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Abstract

We derive new and tight bounds about the eigenvalues and certain sums of the eigen-

values for the unique symmetric positive definite solutions of the discrete algebraic Riccati

equations. These bounds considerably improve the existing ones and treat the cases that

have been not discussed in the literature. Besides, they also result in completions for the

available bounds about the extremal eigenvalues and the traces of the solutions of the

discrete algebraic Riccati equations. We study the fixed-point iteration methods for com-

puting the symmetric positive definite solutions of the discrete algebraic Riccati equations

and establish their general convergence theory. By making use of the Schulz iteration

to partially avoid computing the matrix inversions, we present effective variants of the

fixed-point iterations, prove their monotone convergence and estimate their asymptotic

convergence rates. Numerical results show that the modified fixed-point iteration methods

are feasible and effective solvers for computing the symmetric positive definite solutions of

the discrete algebraic Riccati equations.

Mathematics subject classification: 15A15, 15A18, 15A24, 15A48, 65F30.
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1. Introduction

Consider the discrete algebraic Riccati equation (DARE)

X = ATXA−ATXB(G+BTXB)−1BTXA+ CTC, (1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and G ∈ Rm×m are given matrices, and the matrix

G is assumed to be symmetric and positive definite. Let

R = BG−1BT and Q = CTC. (1.2)

Then by applying the Sherman-Morrison-Woodbury formula [10, P. 50], the DARE (1.1) can

be equivalently reformulated as

X = ATX(I +RX)−1A+Q,
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where I represents the identity matrix of appropriate size, and R and Q are the matrices defined

in (1.2) satisfying R � 0 and Q � 0. Here and in the sequel, for a square matrix W we say

W ≻ 0 (or W � 0) if W is symmetric positive definite (or symmetric positive semidefinite).

Throughout the paper we assume that (A,B) is a stabilizable pair and (A,C) is a detectable

pair 1) . Then the DARE (1.1) has a unique symmetric positive definite solution X such that

the matrix (I +RX)−1A is stable, i.e., every eigenvalue λ of the matrix (I +RX)−1A satisfies

|λ| < 1; see, e.g., [24, 44]. Under this assumption, the DARE (1.1) can be further rewritten in

the symmetric form as

X = AT (X−1 +R)−1A+Q. (1.3)

In this paper, we will focus on discussions about the discrete algebraic Riccati equations of the

form (1.3).

The discrete algebraic Riccati equation (1.1) arises in many areas of engineering applications

such as the optimal control design [21] and the filter design [2]. One typical and important

application about the DARE (1.1) is the discrete-time LQ-problem in optimal control. Under

the assumption that the matrix pairs (A,B) is stabilizable and (A,C) is detectable, the discrete-

time linear system

{
xk+1 = Axk +Buk, x0 given,

yk = Cxk, k = 0, 1, 2, · · · ,

exists an optimal control uk, which is the minimizer of the quadratic cost functional

J =

∞∑

k=0

(
xTkQxk + uTkGuk

)
.

Then uk can be recovered via xk by

uk = −(G+BTXB)−1BTXAxk, k = 0, 1, 2, · · · ,

where X is the unique symmetric positive definite solution of the DARE (1.1). We remark

that when the above-mentioned linear system is subjected to perturbations, uncertainties, ad-

ditive/multiplicative noises or a time delay, the DARE (1.3) may be appropriately modified

and is often impossible to be solved exactly.

An accurate estimate about the solution of the DARE (1.3) or, equivalently, the DARE (1.1),

is theoretically important and practically useful when we treat some control problems such as the

stabilized control design for time-delay systems [29], the stability analysis in the presentations

of time delay and perturbations [43], and the state and error covariance estimation [20], as well

as when we select feasible starting points for certain iteration methods employed to solve the

discrete algebraic Riccati equations.

In fact, a bound for the solution X of the DARE (1.3) can be provided through a bound on

the eigenvalues λi(X) of X . Various bounds about the extreme eigenvalues [9], the partial sum

and the partial product of eigenvalues [17, 19], the trace [13, 22, 38], and the determinant [42]

of the solution X have been derived during the past three decades; see [23, 37] for excellent

1) For a complex constant λ and vector w, if w∗B = 0 and w∗A = λw∗ imply either |λ| < 1 or w = 0, then the

matrix pair (A,B) is called stabilizable. The matrix pair (A,C) is called detectable if (AT , CT ) is stabilizable.

Here, (·)T and (·)∗ denote the transpose and the conjugate transpose of either a complex vector or a complex

matrix, respectively.
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overviews. In addition, lower and upper bounds about the solution X of the DARE (1.3)

have been presented in [18, 26–28, 30]. Recently, upper bounds about the solution X for the

DARE (1.1) have been also derived under the condition that a matrixK exists such that A+BK

is stabilizable; see [8]. We should mention that most of these known results hold true only when

at least one of the conditions R ≻ 0 and Q ≻ 0 is satisfied. These conditions are, however, very

restrictive and often violated in many actual control problems, as where the number n of the

state variables is usually greater than the number m of the inputs and the matrix Q is generally

symmetric positive semidefinite.

Of course, the DARE (1.3) is, in general, a nonlinear matrix equation and can be also

considered as a system of nonlinear equations. Hence, numerical methods such as the Newton

method, the Schur method and its variants, the fixed-point iteration method, and the doubling

algorithm, etc., can be adopted to effectively compute its solution. Among them the Newton

method is the oldest and the best studied one; see [11, 24]. At each step, however, it requires

to solve a discrete Lyapunov equation, which is quite costly in actual computations, especially

when the sizes of the matrices involved are very large, though several efficient solvers for lower

or mildly high order discrete Lyapunov equations are available; see [4, 15]. The Schur method

initially given in [25] was further described in detail in [3, 36, 40]; this method consists of com-

puting a stable deflating subspace of a 2n×2n symplectic matrix pencil and, therefore, possesses

good numerical stability. It has been used in the MATLAB control toolbox, though it demands

large storage and memory in actual implementations. We remark that some effective variants

of the Schur method have been developed based on the structure-preserving factorization meth-

ods; see [6, 31, 33, 34]. The doubling algorithm was derived in [1, 14] as an acceleration scheme

for the fixed-point iteration

Xk+1 = ATXk(I +RXk)
−1A+Q, k = 0, 1, 2, · · · . (1.4)

Note that the iteration sequence {Xk}
∞

k=0 generated by the scheme (1.4) is numerically nonsym-

metric and has only linear convergence rate. Therefore, we can turn to produce the quadratically

convergent matrix sequence {X2k}
∞

k=0 instead of {Xk}
∞

k=0; this is the basic idea of the doubling

algorithm. However, at each step the doubling algorithm requires to compute two matrix in-

versions and eight matrix-matrix products, which is quite costly in actual computations. We

mention that recently a doubling algorithm directly applied to the DARE (1.1) has been derived

and studied; see [12, 32]. To produce a symmetric iteration sequence approximating the exact

solution X of the DARE (1.3), Komaroff [18] presented the fixed-point iteration

Xk+1 = AT (X−1
k +R)−1A+Q, k = 0, 1, 2, · · · , (1.5)

and proved its linear convergence property when A is nonsingular, R ≻ 0 and Q ≻ 0.

The purpose of this paper is three folds. The first is to derive tight bounds about partial sum

and partial product about the eigenvalues λi(X) of the solution X for the DARE (1.3) without

imposing the restriction R ≻ 0 and Q ≻ 0. These present improvements and completions for the

existing bounds. The second is to demonstrate the convergence of the fixed-point iteration (1.5)

without assuming that the matrix A is nonsingular. And the third is to establish an economical

and effective variant for the fixed-point iteration (1.5) by reducing the matrix inversions at each

step through utilizing the Schulz iteration, prove its linear convergence property and estimate

its asymptotic convergence rate.

