x ∈ Rn [13], which can be defined as follows:

∂Φ(x) := conv
{
V ∈ Rn×n|V = lim

xk→x
JΦ(xk),Φ is differentiable at xk for all k

}
.

Usually, ∂Φ(x) is difficult to compute. For the purpose of this paper, the C-subdifferential ∂CΦ

is considerably more important than the more familiar generalized Jacobian; here

∂CΦ(x)
T := ∂Φ1(x) × · · · × ∂Φn(x),

which was discussed in [21].

Now we summarize some properties of the functions Φ, φµ and Φµ, which will be important

for our subsequent analysis. The following result follows directly from Property 2.1(d) in [4]

and the definition of the C-subdifferential.

Lemma 2.1. For any x ∈ Rn, we have

∂CΦ(x) = D̃1(x) + D̃2(x)JF (x),

where D̃1(x) = diag{ai(x) : i ∈ N}, D̃2(x) = diag{bi(x) : i ∈ N} with

ai(x) =
sgn(xi)|xi|p−1

‖(xi, Fi(x))‖p−1
p

− 1, bi(x) =
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x))‖p−1
p

− 1,

if (xi, Fi(x)) 6= 0, and

ai(x) = ξ̃i − 1, bi(x) = ζ̃i − 1,

for every (ξ̃i, ζ̃i) ∈ R2, such that |ξ̃i|p/(p−1) + |ζ̃i|p/(p−1) ≤ 1, if (xi, Fi(x)) = 0.

Lemma 2.2. For all (a, b) ∈ R2 and all µ1, µ2 ≥ 0, the function φµ defined by (2.5) satisfies

(i) when µ = 0, we have φ0 is an NCP-function, i.e.,

φ0(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0;

(ii) if µ > 0, then φµ(a, b) is continuously differentiable on R2; and

∇φµ(a, b) =

(
sgn(a)|a|p−1

‖(a, b, µ)‖p−1
p

− 1,
sgn(b)|b|p−1

‖(a, b, µ)‖p−1
p

− 1

)T

;

(iii) |φµ1(a, b)−φµ2 (a, b)| ≤ |µ1 −µ2|. In particular, we have |φµ(a, b)−φ(a, b)| ≤ µ for all

µ > 0.

Proof. The conclusions (i) and (ii) can be easily obtained by simple calculation. From the

definition of φµ and the property of p-norm, we have

|φµ1 (a, b)− φµ2 (a, b)| =
∣∣‖(a, b, µ1)‖p − (a, b, µ2)‖p

∣∣

≤‖(a, b, µ1)− (a, b, µ2)‖p
=‖(0, 0, µ1 − µ2)‖p = |µ1 − µ2|,

which gives (iii). �

As an immediate consequence of Lemma 2.2, we get the following corollary.
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Corollary 2.1. The following properties hold for the smoothing operator Φµ.

(i) For all µ > 0, Φµ(x) is continuously differentiable on Rn with its Jacobian

JΦµ(x) = D1(µ, x) +D2(µ, x)JF (x)

where

D1(µ, x) = diag

{
sgn(xi)|xi|p−1

‖(xi, Fi(x), µ)‖p−1
p

− 1 : i ∈ N

}
,

D2(µ, x) = diag

{
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x), µ)‖p−1
p

− 1 : i ∈ N

}
.

(ii)

‖Φµ1(x)− Φµ2(x)‖ ≤ κ|µ1 − µ2|, (2.6)

for all x ∈ Rn and µ1, µ2 ≥ 0, where κ :=
√
n. In particular, we have

‖Φµ(x) − Φ(x)‖ ≤ κµ, (2.7)

for all x ∈ Rn and µ ≥ 0.

Lemma 2.3. Let µ > 0 and p > 1 be arbitrary but fixed. Then the following statements hold:

(i)

̟1(t) := t
(1−p)

p − (t+ µp)
(1−p)

p ,

̟2(t) := (t+ µp)
(p−1)

p − t
(p−1)

p

are strictly decreasing in t > 0 and in t ≥ 0, respectively.

(ii) Furthermore, ̟2(t) ≤ µp−1 for all t ≥ 0.

Proof. (i) The function ̟1 is continuously differentiable and

̟′
1(t) =

1− p

p

(
t
(1−2p)

p − (t+ µp)
(1−2p)

p

)
.

Obviously, from µ > 0 and p > 1, it follows that ̟′
1(t) < 0 for all t > 0. This implies that

̟1(t) is strictly decreasing in t > 0.

By a similar argument, it is not difficult to see that ̟2(t) is strictly decreasing in t ≥ 0.

(ii) From the statement (i), it is easy to see that ̟2(t) ≤ ̟2(0) = µp−1 for all t ≥ 0. The

proof is complete. �

In order to guarantee local fast convergence of our algorithm, we have to control the distance

between JΦµ(x
k) and the set ∂CΦ(x

k) at each iteration step xk as µ ↓ 0. Note that the set

∂CΦ(x) is nonempty and compact for any x ∈ Rn.

Proposition 2.1. Let x ∈ Rn be arbitrary but fixed.

(i) Then we have

lim
µ↓0

dist(JΦµ(x), ∂CΦ(x)) = 0. (2.8)

(ii) Assume that x is not a solution of NCP(F ). Let us define the constants

γ(x) := max
i6∈β(x)

{‖sgn(xi)|xi|p−1ei + sgn(Fi(x))|Fi(x)|p−1∇Fi(x)‖} ≥ 0,

α(x) := min
i6∈β(x)

{|xi|p + |Fi(x)|p} > 0,
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where β(x) := {i|xi = Fi(x) = 0}. Let δ > 0 be given, and define

ξ̂(x, δ) :=





1, if
(√

nγ(x)
δ

) p

(p−1) − α(x) ≤ 0,

α(x)
2
p

((√
nγ(x)
δ

) p
(p−1) − α(x)

)− 1
p

, otherwise.
(2.9)

Then

dist(JΦµ(x), ∂CΦ(x)) ≤ δ

for all µ such that 0 < µ ≤ ξ̂(x, δ).

Proof. (i) Define

β(x) := {i|xi = Fi(x) = 0}.

If we denote the i-th component function of Φµ by Φµ,i, from Corollary 2.1(i), we obtain

lim
µ↓0

∇Φµ,i(x) =






(
sgn(xi)|xi|p−1

‖(xi, Fi(x))‖p−1
p

−1

)
ei +

(
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x))‖p−1
p

−1

)
∇Fi(x), for i 6∈β(x)

−ei −∇Fi(x), for i∈β(x).

Hence the assertion (i) follows from Lemma 2.1 with (ξ̃i, ζ̃i) = 0 for i ∈ β(x).

(ii) The assertion (i) implies that for any δ > 0, there exists a parameter ξ̂(x, δ) > 0 such

that

dist(JΦµ(x), ∂CΦ(x)) ≤ δ

for all 0 < µ ≤ ξ̂(x, δ).

Now we prove (ii), that is, choose such ξ̂(x, δ) as follows. Note that N \ β(x) 6= ∅ since x is

not a solution of NCP(F ) by assumption. Hence α(x) > 0. From Corollary 2.1(i) and Lemma

2.1, we obtain

∇Φµ,i(x) =

(
sgn(xi)|xi|p−1

‖(xi, Fi(x), µ)‖p−1
p

− 1

)
ei +

(
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x), µ)‖p−1
p

− 1

)
∇Fi(x)

and

∂Φi(x) =






(
sgn(xi)|xi|p−1

‖(xi, Fi(x))‖p−1
p

− 1

)
ei +

(
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x))‖p−1
p

− 1

)
∇Fi(x), for i 6∈ β(x)

(ξ̃i − 1)ei + (ζ̃i − 1)∇Fi(x), for i ∈ β(x)

respectively, where (ξ̃i, ζ̃i) ∈ R2 denotes any vector such that |ξ̃i|p/(p−1) + |ζ̃i|p/(p−1) ≤ 1. We

consider the following two cases:

Case 1, i ∈ β(x). Then (xi, Fi(x)) = 0 and therefore

∇Φµ,i(x) = −ei −∇Fi(x).

Hence, taking (ξ̃i, ζ̃i) = 0, we see that ∇Φµ,i(x) ∈ ∂Φi(x) so that

dist(∇Φµ,i(x), ∂Φi(x)) = 0, (2.10)

for all i ∈ β(x).
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Case 2, i 6∈ β(x). Then ∂Φi(x) = {∇Φi(x)}. So, by an easy calculation, we have

dist(∇Φµ,i(x), ∂Φi(x)) = ‖∇Φµ,i(x) −∇Φi(x)‖

=

∥∥∥∥
(

sgn(xi)|xi|p−1

‖(xi, Fi(x), µ)‖p−1
p

− 1

)
ei +

(
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x), µ)‖p−1
p

− 1

)
∇Fi(x)

−
(

sgn(xi)|xi|p−1

‖(xi, Fi(x))‖p−1
p

− 1

)
ei −

(
sgn(Fi(x))|Fi(x)|p−1

‖(xi, Fi(x))‖p−1
p

− 1

)
∇Fi(x)

∥∥∥∥

=

∥∥∥∥
(

1

‖(xi, Fi(x), µ)‖p−1
p

− 1

‖(xi, Fi(x))‖p−1
p

)(
sgn(xi)|xi|p−1ei + sgn(Fi(x))|Fi(x)|p−1∇Fi(x)

)∥∥∥∥

=

(
1

‖(xi, Fi(x))‖p−1
p

− 1

‖(xi, Fi(x), µ)‖p−1
p

)∥∥sgn(xi)|xi|p−1ei + sgn(Fi(x))|Fi(x)|p−1∇Fi(x)
∥∥.

From the definitions of γ(x) and α(x), by using Lemma 2.3 (i), we therefore obtain

dist
(
∇Φµ,i(x), ∂Φi(x)

)
≤

(
α(x)

(1−p)
p − (α(x) + µp)

(1−p)
p

)
· γ(x)

=

(
α(x) + µp

) (p−1)
p − α(x)

(p−1)
p

(
α(x)(α(x) + µp)

) (p−1)
p

· γ(x) ≤ µp−1

(
α(x)(α(x) + µp)

) (p−1)
p

· γ(x),

where the latter inequality follows from Lemma 2.3 (ii). We now want to show that

µp−1

(
α(x)(α(x) + µp)

) (p−1)
p

· γ(x) ≤ δ√
n
, (2.11)

for all 0 < µ ≤ ξ̂(x, δ), which then implies

dist(∇Φµ,i(x), ∂Φi(x)) ≤
δ√
n
. (2.12)

Obviously, if γ(x) = 0, then (2.11) holds for ∀ µ > 0. Thereby we assume that γ(x) > 0. Then

a simple calculation shows that (2.11) is equivalent to

α(x)2 ≥ µp

((√
nγ(x)

δ

) p
(p−1)

− α(x)

)
. (2.13)

Hence, if (
√
nγ(x)/δ)p/(p−1) − α(x) ≤ 0, inequality (2.11) holds for any µ > 0, in particular for

all µ ∈ (0, 1]. Otherwise, from (2.13), we have

µ ≤ α(x)
2
p

((√
nγ(x)

δ

) p
(p−1)

− α(x)

)− 1
p

=: ξ̂(x, δ).

Putting together (2.10) and (2.12), we therefore obtain

dist(∇Φµ,i(x), ∂Φi(x)) ≤
δ√
n
, for all i ∈ N.

Thus

dist(JΦµ(x), ∂CΦ(x)) ≤ δ

for all 0 < µ ≤ ξ̂(x, δ).

We complete the proof of this proposition. �
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3. Algorithm

In this section, we give a detailed description of our smoothing trust region method and

state some of its elementary properties.

For simplicity, in the remainder of this paper we denote

Φk(x) := Φµk
(x), θk(x) :=

1

2
‖Φk(x)‖2.

Algorithm 3.1. (A Smoothing Trust Region Method)

Step 0 Initialization: Choose constants λ, η, α ∈ (0, 1), σ ∈ (0, 1
2 ), ∆min ≥ 0, τ > 0, ν > 0,

0 < η1 < η2 < 1, 0 < α1 < 1 < α2, ∆0 > ∆min. Let x0 ∈ Rn be an arbitrary point; Set

κ :=
√
n, β0 := ‖Φ(x0)‖, µ0 = α

2κβ0 and k := 0.

Step 1 If ‖∇θ(xk)‖ = 0, STOP.

Step 2 Solve the trust region subproblem (1.4) to obtain a trial step dk, (approximately).

Step 3 Evaluate the reduction ratio rk from (1.5).

Step 4 If rk ≥ η1, then let xk+1 := xk + dk, and perform Step 5.

Otherwise, let ik be the smallest nonnegative integer i such that

θk(x
k + λidk) ≤ θk(x

k) + σλi∇θk(x
k)T dk. (3.1)

Set tk := λik , xk+1 := xk + tkd
k, and perform Step 5.

Step 5 (Updating ∆k+1)

∆k+1 :=






α1∆k, if rk < η1

max{∆min,∆k}, if rk ∈ [η1, η2)

max{∆min, α2∆k}, if rk ≥ η2

(3.2)

Step 6 (Updating µk+1)

6.1 If

‖Φ(xk+1)‖ ≤ max

{
ηβk,

1

α
‖Φ(xk+1)− Φk(x

k+1)‖
}
, (3.3)

then set βk+1 := ‖Φ(xk+1)‖ and choose µk+1 satisfying

0 < µk+1 ≤ min

{
µk

2
,
α

2κ
βk+1, ξ̂(x

k+1, νβk+1), θ(x
k+1)

}
, (3.4)

where ξ̂(·, ·) is given by (2.9).

6.2 If (3.3) does not hold and

‖∇θk(x
k+1)‖ ≤ τµk (3.5)

then set βk+1 := βk and choose µk+1 satisfying

0 < µk+1 ≤ min

{
µk

2
,
‖Φk(x

k)‖ − ‖Φk(x
k+1)‖

κ

}
. (3.6)
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6.3 If none of the above conditions is met, set

βk+1 := βk and µk+1 := µk.

Step 7 Let k be replaced by k + 1, and return to Step 1.

Without loss of generality, we assume that ‖∇θ(xk)‖ 6= 0 for all k ∈ N in the following

convergence analysis.