The paper is organized as follows. In Section 2, we derive lower and upper bounds for

partial sum, and upper bounds for partial product of the eigenvalues for the solution of the
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DARE (1.3) without assuming R ≻ 0 and Q ≻ 0. In Section 3, we discuss the convergence

property of the fixed-point iteration (1.5) without assuming that A is nonsingular or R ≻ 0. An

effective variant of this fixed-point iteration is established in Section 4, where its convergence

property is discussed and the corresponding asymptotic convergence rate is estimated. Some

numerical examples are used to examine the sharpness of the new bounds with respect to the

eigenvalues about the solution of the DARE (1.3) and to show the effectiveness of the new fixed-

point iteration in Section 5. Finally, in Section 6, we end this paper with several concluding

remarks.

2. Lower and Upper Bounds for Eigenvalues

Denote by Sn the set of n × n symmetric matrices and Sn
+ the convex cone of symmetric

positive semidefinite matrices. Then Sn
+ naturally induces the partial ordering “�” on Sn as

follows: for S, T ∈ Sn, S � T if S − T ∈ Sn
+. In addition, for S, T ∈ Sn, we define S ≻ T if

S − T is symmetric positive definite. For a complex n-by-n matrix A ∈ Cn×n, we use det(A),

tr(A), rank(A), ρ(A) and ‖A‖2 to represent its determinant, trace, rank, spectral radius and the

Euclidean norm, respectively. Its eigenvalues are denoted by λi(A), i = 1, · · · , n, and ordered

such that their real parts are nonincreasing, i.e.,

Re(λ1(A)) ≥ Re(λ2(A)) ≥ · · · ≥ Re(λn(A)).

The ordering for the singular values σi(A), i = 1, · · · , n, of the matrix A is defined in an

analogous fashion. Besides, we also use λ−1
i (A) and σ−1

i (A), i = 1, · · · , n, to represent briefly

the quantities [λi(A)]
−1 and [σi(A)]

−1, respectively, when they are nonzero; and λ2i (A) and

σ2
i (A), i = 1, · · · , n, to represent briefly the quantities [λi(A)]

2 and [σi(A)]
2, respectively.

With respect to the DARE (1.3), we always assume that the symmetric positive semidefinite

matrix R satisfies rank(R) = r ≤ min{m,n} and arrange its eigenvalues as

λ1(R) ≥ λ2(R) ≥ · · · ≥ λr(R) > 0 = λr+1(R) = · · · = λn(R).

Then it holds that rank(R) = rank(B) = r.

The following results about the eigenvalues of symmetric matrices are essential and useful

for deriving bounds about the eigenvalues for the solution of the DARE (1.3).

Lemma 2.1. ([7, 35]) Let S, T ∈ Sn and P ∈ Rn×m. Then

(i) λk(S) ≥ λk(T ) (k = 1, · · · , n) if S � T ;

(ii) λn(S)I � S � λ1(S)I;

(iii) PTSP � PTTP if S � T ;

(iv) T−1 � S−1 if S � T ≻ 0;

(v)
k∑

i=1

λi(S + T ) ≤
k∑

i=1

λi(S) +
k∑

i=1

λi(T ), k = 1, · · · , n;

(vi)
k∑

i=1

λi(S + T ) ≥
k∑

i=1

λi(S) +
k∑

i=1

λn−i+1(T ), k = 1, · · · , n;

(vii) ‖S‖2 ≥ ‖T ‖2 if S � T ≻ 0.

Moreover, the inequalities in (v) and (vi) become equalities when k = n.
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Lemma 2.2. ([46]) If C,P ∈ Sn and P ≻ 0, then CPC + P−1 � 2C.

Lemma 2.3. ([35]) If S, T ∈ Sn
+, then

k∑

i=1

λi(S)λn−i+1(T ) ≤
k∑

i=1

λi(ST ) ≤
k∑

i=1

λi(S)λi(T ), k = 1, · · · , n.

Lemma 2.4. ( [35]) Let ui, i = 1, · · · , n, be nonnegative real numbers, and xi and yi, i =

1, · · · , n, be real numbers arranged in nonincreasing ordering. If

k∑

i=1

xi ≤

k∑

i=1

yi, k = 1, · · · , n,

then

k∑

i=1

uixi ≤
k∑

i=1

uiyi, k = 1, · · · , n.

For any symmetric positive definite matrix X and symmetric positive semidefinite matrix

R, Komaroff [17] gave upper bounds about partial sums of the eigenvalues of the matrix (X−1+

R)−1 in 1992. These inequalities are precisely stated in the following lemma.

Lemma 2.5. ([17]) For any X ∈ Sn satisfying X ≻ 0 and any R ∈ Sn
+, the following inequal-

ities hold true:

k∑

i=1

λi
(
(X−1 +R)−1

)
≤

k∑

i=1

λi(X)
(
1 + λi(X)λn−i+1(R)

)
−1
, k = 1, · · · , n.

Based on Lemma 2.1, we can derive lower bounds about partial sums of the eigenvalues

of the matrix AT (X−1 + R)−1A, which are indispensable for estimating new bounds for the

solution of the DARE (1.3).

Lemma 2.6. Let A ∈ Rn×n be a given matrix. Then the inequalities

k∑

i=1

λi
(
AT (X−1 +R)−1A

)
≥

k∑

i=1

σ2
n−i+1(A)λi(X)

(
1 + λi(X)λ1(R)

)
−1
,

k∑

i=1

λi
(
AT (X−1 +R)−1A

)
≥

k∑

i=1

σ2
i (A)λn−i+1(X)

(
1 + λn−i+1(X)λ1(R)

)
−1

hold for any X ∈ Sn satisfying X ≻ 0 and any R ∈ Sn
+.

Proof. Noticing that λi(UV ) = λi(V U) holds for any U, V ∈ Rn×n, from Lemma 2.3 we

can obtain

k∑

i=1

λi
(
AT (X−1 +R)−1A

)
=

k∑

i=1

λi
(
(X−1 +R)−1AAT

)

≥

k∑

i=1

λi
(
(X−1 +R)−1

)
σ2
n−i+1(A). (2.1)
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As λi(X
−1) = λ−1

n−i+1(X) implies λi((X
−1 + R)−1) = λ−1

n−i+1(X
−1 + R), it follows from R �

λ1(R)I and Lemma 2.1(i) that

λ−1
n−i+1(X

−1 +R) ≥λ−1
n−i+1(X

−1 + λ1(R)I)

=
1

λn−i+1(X−1) + λ1(R)
=

λi(X)

1 + λi(X)λ1(R)
. (2.2)

Substituting (2.2) into (2.1), we immediately obtain the first inequality what we were proving.

The second inequality can be demonstrated in an analogous fashion. �

Based on the above preparation, we give lower bounds about partial sum of the eigenvalues

for the solution of the DARE (1.3).

Theorem 2.1. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

Then

k∑

i=1

λi(X) ≥

k∑

i=1

(
σ2
n−i+1(A)λi(Q)

λi(Q)λ1(R) + 1
+ λn−i+1(Q)

)
, k = 1, · · · , n, (2.3)

k∑

i=1

λi(X) ≥

k∑

i=1

(
σ2
i (A)λn−i+1(Q)

λn−i+1(Q)λ1(R) + 1
+ λn−i+1(Q)

)
, k = 1, · · · , n. (2.4)

In particular, if det(A) 6= 0 and Q ≻ 0, then it holds that

k∑

i=1

λi(X) ≥
θ +

√
θ2 + 4λ1(R)

∑k
i=1 λn−i+1(Q)

2λ1(R)
, k = 1, · · · , n, (2.5)

where θ = σ2
n(A) + λ1(R)λn(Q)− 1.

Proof. Because X is the symmetric positive definite solution of the DARE (1.3), from

Lemma 2.1(vi) we have

k∑

i=1

λi(X) =

k∑

i=1

λi
(
AT (X−1 +R)−1A+Q

)

≥
k∑

i=1

λi
(
AT (X−1 +R)−1A

)
+

k∑

i=1

λn−i+1(Q).

By making use of the first inequality of Lemma 2.6 we obtain

k∑

i=1

λi(X) ≥

k∑

i=1

σ2
n−i+1(A)λi(X)

(
1 + λi(X)λ1(R)

)
−1

+

k∑

i=1

λn−i+1(Q). (2.6)

As X � Q, from Lemma 2.1(i) we know that

λi(X) ≥ λi(Q), i = 1, · · · , n.

It then follows from the monotonically increasing property of the function f(t) = t/(1 + t) that

the inequality (2.3) holds true.

The validity of the inequality (2.4) can be analogously demonstrated by utilizing the second

inequality of Lemma 2.6.
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In addition, by making use of Lemma 2.4, from (2.6) we obtain

k∑

i=1

λi(X)
(
1 + λ1(R)λi(X)

)
≥

k∑

i=1

(
σ2
n−i+1(A)λi(X) + λn−i+1(Q)

(
1 + λ1(R)λi(X)

))
.

Applying

(
k∑

i=1

λi(X)

)2

≥
k∑

i=1

λ2i (X)

to the above inequality, we further get

λ1(R)

(
k∑

i=1

λi(X)

)2

−
(
σ2
n(A) + λ1(R)λn(Q)− 1

) k∑

i=1

λi(X)−

k∑

i=1

λn−i+1(Q) ≥ 0.

By straightforwardly solving this quadratic inequality with respect to
∑k

i=1 λi(X) we then

obtain the inequality (2.5). �

Theorem 2.1 directly leads to the following lower bounds about the maximal eigenvalue and

the trace for the solution of the DARE (1.3).

Corollary 2.1. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

Then λ1(X) ≥ ω, where

ω = max

{
λ1(Q),

σ2
n(A)λ1(Q)

λ1(Q)λ1(R) + 1
+ λn(Q),

σ2
1(A)λn(Q)

λn(Q)λ1(R) + 1
+ λn(Q)

}
.

Moreover, it holds that

tr(X) ≥ tr(Q) +

n∑

i=n−ra+1

σ2
n−i+1(A)λi(Q)

λi(Q)λ1(R) + 1
, with rank(A) = ra, (2.7a)

tr(X) ≥ tr(Q) +

n∑

i=n−rq+1

λn−i+1(Q)σ2
i (A)

λn−i+1(Q)λ1(R) + 1
, with rank(Q) = rq . (2.7b)

In particular, if det(A) 6= 0 and Q ≻ 0, then

tr(X) ≥
θ +

√
θ2 + 4λ1(R)tr(Q)

2λ1(R)
,

where θ = σ2
n(A) + λ1(R)λn(Q)− 1.

We remark that the lower bound given in (2.7b) is sharper than that in [13].

Now, we give upper bounds about partial sum of the eigenvalues for the solution of the

DARE (1.3).

Theorem 2.2. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

If σ1(A) < 1, then

k∑

i=1

λi(X) ≤
1

1− σ2
1(A)

k∑

i=1

λi(Q), k = 1, · · · , n− r, (2.8a)

k∑

i=1

λi(X) ≤
k[Θ +

√
Θ2 + 4λr(R)η/k]

2λr(R)
, k = n− r + 1, n− r + 2, · · · , n, (2.8b)
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where η = min{β, δ} and

Θ =σ2
1(A) + λ1(Q)λr(R)− 1,

β =

k∑

i=1

λi(Q) + (n− r)λr(R)

(
σ1(A)λ1(Q)

1− σ2
1(A)

)2

,

δ =

k∑

i=1

λi(Q) + λr(R)

(
σ1(A)

∑n−r
i=1 λi(Q)

1− σ2
1(A)

)2

.

Proof. From Lemmas 2.3 and 2.5 we have

k∑

i=1

λi
(
AT (X−1 +R)−1A

)
=

k∑

i=1

λi
(
(X−1 +R)−1AAT

)

≤

k∑

i=1

λi
(
(X−1 +R)−1

)
λi(AA

T )

≤

k∑

i=1

σ2
i (A)λi(X)

(
1 + λi(X)λn−i+1(R)

)
−1
.

Because X ∈ Rn×n is the symmetric positive definite solution of the DARE (1.3), by making

use of Lemma 2.1(v) we obtain

k∑

i=1

λi(X) =

k∑

i=1

λi(A
T (X−1 +R)−1A+Q)

≤

k∑

i=1

(
λi(A

T (X−1 +R)−1A) + λi(Q)
)

≤

k∑

i=1

(
σ2
i (A)λi(X)

(
1 + λi(X)λn−i+1(R)

)
−1

+ λi(Q)
)
. (2.9)

For k = 1, · · · , n− r, as λn−i+1(R) = 0 when 1 ≤ i ≤ k, the inequality (2.9) naturally reduces

to

k∑

i=1

λi(X) ≤
k∑

i=1

(
σ2
i (A)λi(X) + λi(Q)

)

≤σ2
1(A)

k∑

i=1

λi(X) +
k∑

i=1

λi(Q).

It then follows that (2.8a) is valid.

For k = n− r + 1, n− r + 2, · · · , n, the inequality (2.9) can be rewritten as

k
∑

i=1

λi(X) ≤
n−r
∑

i=1

(

σ
2
i (A)λi(X) + λi(Q)

)

+
k

∑

i=n−r+1

(

σ
2
i (A)λi(X)

(

1 + λi(X)λr(R)
)

−1
+ λi(Q)

)

.
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By making use of Lemma 2.4 we get

k∑

i=1

λi(X)
(
1 + λi(X)λr(R)

)

≤

k∑

i=1

λi(Q)
(
1 + λi(X)λr(R)

)
+

n−r∑

i=1

σ2
i (A)λi(X)

(
1 + λi(X)λr(R)

)
+

k∑

i=n−r+1

σ2
i (A)λi(X)

≤
(
λ1(Q)λr(R) + σ2

1(A)
) k∑

i=1

λi(X) +
k∑

i=1

λi(Q) + σ2
1(A)λr(R)

n−r∑

i=1

λ2i (X). (2.10)

Because

n−r∑

i=1

λ2i (X) ≤

(
n−r∑

i=1

λi(X)

)2

≤
(n− r)λ21(Q)

(1 − σ2
1(A))

2
, (2.11)

k∑

i=1

λ2i (X) ≥
1

k

(
k∑

i=1

λi(X)

)2

, (2.12)

we see that (2.10) is valid if

λr(R)

(
k∑

i=1

λi(X)

)2

− kΘ

k∑

i=1

λi(X)− kβ ≤ 0

holds true. By directly solving this quadratic inequality with respect to
∑k

i=1 λi(X) we obtain

the estimate (2.8b) for the case η = β.

We now turn to verify the validity of (2.8b) for the case η = δ. In fact, from (2.11) and

(2.12) we know that (2.10) is valid if

λr(R)

(
k∑

i=1

λi(X)

)2

− kΘ

k∑

i=1

λi(X)− kδ ≤ 0

holds true. After directly solving this quadratic inequality with respect to
∑k

i=1 λi(X) we

obtain the estimate (2.8b) when η = δ. �

Theorem 2.2 directly leads to the following upper bound about the trace for the solution of

the DARE (1.3).