Remark 1. (i) The application of the function ξ̂(·, ·) in the updating rules (3.4) is the crucial

condition for superlinear/quadratic convergence of Algorithm 3.1.

(ii) In both updating rules, namely, in (3.4) and (3.6), we reduce µk by at least a factor of 1/2.

This is reasonable since we want to force µk to go to 0. The sequence {µk} is monotonically

decreasing and bounded from below. And the parameter βk will be very useful in proving

convergence results in the subsequent sections.

Define the index set

F := {0} ∪
{
k ∈ N

∣∣∣∣‖Φ(xk)‖ ≤ max
{
ηβk−1,

1

α
‖Φ(xk)− Φk−1(x

k)‖
}}

. (3.7)

From the construction of the above algorithm and the definition of ξ̂(·, ·) in Proposition 2.1, we

have

dist(JΦk(x
k), ∂CΦ(x

k)) ≤ νβk = ν‖Φ(xk)‖ (3.8)

for all k ∈ F with k ≥ 1.

We conclude that the backtracking line search (3.1) should be performed provided the search

direction is sufficiently downhill. In order to do this, we apply the algorithm proposed by

Nocedal and Yuan, i.e., Algorithm 2.6 in [23], to approximately solve the subproblem (1.4) to

obtain the trial step dk. We show that the trial step dk is always a direction of sufficient descent

for the merit function θµ; see Lemma 3.1 below.

We present Algorithm 2.6 in [23] as follows.

Algorithm 3.2. (Algorithm for approximate solution of the subproblem (1.4))

Input: xk, µk, ∆k. Output: dk.

gk := JΦµk
(xk)TΦµk

(xk), Bk := JΦµk
(xk)T JΦµk

(xk).

Step 1 Given constants γ > 1 and ǫ > 0, set λ̂ := 0.

If Bk is positive definite, go to Step 2;

else find λ̂ ∈
[
0, ‖Bk‖+ (1 + ǫ)‖gk‖/∆k

]
such that Bk + λ̂I is positive definite.

Step 2 Factorize Bk + λ̂I = RT
k Rk, where Rk is upper triangular, and solve RT

k Rkd = −gk
for dk.
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Step 3 If ‖dk‖ ≤ ∆k, stop; else solve RT
k q = dk for qk, and compute

λ̂ := λ̂+
‖dk‖2
‖qk‖2

γ‖dk‖ −∆k

∆k
,

go to Step 2.

Note that, in the subproblem (1.4), the quadratic model

Θ(d) =
1

2
‖Φk(x

k)‖2 +
(
JΦk(x

k)TΦk(x
k)
)T

d+
1

2
dTJΦk(x

k)TJΦk(x
k)d

=θk(x
k) +∇θk(x

k)Td+
1

2
dT JΦk(x

k)T JΦk(x
k)d

=θk(x
k) + gTk d+

1

2
dTBkd.

Therefore, we obtain the following result, and omit its proof here since it have been discussed

in detail by Nocedal and Yuan in [23].

Lemma 3.1. If the trial step dk is computed at each iteration by Algorithm 3.2, then there

exists a constant τ̄ > 0 such that

Predk := Θ(0)−Θ(dk) ≥ τ̄‖gk‖min

{
∆k,

‖gk‖
‖Bk‖

}
, (3.9)

gTk d
k ≤ −τ̄‖gk‖min

{
∆k,

‖gk‖
‖Bk‖

}
, (3.10)

where gk and Bk are defined in Algorithm 3.2.

Remark 2. (i) Note that, inequality (3.10) particularly implies that the trial step dk at each

iteration provides a sufficiently descent direction of the function θk at xk. Therefore for each

k, there exists a finite nonnegative integer ik such that (3.1) holds, which shows the well-

definiteness of Algorithm 3.1.

(ii) The property (3.9) of the predicted reduction is very important for the proof of our main

global convergence result, Theorem 4.1 below.

4. Global Convergence

The aim of this section is to show the global convergence of Algorithm 3.1, that is, any

accumulation point of a sequence generated by Algorithm 3.1 is a stationary point of the merit

function θ.

Applying Lemma 2.1, we first obtain the following result whose proof can be carried out in

a similar way as the proof of Proposition 3.4 of [6].

Proposition 4.1. The merit function θ defined by (2.4) is continuously differentiable every-

where and its gradient ∇θ(x) = V TΦ(x) for an arbitrary V ∈ ∂CΦ(x).

The following technical result will be utilized in our global convergence analysis.
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Lemma 4.1. Let {xk} ⊆ Rn and {µk} ⊆ R++ be two sequences with {xk} → x∗(∈ Rn) and

{µk} ↓ 0. Then

lim
k→∞

∇θk(x
k) = ∇θ(x∗).

Proof. For an arbitrary V ∈ ∂CΦ(x
∗), we obtain from Proposition 4.1

∇θ(x∗) = V TΦ(x∗) =

n∑

i=1

φ(x∗
i , Fi(x

∗))V T
i ,

where V T
i stands for the i-th column of the matrix V T . On the other hand, obviously θµ is

differentiable for all µ > 0, so we have

∇θk(x
k) = JΦk(x

k)TΦk(x
k) =

n∑

i=1

φµk
(xk

i , Fi(x
k))∇Φk,i(x

k),

where Φk,i denotes the i-th component function of Φk.

Let β(x∗) := {i|x∗
i = Fi(x

∗) = 0}. We distinguish two cases:

Case 1, i 6∈ β(x∗). Then the generalized Fischer-Burmeister function φ is continuously

differentiable at (x∗
i , Fi(x

∗)), and the i-th column of V T is single valued and equal to ∇Φi(x
∗)

from Lemma 2.1. It follows from the continuity of φ and JF that

lim
k→∞

φµk
(xk

i , Fi(x
k))∇Φk,i(x

k) = φ(x∗
i , Fi(x

∗))∇Φi(x
∗) = φ(x∗

i , Fi(x
∗))V T

i .

Case 2, i ∈ β(x∗). From Lemma 2.2, we know

∂φµ(a, b)

∂a
∈ (−2, 0) and

∂φµ(a, b)

∂b
∈ (−2, 0)

for ∀ (a, b) ∈ R2 and µ > 0. So the sequence {∇Φk,i(x
k)} is bounded as k → ∞. Since

lim
k→∞

φµk
(xk

i , Fi(x
k)) = φ(x∗

i , Fi(x
∗)) = 0,

we get

lim
k→∞

φµk
(xk

i , Fi(x
k))∇Φk,i(x

k) = 0.

Obviously, φ(x∗
i , Fi(x

∗))V T
i = 0 for ∀ i ∈ β(x∗).

Hence, the statement follows from Case 1 and 2. The proof is completed. �

Next we will show that all the iterates xk generated by our new algorithm remain in a

certain level set. The following simple results are exploited.

Lemma 4.2. Let {xk} be a sequence generated by Algorithm 3.1. Then we have

(i)

‖Φk(x
k+1)‖ < ‖Φk(x

k)‖, for all k ∈ N.

(ii)

‖Φk(x
k)‖+ κµk < ‖Φk−1(x

k−1)‖ + κµk−1, for all k ∈ N \ F .