Corollary 2.2. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

If σ1(A) < 1, then

tr(X) ≤
n
(
Θ+

√
Θ2 + 4λr(R)η/n

)

2λr(R)
,

where the constants Θ and η are defined as in Theorem 2.2.

From (1.2) we see that if B = 0, then R = 0. Hence, the DARE (1.3) reduces to the discrete

Lyapunov equation

X = ATXA+Q. (2.13)

About partial sum of the eigenvalues for its solution, in accordance with Theorem 2.2 we

immediately have the following upper bound, which was originally given in [16].
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Corollary 2.3. Let X ∈ Rn×n be the symmetric positive definite solution of the discrete Lya-

punov equation (2.13). Assume that σ1(A) < 1. Then

k∑

i=1

λi(X) ≤
1

1− σ2
1(A)

k∑

i=1

λi(Q), k = 1, · · · , n.

If R is nonsingular, then r = n. In accordance with Theorem 2.2 again, we have the following

upper bound about partial sum of the eigenvalues for the solution of the DARE (1.3), which

was originally obtained in [16, 45].

Corollary 2.4. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

If R is nonsingular and σ1(A) < 1, then

k∑

i=1

λi(X) ≤
k
(
Θ+

√
Θ2 + 4λn(R)β/k

)

2λn(R)
, k = 1, · · · , n,

where

Θ = σ2
1(A) + λ1(Q)λn(R)− 1, β =

k∑

i=1

λi(Q).

In particular, it holds that

λ1(X) ≤
Θ+

√
Θ2 + 4λn(R)λ1(R)

2λn(R)
.

When the arithmetic-geometric mean inequality [35] is applied to the estimates in Theo-

rem 2.2, we can obtain upper bound about partial product of the eigenvalues for the solution

of the DARE (1.3).

Theorem 2.3. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

Assume that σ1(A) < 1. Then it holds that

k∏

i=1

λi(X) ≤

(
1

k(1− σ2
1(A))

k∑

i=1

λi(Q)

)k

, k = 1, · · · , n− r,

k∏

i=1

λi(X) ≤

(
Θ+

√
Θ2 + 4λr(R)η/k

2λr(R)

)k

, k = n− r + 1, n− r + 2, · · · , n,

where the constants Θ and η are defined as in Theorem 2.2.

Theorem 2.3 directly leads to the following upper bound about the determinant of the

solution for the DARE (1.3).

Corollary 2.5. Let X ∈ Rn×n be the symmetric positive definite solution of the DARE (1.3).

Assume that σ1(A) < 1. Then it holds that

det(X) ≤

(
Θ+

√
Θ2 + 4λr(R)η/n

2λr(R)

)n

,

where the constants Θ and η are defined as in Theorem 2.2.
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3. The Convergence of Fixed-Point Iteration (1.5)

The symmetric positive definite solution X⋆ of the DARE (1.3) can be computed by the

fixed-point iteration scheme (1.5). When the matrices A is nonsingular and Q is symmetric

positive definite, Komaroff proved in [18] that the matrix sequence {Xk}
∞

k=0 generated by the

iteration scheme (1.5), starting from X0 = Q, is monotonically increasing and convergent to

X⋆. We point out that the requirement of the nonsingularity of the matrix A is not necessary.

Moreover, we establish the following theorem to precisely describe the linear convergence and

the asymptotic convergence rate of the fixed-point iteration (1.5).

Theorem 3.1. Consider the DARE (1.3) and let X⋆ be its unique symmetric positive definite

solution. Let Q ≻ 0 and {Xk}
∞

k=0 be the iteration sequence generated by the fixed-point iteration

(1.5) starting from X0 = Q. Then

(i) the iteration sequence {Xk}
∞

k=0 converges monotonically increasingly to X⋆, i.e., it holds

that

Q � Xk � Xk+1 � X⋆, k = 0, 1, 2, · · · ,

and limk→∞Xk = X⋆;

(ii) when æ := ‖(I + RX⋆)
−1A‖2 < 1 and ǫ := ‖X⋆ − X0‖2 <

1−æ2

γæ2 , with γ = ‖R‖2, the

convergence rate of the iteration sequence {Xk}
∞

k=0 is at least linear, i.e., it holds that

‖X⋆ −Xk+1‖2 ≤ æ2(1 + γǫ̺k)‖X⋆ −Xk‖2, k = 0, 1, 2, · · · ,

where ̺ = æ2(1 + γǫ);

(iii) the R-convergence factor of the iteration sequence {Xk}
∞

k=0 is at most æ2
⋆, with æ⋆ =

ρ((I +RX⋆)
−1A), i.e., it holds that

lim
k→∞

sup k
√
‖X⋆ −Xk‖2 ≤ æ2

⋆.

Proof. (i) follows from slight and technical modifications of the corresponding proof in [18].

We now turn to demonstrate the validity of (ii). We first assert that for X ∈ Sn and R ∈ Sn
+

such that X ≻ 0, the matrix defined by

W = R(I +XR)−1

satisfies

W ∈ Sn
+ and ‖W‖2 ≤ ‖R‖2. (3.1)

In fact, if we write Y = X1/2RX1/2, then the matrix Y ∈ Sn
+. Through Y we can easily rewrite

W as

W = X−1/2Y (I + Y )−1X−1/2.

Hence, W ∈ Sn
+. Moreover, it holds that

W 2 =(I +RX)−1R2(I +XR)−1

�ρ(R)2(I +RX)−1(I +XR)−1

=ρ(R)2[(I +XR)(I +RX)]−1

=ρ(R)2X−1/2(I + Y )−1X(I + Y )−1X−1/2

�ρ(R)2I.
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Therefore, we can obtain ‖W‖2 ≤ ‖R‖2.

As X⋆ is the unique symmetric positive definite solution of the DARE (1.3), it must satisfy

the matrix equality

X⋆ = AT (X−1
⋆ +R)−1A+Q.

After subtracting

Xk+1 = AT (X−1
k +R)−1A+Q

from the above matrix equality we have

X⋆ −Xk+1 =AT [(X−1
⋆ +R)−1 − (X−1

k +R)−1]A

=AT (I +XkR)
−1(X⋆ −Xk)(I +RX⋆)

−1A

=AT (I +X⋆R)
−1(X⋆ −Xk)(I + RX⋆)

−1A

+AT (I +X⋆R)
−1(X⋆ −Xk)R(I +XkR)

−1(X⋆ −Xk)(I +RX⋆)
−1A.

By making use of (3.1), we know that

0 �X⋆ −Xk+1

�AT (I +X⋆R)
−1(X⋆ −Xk)(I + RX⋆)

−1A

+ ‖R‖2A
T (I +X⋆R)

−1(X⋆ −Xk)
2(I +RX⋆)

−1A. (3.2)

Hence, it follows from Lemma 2.1(vii) that

‖X⋆ −Xk+1‖2 ≤ ‖(I +RX⋆)
−1A‖22(1 + ‖R‖2‖X⋆ −Xk‖2)‖X⋆ −Xk‖2. (3.3)

For notational simplicity, we denote by

ǫk = ‖X⋆ −Xk‖2, k = 0, 1, 2, · · · .

So, the error relationship (3.3) can be equivalently expressed in the following brief form:

ǫk+1 ≤ æ2(1 + γǫk)ǫk, k = 0, 1, 2, · · · . (3.4)

It easily follows from (i) that

X⋆ −Xk � X⋆ −Xk+1 � 0, k = 0, 1, 2, · · · .