Proof. (i) We consider two cases.

Case 1, rk ≥ η1. Then, from (3.9) in Lemma 3.1, it follows that

θk(x
k)− θk(x

k+1) ≥ η1Predk > 0;
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Case 2, rk < η1. From the line search rule (3.1) and Remark 2 (i), we get

θk(x
k+1) < θk(x

k).

Obviously, Case 1 and Case 2 imply ‖Φk(x
k+1)‖ < ‖Φk(x

k)‖ for all k ∈ N.

(ii) First assume that k ∈ N \ F and the updating rule (3.6) is not active, then we have

µk = µk−1. This equality, together with statement (i), gives

‖Φk(x
k)‖+ κµk = ‖Φk−1(x

k)‖+ κµk−1 < ‖Φk−1(x
k−1)‖+ κµk−1.

On the other hand, if k ∈ N \ F and the updating rule (3.6) is active, then it holds that

µk ≤ ‖Φk−1(x
k−1)‖ − ‖Φk−1(x

k)‖
κ

.

Therefore, from Corollary 2.1 (ii), it follows that

‖Φk(x
k)‖+ κµk ≤‖Φk(x

k)‖ − ‖Φk−1(x
k)‖+ ‖Φk−1(x

k−1)‖
≤‖Φk(x

k)− Φk−1(x
k)‖+ ‖Φk−1(x

k−1)‖
≤κ(µk−1 − µk) + ‖Φk−1(x

k−1)‖
<κµk−1 + ‖Φk−1(x

k−1)‖,

where the last inequality follows from κµk > 0. This completes the proof. �

Lemma 4.3. Assume that the index set F defined by (3.7) consists of k0 = 0 < k1 < k2 < · · · .
Let k ∈ N be an arbitrary but fixed index and kj the largest number in F such that kj ≤ k.

Then the following three statements hold:

(i) µk ≤ µkj
and βk = βkj

.

(ii) Let ρ̄ := max{η, 1
2}, then we have

βkj
≤ ρ̄j‖Φ(x0)‖ and µkj

≤
(1
2

)j α

2κ
‖Φ(x0)‖.

(iii) ‖Φ(xk)‖ < βkj
+ 2κµkj

.

Proof. (i) Statement (i) follows immediately from the updating rules for µk and βk in Step

6 of Algorithm 3.1.

(ii) Let us denote

F1 :=
{
k ∈ F

∣∣ηβk−1 ≥ 1

α
‖Φ(xk)− Φk−1(x

k)‖
}
,

F2 :=
{
k ∈ F

∣∣ηβk−1 <
1

α
‖Φ(xk)− Φk−1(x

k)‖
}
.

Then F = {0} ∪ F1 ∪ F2.

If j = 0, we get k0 = 0 and thus

βk0 = β0 = ‖Φ(x0)‖ and µk0 = µ0 =
α

2κ
β0 =

α

2κ
‖Φ(x0)‖

by the definitions of β0 and µ0.

If j ≥ 1, by Step 6 of Algorithm 3.1, if kj ∈ F1, then

βkj
≤ ηβkj−1 = ηβkj−1 ,
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where the last equality follows from statement (i) (notice that kj−1 ≤ kj − 1); and if kj ∈ F2,

using Corollary 2.1 (ii), then

βkj
≤ 1

α
‖Φ(xkj )− Φkj−1(x

kj )‖ ≤ κ

α
µkj−1 ≤ κ

α
µkj−1 ≤ 1

2
βkj−1 ,

where the third inequality follows from statement (i) (notice that kj−1 ≤ kj − 1) and the last

inequality follows from the updating rule (3.4). Then, letting ρ̄ = max{η, 12}, we have

βkj
≤ ρ̄βkj−1 .

Also, from the updating rule (3.4), we get

µkj
≤ 1

2
µkj−1 ≤ 1

2
µkj−1 .

Therefore, βkj
≤ ρ̄jβk0 = ρ̄j‖Φ(x0)‖ and µkj

≤
(
1
2

)j
µk0 =

(
1
2

)j α
2κ‖Φ(x0)‖ from the defini-

tions of β0 and µ0. This completes the proof of statement (ii).

(iii) If kj = k, statement (iii) obviously holds since βkj
= ‖Φ(xkj )‖ = ‖Φ(xk)‖ in this case.

Thus we consider kj < k in the following. Denote the index set

L := { k̄ | kj + 1 ≤ k̄ ≤ k}.

Obviously, L 6= ∅. From the definition of kj (note that k < kj+1), it follows that

L ⊆ N \ F

Thereby, from Lemma 4.2 (ii), we obtain

‖Φk̄(x
k̄)‖+ κµk̄ < ‖Φk̄−1(x

k̄−1)‖ + κµk̄−1

for all k̄ ∈ L. It is equivalent to

‖Φk̄+1(x
k̄+1)‖ + κµk̄+1 < ‖Φk̄(x

k̄)‖+ κµk̄ (4.1)

for all k̄ satisfying kj ≤ k̄ ≤ k− 1. The above inequality, together with Corollary 2.1 (ii), gives

‖Φ(xk)‖ ≤‖Φ(xk)− Φk(x
k)‖+ ‖Φk(x

k)‖
≤κµk + ‖Φk(x

k)‖ < κµk−1 + ‖Φk−1(x
k−1)‖

< · · ·
<κµkj

+ ‖Φkj
(xkj )‖

≤κµkj
+ ‖Φkj

(xkj )− Φ(xkj )‖ + ‖Φ(xkj )‖
≤κµkj

+ κµkj
+ ‖Φ(xkj )‖ = 2κµkj

+ βkj
,

where the dots indicate the repeated use of (4.1). That is, statement (iii) holds. �

Proposition 4.2. Let {xk} be a sequence generated by Algorithm 3.1). Then the following two

assertions hold:

(i) Denote the level set

L0 := {x ∈ Rn|θ(x) ≤ (1 + α)2θ(x0)},

we have

{xk} ⊆ L0.

(ii) If the index set F is infinite, then each accumulation point of the sequence {xk} must

be a solution of NCP(F ).
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Proof. (i) Let kj and ρ̄ be defined in Lemma 4.3. Then 1
2 ≤ ρ̄ < 1. Therefore, from Lemma

4.3 (ii) and (iii), it follows that

‖Φ(xk)‖ <βkj
+ 2κµkj

≤ρ̄j‖Φ(x0)‖+
(
1

2

)j

α‖Φ(x0)‖

≤ρ̄j(1 + α)‖Φ(x0)‖
≤(1 + α)‖Φ(x0)‖. (4.2)

The above inequality implies that xk ∈ L0 for all k ∈ N. That is, assertion (i) holds.

(ii) Let x∗ be a limit point of {xk} and {xk}K → x∗ where K ⊆ N. The inequality (4.2)

indicates that for all k ∈ N, we have

‖Φ(xk)‖ ≤ ρ̄j(1 + α)‖Φ(x0)‖.

Since the index set F is infinite, then from the definition of j, k → ∞ obviously implies that

j → ∞. Therefore,

‖Φ(x∗)‖ = lim
k(∈K)→∞

‖Φ(xk)‖ ≤ lim
j→∞

ρ̄j(1 + α)‖Φ(x0)‖ = 0,

where the last equality follows from 1
2 ≤ ρ̄ < 1. Thus x∗ is a solution of NCP(F ). �

We complete the proof.