Hence, by making use of Lemma 2.1(vii) again we can get

‖X⋆ −Xk+1‖2 ≤ ‖X⋆ −Xk‖2 ≤ · · · ≤ ‖X⋆ −X0‖2,

or, equivalently,

ǫk+1 ≤ ǫk ≤ ǫ, k = 0, 1, 2, · · · .

By applying this estimate to (3.4) we obtain

ǫk ≤ æ2(1 + γǫ)ǫk−1 = ̺ǫk−1 ≤ ̺kǫ.

Therefore, after substituting this estimate into (3.4) again we have

ǫk+1 ≤ æ2(1 + γǫ̺k)ǫk.
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This demonstrates the validity of (ii).

The verification of (iii) is based on the matrix estimate (3.2). From (3.1) we have

R(I +XkR)
−1 � ‖R‖2I.

Recalling that the matrix sequence {Xk}
∞

k=0 is convergent to X⋆, we know that for any ǫo > 0

there exists a positive integer ko such that

0 � X⋆ −Xk � ǫoI

holds for all k = ko, ko + 1, · · · . Hence, we have

(X⋆ −Xk)
1/2R(I +XkR)

−1(X⋆ −Xk)
1/2 � ǫo‖R‖2I, k ≥ ko.

After substituting this estimate into (3.2), we immediately obtain that

0 �X⋆ −Xk+1

�
(
1 + ǫo‖R‖2

)
AT (I +X⋆R)

−1(X⋆ −Xk)(I +RX⋆)
−1A

�
(
1 + ǫo‖R‖2)

k−ko+1(AT (I +X⋆R)
−1
)k−ko+1

(X⋆ −Xko
)
(
(I +RX⋆)

−1A
)k−ko+1

hold for all k = ko, ko + 1, · · · . It follows from Lemma 2.1(vii) that

‖X⋆ −Xk‖2 ≤
(
1 + ǫo‖R‖2

)k−ko
∥∥((I +RX⋆)

−1A
)k−ko

∥∥2
2
‖X⋆ −Xko

‖2, k ≥ ko,

and, therefore,

lim
k→∞

sup k
√
‖X⋆ −Xk‖2 ≤

(
ρ
(
(I +RX⋆)

−1A
))2

.

Here, we have used the facts that ǫo is an arbitrary small positive quantity and that

limk→∞ ‖Zk‖1/k = ρ(Z) holds for any square matrix Z in any matrix norm. �

Evidently, it always holds that ρ((I + RX⋆)
−1A) < 1. We remark that the definition of

the asymptotic convergence rate for an iteration sequence used here is the same as that given

in [39].

A practical implementation strategy about the fixed-point iteration (1.5) may be as follows:

1. compute the Cholesky factorization of Xk to obtain Xk = LkL
T
k by employing a

numerically stable algorithm; see, e.g., [10];

2. compute R̂k = I + LT
kRLk and Âk = LT

kA;

3. compute the Cholesky factorization of R̂k to obtain R̂k = L̂kL̂
T
k by employing, again,

the numerically stable algorithm;

4. solve the lower-triangular system of linear equations L̂kB̂k = Âk to obtain B̂k; and

5. compute Xk+1 = B̂T
k B̂k +Q by only computing the entries of the upper- or the lower-

triangular part of the matrix B̂T
k B̂k +Q according to its symmetry.
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When the matrix Q is singular, according to its spectral decomposition

Q = U diag
(
λ1(Q), λ2(Q), · · · , λrq (Q), 0n−rq

)
UT ,

with rq = rank(Q) and U an orthogonal matrix, we define

Q̂ = U diag
(
λ1(Q), λ2(Q), · · · , λq(Q), τI

)
UT ,

where

τ =
σ2
n(A)− 1 +

∣∣σ2
n(A)− 1

∣∣
2λ1(R)

+ ε̂,

with ε̂ > 0 a sufficiently small constant. Then we choose the starting matrix X0 in the fixed-

point iteration (1.5) as X0 = Q̂. From [17] we know that τ ≤ λn(X⋆). Hence, it follows from

Q � X⋆ that X0 = Q̂ � X⋆.

When the matrix R is symmetric positive definite, the symmetric positive definite solution

X⋆ of the DARE (1.3) satisfies X⋆ � ATR−1A + Q; see [18]. Similarly, it can be shown

that the iteration sequence {Xk}
∞

k=0 generated by the fixed-point iteration (1.5), starting from

X0 = ATR−1A+Q, is monotonically decreasing and convergent to X⋆ R-linearly.

4. The Modified Fixed-Point Iteration

The fixed-point iteration (1.5) requires to compute two matrix inversions X−1
k and (X−1

k +

R)−1. In this section, we propose an effective variant that avoids computing the inverse of

the matrix X−1
k + R. The basic idea is to replace the matrix (X−1

k + R)−1 by only one-step

approximation produced by the Schulz iteration [41]. This yields the following modified fixed-

point iteration:

{
Xk+1 = ATYkA+Q,

Yk+1 = Yk
(
2I − (X−1

k+1 +R)Yk
)
,

k = 0, 1, 2, · · · , (4.1)

where Y0 = (Q−1+R)−1. To analyze the convergence of the iteration scheme (4.1), we introduce

the following necessary notations:

æ = ‖(I +RX⋆)
−1A‖2, κ = ‖(I +X⋆R)

−1‖2, ϕ = ‖(I +RQ)−1‖2,

γ = ‖R‖2, τ = ‖Q−1‖2, τ⋆ = ‖X−1
⋆ ‖2, ω = ‖A‖2.

Based on them, we further define the following quantities:

δx = max

{
0,

1

2

(√
[ω2(τ⋆ + γ)− τæ2]2 + ω2τ2(ωτ⋆υ + 2æ)2 − [ω2(τ⋆ + γ) + τæ2]

)}
,

δy = max

{
0,

1

2

(√
(τ⋆ + γ − τκ2)2 + τ2(τ⋆υ + 2κ)2 − (τ⋆ + γ + τκ2)

)}
,

and

αx = ω2(τ⋆ + γ) + δx, βx = τæ2 + δx,

αy = τ⋆ + γ + δy, βy = τκ2 + δy,

α = max{αx, αy}, β = max{βx, βy}, ψ = max{æ,κ}.

The following theorem precisely describes the monotone convergence and the corresponding

asymptotic convergence rate of the modified fixed-point iteration (4.1).
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Theorem 4.1. Consider the DARE (1.3) and let X⋆ be its unique symmetric positive definite

solution. Let Q ≻ 0 and {Xk}
∞

k=0 be the iteration sequence generated by the modified fixed-point

iteration (4.1) starting from Y0 = (Q−1+R)−1. Let X0 = Q and denote by Y⋆ = (X−1
⋆ +R)−1.

Then

(i) the iteration sequence {Xk}
∞

k=0 converges monotonically increasingly to X⋆, i.e., it holds

that
{
Q � Xk � Xk+1 � X⋆,

Y0 � Yk � Yk+1 � Y⋆,
k = 0, 1, 2, · · · , (4.2)

and limk→∞Xk = X⋆, limk→∞ Yk = Y⋆;

(ii) when (α+ β)ψ2 < 1 and

ǫ0 :=‖X⋆ −X0‖2 ≤ ǫ <
1− (α + β)ψ2

(α+ β)(κϕ + β)
,

υ0 :=‖Y⋆ − Y0‖2 ≤ υ <
1− (α+ β)ψ2

(α+ β)(α + βω2)
,

the convergence rate of the iteration sequence {Xk}
∞

k=0 is at least linear, i.e., it holds that

‖X⋆ −Xk+1‖2 ≤ ̺2(k−1)(α+ βω2)2υ2 +æ2‖X⋆ −Xk‖2, k = 1, 2, · · · , (4.3)

where ̺ =
(
1 + α

β

)(
(αυ + βǫ)β + ψ2

)
;

(iii) the R-convergence factor of the iteration sequence {Xk}
∞

k=0 is at most æ2
⋆, with æ⋆ =

ρ((I +RX⋆)
−1A), i.e., it holds that

lim
k→∞

sup k
√
‖X⋆ −Xk‖2 ≤ æ2

⋆.