Remark 3. If F is a uniform P -function or, more generally, an R0-function, then the level

set L0 is compact.

Note that Proposition 4.2 (ii) provides a sufficient condition for an accumulation point to

be a solution of the complementarity problem NCP(F ).

Now we can prove the main global convergence result for Algorithm 3.1.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 3.1. Then each accumulation

point of the sequence {xk} is a stationary point of θ(x).

Proof. Let x∗ be an accumulation point of the sequence {xk} and {xk}K be a subsequence

converging to x∗. Since the sequence {µk} is monotonically decreasing and bounded from below,

it converges to some µ∗ ≥ 0.

If the index set F is infinite, by Proposition 4.2 (ii), it follows that x∗ is a solution of

NCP(F ), namely ‖Φ(x∗)‖ = 0, which implies that ∇θ(x∗) = 0, i.e., x∗ is a stationary point

of θ(x). Hence we can suppose that F contains only finitely many indices. Without loss of

generality, we assume that F ∩K = ∅ in the remaining part of this proof.

Define the index set

K1 :=
{
k ∈ K

∣∣∣ inequality (3.5) is satisfied for k
}
.

(a) We claim that the set K2 := K \K1 contains only finitely many indices. Suppose that

this assertion does not hold, namely K2 is infinite. Then by Step 6 of Algorithm 3.1, there

exists an integer k̂ ∈ K2 such that for all k(∈ K2) ≥ k̂,

µk = µ∗ > 0 and ‖∇θk(x
k+1)‖ > τµk.
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That is,

‖∇θ∗(x
k+1)‖ > τµ∗ > 0,

for all k(∈ K2) ≥ k̂. Let gk be defined as in Algorithm 3.2, then

‖gk‖ > τµ∗ > 0, (4.3)

for all k(∈ K2) ≥ k̂.

Since the sequence {JΦk(x
k)}K is obviously bounded on the convergent sequence {xk}K ,

then there must exist a constant C1 > 0 such that

‖Bk‖ ≤ ‖JΦk(x
k)‖2 ≤ C1, (4.4)

for all k ∈ K, where Bk is defined in Algorithm 3.2.

From Lemma 4.2 (i) and θµ(x) = 1
2‖Φµ(x)‖2, it follows that {θ∗(xk)} is monotonically

decreasing for all k(∈ K2) ≥ k̂ and is bounded from below, and is therefore convergent. Thus,

from Lemma 3.1, (4.3) and (4.4), we have

+∞ >θk̂(x
k̂) = θ∗(x

k̂)

≥
∞∑

k=k̂

(
θ∗(x

k)− θ∗(x
k+1)

)
≥

∑

k∈I

(
θ∗(x

k)− θ∗(x
k+1)

)

≥η1
∑

k∈I

(
Θ(0)−Θ(dk)

)
≥ η1

∑

k∈I
τ̄ τµ∗ min

{
∆k,

τµ∗
C1

}
,

where I := {k ∈ K2|rk ≥ η1, k ≥ k̂}. This, if I is infinite, implies

lim
k(∈I)→∞

∆k = 0. (4.5)

Denote J := {k ∈ K2|rk < η1, k ≥ k̂}. Since ∆k+1 = α1∆k with α1 ∈ (0, 1) for all k ∈ J from

Step 5 of Algorithm 3.1, then, if J is infinite, we also have

lim
k(∈J )→∞

∆k = 0. (4.6)

Hence, from (4.5) and (4.6), it follows that

lim
k(∈K2)→∞

∆k = 0. (4.7)

Recalling ‖dk‖ ≤ ∆k, the above limit implies that

lim
k(∈K2)→∞

‖dk‖ = 0. (4.8)

On the other hand, for all k(∈ K2) ≥ k̂, from the definitions of gk and Bk and (4.8), we can

obtain

|rk − 1| =
∣∣∣∣
θ∗(x

k)− θ∗(x
k+1)

Θ(0)−Θ(dk)
− 1

∣∣∣∣ =
∣∣∣∣

−gTk d
k + o(‖dk‖)

−gTk d
k − 1

2d
kTBkdk

− 1

∣∣∣∣

=

∣∣1
2d

kTBkd
k + o(‖dk‖)

∣∣
|Θ(0)−Θ(dk)| ≤

1
2C1‖dk‖2 + o(‖dk‖)
τ̄ τµ∗ min

{
∆k,

τµ∗

C1

}

≤
1
2C1‖dk‖2 + o(‖dk‖)

τ̄ τµ∗‖dk‖
→ 0, (4.9)
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where the first inequality follows from (4.3), (4.4) and Lemma 3.1(i), and the second inequality

follows from (4.7) and ‖dk‖ ≤ ∆k. So (4.9) means that rk ≥ η1 for all large k(∈ K2) ≥ k̂,

which implies that ∆k ≥ ∆min > 0 by Step 5 of Algorithm 3.1. However, this contradicts (4.7).

Therefore, the set K2, i.e., K \K1 contains only finitely many indices.

(b) Then, without loss of generality, we can assume that K = K1 so that the updating rule

(3.6) is active for all k ∈ K. This, in particular, implies that {µk} → 0. Then from the test

(3.5), it follows that

lim
k(∈K)→∞

‖∇θk(x
k+1)‖ ≤ lim

k(∈K)→∞
τµk = 0.

Therefore, from Lemma 4.1, we obtain

∇θ(x∗) = lim
k(∈K)→∞

‖∇θk(x
k+1)‖ = 0,

which shows that x∗ is a stationary point of θ(x). This completes the proof. �

5. Local Convergence

In this section, we want to show that Algorithm 3.1 is locally Q-superlinearly/Q-quadratically

convergent under certain assumptions.

The first result in this section follows from [5] together with known results for (strongly)

semismooth functions [22] and the theory of C-differentiable functions [21].

Lemma 5.1. Let {xk} ⊆ Rn be any convergent sequence with limit point x∗ ∈ Rn. Then the

following statements hold:

(i) The function Φ defined by (2.3) is semismooth so that

lim
k→∞

‖Φ(xk)− Φ(x∗)− Vk(x
k − x∗)‖

‖xk − x∗‖ = 0,

for any Vk ∈ ∂CΦ(x
k).

(ii) If F continuously differentiable with a locally Lipschitzian Jacobian, then Φ defined by

(2.3) is strongly semismooth so that

lim sup
k→∞

‖Φ(xk)− Φ(x∗)− Vk(x
k − x∗)‖

‖xk − x∗‖2 < ∞,

for any Vk ∈ ∂CΦ(x
k).

Lemma 5.2. Let {xk} be a sequence generated by Algorithm 3.1, and x∗ be an accumulation

point of {xk}. If x∗ is a solution of NCP(F ), then the index set F is infinite and {µk} → 0.

Proof. For the sake of contradiction, we assume that F is finite. Then from the updating

rules for βk in Step 6 of Algorithm 3.1, we deduce that there exists β̄ > 0, such that

βk = β̄ > 0,

for sufficiently large k. Thus, it follows from the test (3.3) that

‖Φ(xk+1)‖ > max

{
ηβk,

1

α
‖Φ(xk+1)− Φk(x

k+1)‖
}

≥ ηβk = ηβ̄ > 0,
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for sufficiently large k. This contradicts the fact that ‖Φ(x∗)‖ = 0 by assumption. Therefore,

F must be infinite.

So the updating rules for µk imply that {µk} → 0. This completes the proof. �

Remark 4. We explicitly point out that the proof of Lemma 5.2 shows that, each accumulation

point of the sequence {xk : k ∈ N \ F} (if the set N \ F is infinite) is impossibly a solution of

NCP(F ).

Lemma 5.3. Let {xk} be a sequence generated by Algorithm 3.1, and x∗ be an accumulation

point of {xk}. Assume that all elements of ∂CΦ(x
∗) are nonsingular. Then the following two

statements are valid:

(i) x∗ is a locally unique solution of NCP(F ).

(ii) If L is an infinite subset of F such that {xk}k∈L → x∗, then for all k ∈ L sufficiently

large, the matrix JΦk(x
k) is nonsingular and satisfies the inequality

‖JΦk(x
k)−1‖ ≤ C2

for a certain constant C2 > 0.

Proof. (i) Let V ∈ ∂CΦ(x
∗), then V is nonsingular by assumption. Theorem 4.1 guarantees

that x∗ is a stationary point of θ(x), i.e., ∇θ(x∗) = 0. From Proposition 4.1, we have

0 = ∇θ(x∗) = V TΦ(x).

Then the nonsingularity of V implies Φ(x∗) = 0. Therefore, Proposition 2.5 in [25], together

with Lemma 5.1(i), shows that x∗ is a locally unique solution of Φ(x) = 0 and hence also of

NCP(F ). This proves (i).

(ii) Notice that for any x ∈ Rn, the set ∂CΦ(x) is nonempty and compact. So, for all k ∈ N,

there exists Ṽk ∈ ∂CΦ(x
k) such that

dist(JΦk(x
k), ∂CΦ(x

k)) = ‖JΦk(x
k)− Ṽk‖.

Then, by (3.8), we have

‖JΦk(x
k)− Ṽk‖ ≤ νβk, (5.1)

for all k ∈ F .

Since {xk}L → x∗ and L ⊆ F , the nonsingularity of all elements of ∂CΦ(x
∗) and the upper

semicontinuity of the C-subdifferential imply that, for all k ∈ L sufficiently large, all matrices

Vk ∈ ∂CΦ(x
k) are nonsingular with ‖V −1

k ‖ ≤ c̄ for some constant c̄ > 0. In particular,

‖Ṽ −1
k ‖ ≤ c̄. (5.2)

In view of the updating rules of βk in Algorithm 3.1, {xk}L → x∗ implies that βk → 0 for

k ∈ L. Thereby, for k ∈ L large enough such that νβk c̄ ≤ 1
2 , we obtain from (5.1) and (5.2)

‖I − Ṽ −1
k JΦk(x

k)‖ =‖Ṽ −1
k (Ṽk − JΦk(x

k))‖
≤‖Ṽ −1

k ‖‖Ṽk − JΦk(x
k)‖

≤νβk c̄ ≤
1

2
< 1.
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From the perturbation lemma (see Theorem 3.1.4 in [26]), we clearly see that the matrix

JΦk(x
k) is nonsingular for all k ∈ L sufficiently large with

‖JΦk(x
k)−1‖ ≤ C2,

where C2 := 2c̄. We complete the proof. �

Lemma 5.4. Let {xk} be a sequence generated by Algorithm 3.1. Assume that x∗ is one of the

accumulation points of {xk} and all elements of ∂CΦ(x
∗) are nonsingular. Let L be an infinite

subset of F such that {xk}k∈L converges to x∗. Then for sufficiently large k ∈ L, we have

dk = −JΦk(x
k)−1Φk(x

k)

is the unique solution of the subproblem (1.4).

Proof. Denote sk := −JΦk(x
k)−1Φk(x

k). Lemma 5.3 shows that ‖Φ(x∗)‖ = 0 and for all

k ∈ L sufficiently large, it holds that

‖JΦk(x
k)−1‖ ≤ C2,

for a certain constant C2 > 0. Hence {‖Φk(x
k)‖}L → 0 and then, for all k ∈ L sufficiently

large,

‖sk‖ ≤ ∆min ≤ ∆k,

which means that sk is a feasible point of the subproblem (1.4). Note that Θ(sk) = 0, that is

sk is a global minimum point of Θ(d). Thus

dk = −JΦk(x
k)−1Φk(x

k)

is the unique solution of the subproblem (1.4). This completes the proof. �

In the proof of the main local convergence result, we will utilize the following two results;

see Proposition 8.3.10 in [27] and Proposition 8 in [24], respectively.

Lemma 5.5. Let {xk} be a sequence with a locally unique accumulation point x∗. Assume that

for any subsequence {xk}L converging to x∗, it holds that {‖xk+1−xk‖}L → 0. Then the whole

sequence {xk} converges to x∗.

Lemma 5.6. Let G : Rn → Rn be locally Lipschitz continuous and x∗ ∈ Rn with G(x∗) = 0

such that all elements in ∂G(x∗) are nonsingular, and assume that there are two sequences

{xk} ⊆ Rn and {dk} ⊆ Rn with

lim
k→∞

xk = x∗ and ‖xk + dk − x∗‖ = o(‖xk − x∗‖).

Then we have ‖G(xk + dk)‖ = o(‖G(xk)‖).

We are now able to prove our main local convergence result for Algorithm 3.1.

Theorem 5.1. Let {xk} be a sequence generated by Algorithm 3.1. Assume that x∗ is one

of the accumulation points of {xk} and all elements of ∂CΦ(x
∗) are nonsingular. Then the

entire sequence {xk} converges to x∗ Q-superlinearly. Furthermore, if JF is locally Lipschitz

continuous on Rn, then the convergence rate is Q-quadratic.
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Proof. (a) From Lemma 5.3 (i), it follows that x∗ is a locally unique solution of NCP(F )

by assumption. Then Lemma 5.2 shows that the index set F is infinite and {µk} → 0. Hence

Proposition 4.2 (ii) shows that each accumulation point of the sequence {xk} must be a solution

of NCP(F ). Therefore, x∗ is necessarily a locally unique accumulation point of the sequence

{xk}, and from Remark 4, it follows that the sequence {xk : k ∈ N \ F} only contains finitely

many members.

(b) In view of these, it therefore suffices to prove that the sequence {xk : k ∈ F} converges

to x∗ Q-superlinearly.

Let L be an arbitrary subset of F such that {xk}k∈L converges to x∗. From Lemma 5.4, we

see that dk = −JΦk(x
k)−1Φk(x

k) for sufficiently large k ∈ L and {‖dk‖}L → 0. On the other

hand, we have

‖xk+1 − xk‖ =

{ ‖dk‖,
λik‖dk‖

}
≤ ‖dk‖

in view of the updating rule in Step 4 of Algorithm 3.1. Hence {‖xk+1 − xk‖}L → 0. Then, by

using Lemma 5.5, we obtain that the sequence {xk : k ∈ F} converges to x∗.