Proof. We first use induction to demonstrate the validity of (4.2). From Theorem 3.1(i) we

have X⋆ � X1 � X0 = Q. Hence, it follows from Lemma 2.1(iii)-(iv) that

Y1 =2Y0 − Y0(X
−1
1 +R)Y0

�2Y0 − Y0(Q
−1 +R)Y0 = Y0

and

Y1 =2Y0 − Y0(X
−1
1 +R)Y0

�(X−1
1 +R)−1

�(X−1
⋆ +R)−1 = Y⋆,

where the inequality

2Y0 − Y0(X
−1
1 +R)Y0 � (X−1

1 +R)−1

is obtained by making use of Lemma 2.2. This shows the validity of the inequality (4.2) for

k = 0.

Assume that the inequality (4.2) holds for k = ℓ, i.e.,

{
Q � Xℓ � Xℓ+1 � X⋆,

Y0 � Yℓ � Yℓ+1 � Y⋆.
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Then we need to verify that it is valid for k = ℓ+ 1, too. In fact, as

Yℓ � Yℓ+1 � Y⋆,

by Lemma 2.1(iii) we have

Xℓ+1 = ATYℓA+Q � ATYℓ+1A+Q = Xℓ+2,

Xℓ+2 = ATYℓ+1A+Q � ATY⋆A+Q = AT (X−1
⋆ +R)−1A+Q = X⋆.

In addition, by making use of Lemma 2.2 we easily see that

Yℓ+1 = 2Yℓ − Yℓ(X
−1
ℓ+1 +R)Yℓ � (X−1

ℓ+1 + R)−1.

It then follows from this inequality and Xℓ+1 � Xℓ+2 that

Y −1
ℓ+1 � X−1

ℓ+1 +R � X−1
ℓ+2 +R.

Hence,

Yℓ+2 = Yℓ+1 + Yℓ+1

(
Y −1
ℓ+1 − (X−1

ℓ+2 +R)
)
Yℓ+1 � Yℓ+1.

Besides, as Xℓ+2 � X⋆, by making use of Lemma 2.2 and Lemma 2.1(iii) we obtain

Yℓ+2 =2Yℓ+1 − Yℓ+1(X
−1
ℓ+2 +R)Yℓ+1

�(X−1
ℓ+2 +R)−1

�(X−1
⋆ +R)−1 = Y⋆.

The above demonstration shows the validity of the inequality (4.2) for k = ℓ+ 1.

By induction, the inequality (4.2) is true for all nonnegative integers k = 0, 1, 2, · · · .

According to the monotonicity, the matrix sequences {Xk}
∞

k=0 and {Yk}
∞

k=0 are convergent.

Through taking limits on both equalities in (4.1) and considering the uniqueness of the solution

of the DARE (1.3), we know that

lim
k→∞

Xk = X⋆ and lim
k→∞

Yk = Y⋆.

Now, we turn to prove (ii). It follows from direct operations that

I − YkY
−1
⋆ =(I − Yk−1Y

−1
⋆ )2 + Yk−1[(X

−1
k +R)− (X−1

⋆ +R)]Yk−1Y
−1
⋆

=(I − Yk−1Y
−1
⋆ )2 + Yk−1(X

−1
k −X−1

⋆ )Yk−1Y
−1
⋆

and, hence,

Y⋆ − Yk =(I − Yk−1Y
−1
⋆ )2Y⋆ + Yk−1(X

−1
k −X−1

⋆ )Yk−1

=(Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1) + Yk−1(X

−1
k −X−1

⋆ )Yk−1

=(Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1) + Y⋆(X

−1
k −X−1

⋆ )Y⋆ + Ek, (4.4)

where

Ek =Yk−1(X
−1
k −X−1

⋆ )Yk−1 − Y⋆(X
−1
k −X−1

⋆ )Y⋆

=(Yk−1 − Y⋆)(X
−1
k −X−1

⋆ )(Yk−1 − Y⋆)

+ (Yk−1 − Y⋆)X
−1
k (X⋆ −Xk)X

−1
⋆ Y⋆

+ Y⋆X
−1
⋆ (X⋆ −Xk)X

−1
k (Yk−1 − Y⋆)

=(Yk−1 − Y⋆)X
−1
k (X⋆ −Xk)X

−1
⋆ (Yk−1 − Y⋆)

+ (Yk−1 − Y⋆)X
−1
k (X⋆ −Xk)(I +RX⋆)

−1

+ (I +X⋆R)
−1(X⋆ −Xk)X

−1
k (Yk−1 − Y⋆). (4.5)
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Evidently, Ek is a symmetric matrix. Note that

0 ≺ X−1
⋆ � X−1

k � Q−1 (4.6)

holds true due to 0 ≺ Q � Xk � X⋆; see (4.2). Then from direct operations we obtain

Y⋆(X
−1
k −X−1

⋆ )Y⋆ =Y⋆X
−1
⋆ (X⋆ −Xk)X

−1
⋆ Y⋆ − Y⋆X

−1
⋆ (I −X⋆X

−1
k )(X⋆ −Xk)X

−1
⋆ Y⋆

=Y⋆X
−1
⋆ (X⋆ −Xk)X

−1
⋆ Y⋆ + Y⋆X

−1
⋆ (X⋆ −Xk)X

−1
k (X⋆ −Xk)X

−1
⋆ Y⋆

�Y⋆X
−1
⋆ (X⋆ −Xk)X

−1
⋆ Y⋆ + Y⋆X

−1
⋆ (X⋆ −Xk)Q

−1(X⋆ −Xk)X
−1
⋆ Y⋆.

After substituting this inequality into (4.4) we get

Y⋆ − Yk �(Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1)

+ Y⋆X
−1
⋆ (X⋆ −Xk)Q

−1(X⋆ −Xk)X
−1
⋆ Y⋆

+ Y⋆X
−1
⋆ (X⋆ −Xk)X

−1
⋆ Y⋆ + Ek,

or equivalently,

Y⋆ − Yk �(Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1)

+ (I +X⋆R)
−1(X⋆ −Xk)Q

−1(X⋆ −Xk)(I +RX⋆)
−1

+ (I +X⋆R)
−1(X⋆ −Xk)(I +RX⋆)

−1 + Ek. (4.7)

In addition, by applying (4.1) to (4.7) we get

X⋆ −Xk+1 =AT (Y⋆ − Yk)A

�AT (Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1)A

+AT (I +X⋆R)
−1(X⋆ −Xk)Q

−1(X⋆ −Xk)(I +RX⋆)
−1A

+AT (I +X⋆R)
−1(X⋆ −Xk)(I +RX⋆)

−1A+ Ẽk, (4.8)

where

Ẽk =ATEkA

=AT (Yk−1 − Y⋆)X
−1
k (X⋆ −Xk)X

−1
⋆ (Yk−1 − Y⋆)A

+AT (Yk−1 − Y⋆)X
−1
k (X⋆ −Xk)(I +RX⋆)

−1A

+AT (I +X⋆R)
−1(X⋆ −Xk)X

−1
k (Yk−1 − Y⋆)A. (4.9)

Evidently, Ẽk is a symmetric matrix due to the symmetry of Ek. For notational convenience,

we denote by

ǫk = ‖X⋆ −Xk‖2 and υk = ‖Y⋆ − Yk‖2, k = 0, 1, 2, · · · .

As

Y⋆ − Y0 =(X−1
⋆ +R)−1 − (Q−1 +R)−1

=(X−1
⋆ +R)−1(Q−1 −X−1

⋆ )(Q−1 +R)−1

=(I +X⋆R)
−1(X⋆ −Q)(I +RQ)−1,
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it holds that

υ0 =‖Y⋆ − Y0‖2

≤‖(I +X⋆R)
−1‖2‖X⋆ −Q‖2‖(I +RQ)−1‖2

=κϕǫ = υ,

where υ = κϕǫ. Therefore, from (4.2) we can easily obtain the relationships

0 � X⋆ −Xk+1 � X⋆ −Xk � · · · � X⋆ −X0 � ǫI,

0 � Y⋆ − Yk+1 � Y⋆ − Yk � · · · � Y⋆ − Y0 � υI.

By making use of Lemma 2.1(vii) we can further get

‖X⋆ −Xk+1‖2 ≤ ‖X⋆ −Xk‖2 ≤ · · · ≤ ‖X⋆ −X0‖2 ≤ ǫ,

‖Y⋆ − Yk+1‖2 ≤ ‖Y⋆ − Yk‖2 ≤ · · · ≤ ‖Y⋆ − Y0‖2 ≤ υ,

or equivalently,

ǫk+1 ≤ ǫk ≤ ǫ and υk+1 ≤ υk ≤ υ, k = 0, 1, 2, · · · . (4.10)

It follows from (4.5), (4.9) and (4.10) that

‖Ek‖2 ≤‖Yk−1 − Y⋆‖
2
2 ‖X−1

k ‖2‖X⋆ −Xk‖2 ‖X−1
⋆ ‖2

+ 2‖Yk−1 − Y⋆‖2 ‖X−1
k ‖2 ‖X⋆ −Xk‖2 ‖(I +RX⋆)

−1‖2

≤‖Q−1‖2‖X
−1
⋆ ‖2 ‖Yk−1 − Y⋆‖

2
2 ‖X⋆ −Xk‖2

+ 2‖Q−1‖2 ‖(I +RX⋆)
−1‖2 ‖Yk−1 − Y⋆‖2 ‖X⋆ −Xk‖2

=τ(τ⋆υk−1 + 2κ)υk−1ǫk ≤ τ(τ⋆υ + 2κ)υk−1ǫk (4.11)

and

‖Ẽk‖2 ≤‖A‖22 ‖Q−1‖2 ‖X−1
⋆ ‖2‖Y⋆ − Yk−1‖

2
2 ‖X⋆ −Xk‖2

+ 2 ‖Q−1‖2 ‖A‖2 ‖(I +RX⋆)
−1A‖2‖Y⋆ − Yk−1‖2 ‖X⋆ −Xk‖2

≤ωτ(ωτ⋆υk−1 + 2æ)υk−1ǫk ≤ ωτ(ωτ⋆υ + 2æ)υk−1ǫk. (4.12)

Here we have used the estimate (4.6) and Lemma 2.1(vii). In addition, from (4.7) and (4.11)

as well as (4.8) and (4.12), by making use of Lemma 2.1(vii) again we obtain

‖Y⋆ − Yk‖2 ≤‖(Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1)‖2

+ ‖(I +X⋆R)
−1(X⋆ −Xk)Q

−1(X⋆ −Xk)(I +RX⋆)
−1‖2

+ ‖(I +X⋆R)
−1(X⋆ −Xk)(I + RX⋆)

−1‖2 + ‖Ek‖2

≤(‖X−1
⋆ ‖2 + ‖R‖2)‖Y⋆ − Yk−1‖

2
2

+ ‖Q−1‖2‖(I +X⋆R)
−1‖22‖X⋆ −Xk‖

2
2

+ ‖(I +X⋆R)
−1‖22‖X⋆ −Xk‖2 + ‖Ek‖2

≤(τ⋆ + γ)υ2k−1 + κ
2(τǫk + 1)ǫk + τ(τ⋆υ + 2κ)υk−1ǫk

≤(αyυk−1 + βyǫk)
2 + κ

2ǫk ≤ (αυk−1 + βǫk)
2 + ψ2ǫk,
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as well as

‖X⋆ −Xk+1‖2 ≤‖AT (Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1)A‖2

+ ‖AT (I +X⋆R)
−1(X⋆ −Xk)Q

−1(X⋆ −Xk)(I +RX⋆)
−1A‖2

+ ‖AT (I +X⋆R)
−1(X⋆ −Xk)(I +RX⋆)

−1A‖2 + ‖Ẽk‖2

≤‖A‖22(‖X
−1
⋆ ‖2 + ‖R‖2)‖Y⋆ − Yk−1‖

2
2

+ ‖Q−1‖2‖(I +RX⋆)
−1A‖22‖X⋆ −Xk‖

2
2

+ ‖(I +RX⋆)
−1A‖22‖X⋆ −Xk‖2 + ‖Ẽk‖2

≤ω2(τ⋆ + γ)υ2k−1 +æ2(τǫk + 1)ǫk + ωτ(ωτ⋆υ + 2æ)υk−1ǫk

≤(αxυk−1 + βxǫk)
2 +æ2ǫk ≤ (αυk−1 + βǫk)

2 + ψ2ǫk.

That is to say, it holds that

ǫk+1 ≤ (αυk−1 + βǫk)
2 +æ2ǫk ≤ (αυk−1 + βǫk)

2 + ψ2ǫk, (4.13a)

υk ≤ (αυk−1 + βǫk)
2 + κ

2ǫk ≤ (αυk−1 + βǫk)
2 + ψ2ǫk. (4.13b)

Define the difference sequence {χk}
∞

k=1 as

χk = αυk−1 + βǫk, k = 1, 2, · · · .

Then we have

χ1 = αυ0 + βǫ1 ≤ (α+ βω2)υ, (4.14)

where we have used the estimate

ǫ1 = ‖X⋆ −X1‖2 = ‖AT (Y⋆ − Y0)A‖2 ≤ ‖A‖22‖Y⋆ − Y0‖2 = ω2υ.

In addition, it easily follows from (4.13) and (4.14) that the sequence {χk}
∞

k=1 is monotonically

decreasing and satisfies

{
χ1 ≤ (α+ βω2)υ,

χk+1 ≤
(
1 + α

β

)
(βχk + ψ2)χk,

k = 1, 2, · · · .

With successive recursion, by making use of (4.10) we have χk ≤ αυ + βǫ, and

χk+1 ≤

(
1 +

α

β

)
(βχk + ψ2)χk

≤

(
1 +

α

β

)(
(αυ + βǫ)β + ψ2

)
χk

=̺χk ≤ ̺k−1χ1 ≤ ̺k−1(α+ βω2)υ, k = 1, 2, · · · .

So, by making use of (4.13) again we then obtain the estimate (4.3).

The verification of (iii) is based on the matrix estimate (4.8) and (4.9). By rewriting (4.8)

we get

X⋆ −Xk+1 �AT (I +X⋆R)
−1(X⋆ −Xk)Q

−1(X⋆ −Xk)(I +RX⋆)
−1A

+AT (I +X⋆R)
−1(X⋆ −Xk)(I + RX⋆)

−1A+ Êk, (4.15)
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where

Êk = Ẽk +AT (Y⋆ − Yk−1)(X
−1
⋆ +R)(Y⋆ − Yk−1)A,

with Ẽk being defined by (4.9). Evidently, Êk is a symmetric matrix due to the symmetry of

Ẽk. It follows from (4.12) that

‖Êk‖2 ≤ ωτ(ωτ⋆υ + 2æ)υk−1ǫk + ω2(τ⋆ + γ)υ2k−1.