Next, we show that the convergence rate is Q-superlinear. Let Vk ∈ ∂CΦ(x
k) satisfy

dist(JΦk(x
k), ∂CΦ(x

k)) = ‖JΦk(x
k)− Vk‖.

Then it follows from Lemma 5.1(i), (3.8) and (2.7) that

‖xk + dk − x∗‖ =‖xk − JΦk(x
k)−1Φk(x

k)− x∗‖
=‖ − JΦk(x

k)−1
(
Φk(x

k)− JΦk(x
k)(xk − x∗)

)
‖

≤C2

(
‖Φ(xk)− Φ(x∗)− Vk(x

k − x∗)‖
+ ‖(JΦk(x

k)− Vk)(x
k − x∗)‖+ ‖Φk(x

k)− Φ(xk)‖
)

≤C2

(
o(‖xk − x∗‖) + ν‖Φ(xk)‖‖xk − x∗‖+ κµk

)
(5.3)

for sufficiently large k ∈ F . The locally Lipschitz continuity of Φ implies that

‖Φ(xk)‖ = O(‖xk − x∗‖), as xk → x∗.

And from the updating rule (3.4) of µk, we get

µk ≤ θ(xk) =
1

2
‖Φ(xk)‖2.

Therefore, from (5.3), we have

‖xk + dk − x∗‖ ≤ o(‖xk − x∗‖) +O(‖xk − x∗‖2) = o(‖xk − x∗‖), (5.4)

for k → ∞, k ∈ F . Combining with Lemma 5.6, it holds that

‖Φ(xk + dk)‖ = o(‖Φ(xk)‖), for k → ∞, k ∈ F . (5.5)

Consequently, we get

‖Φk(x
k + dk)‖ ≤‖Φ(xk + dk)‖+ κµk

≤‖Φ(xk + dk)‖+ κ

2
‖Φ(xk)‖2 = o(‖Φ(xk)‖). (5.6)
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We also obtain

‖Φk(x
k)‖ ≥‖Φ(xk)‖ − ‖Φk(x

k)− Φ(xk)‖ ≥ ‖Φ(xk)‖ − κµk

≥‖Φ(xk)‖ − α

2
βk ≥

(
1− α

2

)
‖Φ(xk)‖ > 0. (5.7)

Taking into account that Θ(dk) = 0, we deduce from (5.6) and (5.7) that

|rk − 1| =
∣∣∣∣
θk(x

k)− θk(x
k + dk)

Θ(0)−Θ(dk)
− 1

∣∣∣∣ =
∣∣∣∣
Θ(dk)− θk(x

k + dk)

Θ(0)−Θ(dk)

∣∣∣∣

=
‖Φk(x

k + dk)‖2
‖Φk(xk)‖2 ≤ o(‖Φ(xk)‖2)

(1 − α
2 )

2‖Φ(xk)‖2 → 0, (5.8)

which indicates that there exists an index k̃ ∈ F such that rk ≥ η1 for all k ∈ F with k ≥ k̃.

So the full step size of 1 will eventually be accepted for all k ≥ k̃, k ∈ F . In particular,

xk̃+1 = xk̃ + dk̃. On the other hand, (5.5) implies that

‖Φ(xk̃ + dk̃)‖ ≤ η‖Φ(xk̃)‖ = ηβk̃.

Hence k̃ + 1 ∈ F ; cf. (3.7). Repeating the above process, we may prove that for all k ≥ k̃,

we have k ∈ F and xk+1 = xk + dk. Then by using (5.4), we have proved that {xk : k ∈ F}
converges to x∗ superlinearly.

From parts (a) and (b), it follows that the entire sequence {xk} converges to x∗ Q-superlinearly.

Furthermore, if JF is locally Lipschitz continuous on Rn, then Lemma 5.1 (ii) shows that

‖Φ(xk)− Φ(x∗)− Vk(x
k − x∗)‖ = O(‖xk − x∗‖2).

Hence the Q-quadratic rate of convergence of {xk} to x∗ follows from (5.3) by using similar

arguments as for the proof of the local Q-superlinear convergence. The proof is then complete.

�

6. Numerical Experiments

In this section, we present some numerical experiments for the smoothing trust region

method from Algorithm 3.1. The program code was written in MATLAB and run in MATLAB

7.0 environment.

In our implementation, we used the following parameter settings:

• Termination criterion:

We terminated our iteration if one of the following conditions was satisfied:

min
{
‖∇θ(xk)‖, ‖min{xk, F (xk)}‖∞

}
≤ 10−6, k > 300.

Notice that the first term on the left-hand side of the first stopping condition above is used as

a safeguard against the case that an accumulation point of the sequence generated by Algo-

rithm 3.1 is a mere stationary point of θ, which is not a solution of the NCP(F ).

• Trust region parameters:

∆min = 1, ∆0 = 100, η1 = 10−4, η2 = 0.75, α1 = 0.5, α2 = 2.
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Table 6.1: Numerical results for Example 1.

p = 1.2 p = 2 p = 5 p = 10

n k θ(xf ) k θ(xf ) k θ(xf ) k θ(xf )

200 5 1.12e-11 5 1.93e-22 3 2.83e-16 3 1.72e-30

512 5 2.88e-11 5 4.97e-22 3 7.26e-16 3 4.30e-30

800 5 4.51e-11 5 7.77e-22 3 1.13e-15 3 6.71e-30

1024 5 5.77e-11 5 9.95e-22 3 1.45e-15 3 8.25e-30

Table 6.2: Numerical results for Example 2.

p = 1.2 p = 2 p = 5 p = 10

SP k θ(xf ) k θ(xf ) k θ(xf ) k θ(xf )

(0, 0, 0, 0)T 12∗ 3.43e-13 10 1.07e-14 9 3.24e-16 9 1.63e-14

(1, 1, 1, 1)T 8 3.13e-15 7 1.65e-15 6 5.07e-20 6 5.27e-24

(10, 10, 10, 10)T 10∗ 1.47e-13 10 2.43e-19 7 2.25e-13 8 1.66e-22

(100, 100, 100, 100)T 12∗ 4.28e-16 8∗ 2.45e-19 11 3.25e-16 11 1.62e-14

(−100,−100,−100,−100)T 14∗ 1.25e-14 8∗ 8.40e-19 11 3.24e-16 11 1.63e-14

• Other parameters:

λ = 0.5, η = 0.9, α = 0.05, σ = 0.1, τ = 2, ν = 30.

In the following tables of numerical results, SP denotes the starting point, k indicates the

number of iterations, and θ(xf ) represents the value of the merit function θ(x) at the final

iterate x = xf . The test problems are introduced as follows:

Example 1. This test problem is from Ahn [28]. Let F (x) = Mx+ q, where

M =




4 −2 0 · · · 0 0

1 4 −2 · · · 0 0

0 1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −2

0 0 0 · · · 1 4




, q =




−1

−1

−1
...

−1

−1




.

Table 1 gives the results for this example with starting point x0 = (0, 0, · · · , 0)T for different

dimensions n.

Example 2. Kojshin Problem. This example was used by Pang and Gabriel [29], and Kanzow

[30] with four variables. Let

F (x) =




3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3




.

This problem has one degenerate solution (
√
6
2 , 0, 0, 12 )

T and one nondegenerate solution (1, 0, 3, 0)T .

The numerical results are listed in Table 2 using different initial points. The asterisk (∗) denotes

that the limit point generated by the algorithms is the degenerate solution, otherwise it is the

nondegenerate solution.
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Table 6.3: Numerical results for Example 3.

p = 1.2 p = 2 p = 5 p = 10

SP k θ(xf ) k θ(xf ) k θ(xf ) k θ(xf )

(0, 0, 0, 0, 0)T 29 4.37e-13 25 4.06e-26 22 4.58e-30 21 6.96e-13

(1, 2, 3, 1, 2)T 18 2.56e-14 21 2.50e-16 28 1.48e-20 28 4.01e-31

(2, 2, 2, 2, 2)T 30 5.40e-15 30 3.60e-23 33 4.00e-31 28 4.32e-13

(1, 2, 3, 4, 5)T 8 3.16e-14 11 1.31e-20 13 9.80e-21 12 5.62e-17

(1, 0, 1, 3, 5)T 7 4.18e-15 6 1.48e-16 7 3.94e-31 7 1.36e-38

Table 6.4: Numerical results for Example 4.

p = 1.2 p = 2 p = 5 p = 10

SP k θ(xf ) k θ(xf ) k θ(xf ) k θ(xf )

(1, 1, 1, 1)T 5 9.65e-13 4 3.12e-16 3 1.46e-19 3 2.58e-30

(2, 2, 2, 2)T 10 8.38e-15 4 1.78e-21 3 2.29e-31 3 3.93e-61

(−2,−2,−2,−2)T 7 9.02e-16 5 3.28e-17 3 3.63e-18 3 1.12e-30

(−4,−4,−4,−4)T 7 3.00e-14 4 4.42e-16 3 7.07e-14 3 2.91e-30

(9, 9, 9, 9)T 9 9.95e-14 7 8.64e-16 5 2.64e-23 6 1.23e-31

Example 3. This problem was tested by Kanzow [30] with five variables defined by

Fi(x) = 2(xi − i+ 2) exp

{
5∑

i=1

(xi − i+ 2)2

}
, 1 ≤ i ≤ 5.

This example has one degenerate solution x∗ = (0, 0, 1, 2, 3)T . The numerical results are given

in Table 3 using different initial points.

Example 4. Modified Mathiesen Problem. This test problem is the fifth example of Jiang and

Qi [31] with four variables, which was also tested by Kanzow [30]. Let

F (x) =




−x2 + x3 + x4,

x1 − (4.5x3+2.7x4)
(x2+1) ,

5− x1 − (0.5x3+0.3x4)
(x3+1) ,

3− x1




This example has infinitely many solutions (λ, 0, 0, 0), where λ ∈ [0, 3]. For λ = 0, 3, the

solutions are degenerate, and for λ ∈ (0, 3) nondegenerate. The test results are listed in Table

4 using different starting points.

We next test some economic equilibrium problems with larger sizes, but with only standard

starting points. They are from the MCPLIB collection [32].

Example 5. Hanshoop Problem. The test function is

F (x, y, u) =



−∇v(x)

0

w


+




0 AT − αBT CT

B −A 0 0

−C 0 0





x

y

u


 ,
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where v(x) = (x1 + 2.5x2)
p(2.5x3 + x4)

p(2x5 + 3x6)
p, α = 0.7, p = 0.2, w = (0.8, 0.8)T , and

A =

[
2 2 2 2 2 2 2 2 2 2

3 3 2 2 1 1 1 0.5 1.5 0.5

]
,

B =

[
1.5 1.5 1.5 1.5 1.5 1.5 4 3 1.5 1.5

2.7 2.7 1.8 1.8 0.9 0.9 0.9 0.4 2 1.5

]
,

C =

[
1 1 1 1 1 1 1 1 1 1

0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5 0.5 1.5

]
.

We take the starting points y0 = (0, 0)T , u0 = (0, 0)T and x0: (1) 0.3e; (2) 0.5e; (3) e; (4)

(0.3, 0, 0.3, 0, 0.3, 0, 0.3, 0, 0.3, 0)T , where e is the 10-dimensional vector of ones. The numerical

results for Example 5 are given in Table 5 using these starting points.

Example 6. Nash Problem. This is a Nash equilibrium model with ten variables. The test

function F (x) = (F1(x), · · · , F10(x))
T is defined by

Fi(x) = ci + (Lixi)
1
βi −

[
5000

∑10
k=1 xk

] 1
γ

+
xi

γ
∑10

k=1 xk

[
5000

∑10
k=1 xk

] 1
γ

, 1 ≤ i ≤ 10,

where γ = 1.2, c = (5.0, 3.0, 8.0, 5.0, 1.0, 3.0, 7.0, 4.0, 6.0, 3.0)T , Li = 10 (1 ≤ i ≤ 10), and

β = (1.2, 1.0, 0.9, 0.6, 1.5, 1.0, 0.7, 1.1, 0.95, 0.75)T . The test results for Example 6 are summa-

rized in Table 6 using the following standard starting points: (1) e; (2) 10e; (3) (1.0, 1.2, 1.4,

1.6, 1.8, 2.1,2.3, 2.5, 2.7, 2.9)T ; (4) (7, 4, 3, 1, 8, 4, 1, 6, 3, 2)T .

Table 6.5: Numerical results for Example 5.

p = 1.2 p = 2 p = 5 p = 10

SP k θ(xf ) k θ(xf ) k θ(xf ) k θ(xf )

(1) 7 2.42e-13 8 5.34e-20 7 3.12e-20 7 4.30e-22

(2) 12 8.48e-16 8 1.07e-17 9 2.54e-13 8 6.11e-19

(3) 9 1.10e-13 10 5.59e-22 9 1.94e-13 7 4.32e-15

(4) 10 1.08e-14 7 1.90e-16 7 2.80e-13 7 1.13e-22

Table 6.6: Numerical results for Example 6.

p = 1.2 p = 2 p = 5 p = 10

SP k θ(xf ) k θ(xf ) k θ(xf ) k θ(xf )

(1) 23 6.00e-13 25 3.60e-13 23 5.89e-13 27 7.47e-13

(2) 24 5.08e-13 29 7.91e-13 32 5.11e-13 32 5.20e-13

(3) 23 3.40e-13 23 4.08e-13 33 3.74e-13 30 5.81e-13

(4) 23 4.68e-13 23 5.95e-13 25 7.87e-13 25 7.79e-13

7. Conclusions

In this paper, we have presented a new smoothing trust region-type method with line search

for the solution of a general (i.e., not necessarily monotone) complementarity problem. This

method is based on a reformulation of the complementarity problem as a system of nonsmooth
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equations by using the generalized Fischer-Burmeister function. With careful analyses, we are

able to prove that our method is globally and superlinearly convergent. Moreover, the numerical

performance is extremely promising. In particular, our algorithm associated with a bigger p

would have better numerical behavior in terms of the number of iteration.

It would be interesting to see how our smoothing method within the trust region framework

would work on mixed complementarity problems, general box constrained variational inequali-

ties, or more general class of problems. We will leave it in a subsequent research topic.
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