Recalling that the matrix sequences {Xk}
∞

k=0 and {Yk}
∞

k=0 are convergent to X⋆ and Y⋆,

respectively, we know that for any ǫo > 0 there exists a positive integer ko such that

0 � X⋆ −Xk � ǫoI and 0 � Y⋆ − Yk−1 � ǫoI

hold for all k = ko, ko + 1, · · · . Hence, we have

(X⋆ −Xk)
1/2Q−1(X⋆ −Xk)

1/2 � ǫo‖Q
−1‖2I = ǫoτI, k = ko, ko + 1, · · · , (4.16)

Êk �
(
ωτ(ωτ⋆υ + 2æ) + ω2(τ⋆ + γ)

)
ǫ2oI = coǫ

2
oI, (4.17)

where co := ωτ(ωτ⋆υ + 2æ) + ω2(τ⋆ + γ). After substituting (4.16) and (4.17) into (4.15), we

immediately obtain that

0 �X⋆ −Xk+1

�(1 + ǫoτ)A
T (I +X⋆R)

−1(X⋆ −Xk)(I +RX⋆)
−1A+ coǫ

2
oI

�(1 + ǫoτ)
k−ko+1(AT (I +X⋆R)

−1)k−ko+1(X⋆ −Xko
)
(
(I +RX⋆)

−1A
)k−ko+1

+ coǫ
2
oMk

hold for all k = ko, ko + 1, · · · , where

Mk :=

k−ko∑

j=0

(1 + ǫoτ)
j
(
AT (I +X⋆R)

−1
)j(

(I +RX⋆)
−1A

)j
.

Because ρ((I +RX⋆)
−1A) < 1, from [39] we know that there exists a compatible matrix norm,

say ‖| · |‖, such that

æ̂ := max
{∥∥|(I +RX⋆)

−1A|
∥∥,

∥∥|(AT (I +X⋆R)
−1)|

∥∥
}
< 1

holds true. Hence,

∥∥|Mk|
∥∥ ≤

k−ko∑

j=0

(1 + ǫoτ)
j
∥∥|AT (I +X⋆R)

−1|
∥∥j∥∥|(I +RX⋆)

−1A|
∥∥j

≤

k−ko∑

j=0

(1 + ǫoτ)
jæ̂2j .

If we further restrict ǫo so small that (1 + ǫoτ)æ̂
2 < 1, then it holds that

∥∥|Mk|
∥∥ ≤

1

1− (1 + ǫoτ)æ̂2
,

which implies that the matrix sequence {Mk}
∞

k=ko
is uniformly bounded with respect to k. So,

according to the equivalence of the matrix norms there exists a positive constant µ such that

‖Mk‖2 ≤ µ, k = ko, ko + 1, · · · .
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It follows from Lemma 2.1(vii) that

‖X⋆ −Xk‖2 ≤(1 + ǫoτ )
k−ko‖(AT (I +X⋆R)−1)k−ko‖2 ‖X⋆ −Xko‖2 ‖((I +RX⋆)

−1
A)k−ko‖2 + coµǫ

2
o

≤(1 + ǫoτ )
k−ko‖((I +RX⋆)

−1
A)k−ko‖22 ‖X⋆ −Xko‖2 + coµǫ

2
o

hold for k = ko, ko + 1, · · · , and, therefore,

lim
k→∞

sup k
√
‖X⋆ −Xk‖ ≤ (ρ((I +RX⋆)

−1A))2.

Here, we have also used the facts that ǫo is an arbitrary small positive quantity and that limk→∞

‖Zk‖1/k = ρ(Z) holds for any square matrix Z in any matrix norm. �

A practical implementation strategy about the modified fixed-point iteration (4.1) may be

as follows:

1. compute the Cholesky factorization of Q to obtain Q = LQL
T
Q by employing a numer-

ically stable algorithm (see, e.g., [10]), form the matrix R̂Q = I + LT
QRLQ, compute

the Cholesky factorization of R̂Q to obtain R̂Q = L̂RL̂
T
R, solve Ŷ0 from L̂RŶ0 = LQ,

and form the matrix Y0 = Ŷ T
0 Ŷ0;

2. compute Xk+1 = ATYkA+Q;

3. compute the Cholesky factorization ofXk+1 to obtainXk+1 = Lk+1L
T
k+1 by employing

a numerically stable algorithm;

4. form the matrix R̂k+1 = I + LT
k+1RLk+1;

5. solve Ŷk from Lk+1Ŷk = Yk;

6. compute Yk+1 = 2Yk − Ŷ T
k R̂k+1Ŷk by only computing the entries of the upper- or the

lower-triangular part of the right-hand-side matrix according to its symmetry.

When the matrix Q is singular, similarly to the treatment to the fixed-point iteration (1.5),

we can define a symmetric positive definite matrix Q̂ based on the spectral decomposition of

Q and choose the starting matrix Y0 = (Q̂−1 + R)−1. Then, it follows from Q̂ � X⋆ that

Y0 � (X−1
⋆ +R)−1.

When the matrixR is symmetric positive definite, we can analogously show that the iteration

sequence {Xk}
∞

k=0 generated by the modified fixed-point iteration (4.1), starting from Y0 = R−1,

is monotonically decreasing and convergent to X⋆ R-linearly.

5. Numerical Examples

In this section, we use several examples to examine the accuracy of the eigenvalue bounds

about the symmetric positive definite solution of the DARE (1.3) given in Section 2, and also

show the effectiveness of the modified fixed-point iteration (4.1).

In actual implementations, we terminate all iteration schemes once the current iterates Xk

satisfy

‖X⋆ −Xk‖∞ ≤ 10−8
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if the exact solution X⋆ of the DARE (1.3) is known, or

‖Xk+1 −Xk‖∞ ≤ 10−8

otherwise. All codes were written in Fortran 90 with double precision and run on a Pentium

IV personal computer.

Example 5.1. Consider the DARE (1.1) with

A =

(
0 0

0.5 0

)
, B =

(
0.5

0

)
, C =

(
0 1

)
and G = I2,

where I2 is the identity matrix. Then its unique symmetric positive definite solution is

X⋆ =

(
0.25 0

0 1

)
.

By straightforward computations, we obtain R = diag(0.25, 0) and Q = diag(0, 1). Evidently,

both R and Q are singular matrices. In addition, we have

λ1(X⋆) = 1, λ2(X⋆) = 0.25, tr(X⋆) = 1.25 and det(X⋆) = 0.25.

By applying Theorems 2.1 and 2.2, and Corollaries 2.1, 2.2 and 2.5, we know that

1 ≤ λ1(X⋆) ≤ 1.3333, 1 ≤ tr(X⋆) ≤ 1.5901 and det(X⋆) ≤ 0.2650.

Obviously, these estimated bounds are very close to the actual ones.

Because the matrices Q and R are singular, the lower and the upper bounds in [9] about the

maximal eigenvalue, the lower bound in [9] about partial sum of the eigenvalues, and the upper

bounds in [17] about individual eigenvalues, partial sum and partial product of the eigenvalues,

and the lower bound in [42] about determinant of the solution for the DARE (1.3) are failed.

In addition, the upper bounds about the solution given in [18,26–28,30] cannot be applied, too.

We have noticed that the lower bounds in [19, 22] about trace of the solution are 0.5 and 0,

respectively, which are much rougher than ours.

As the matrix Q is singular, we define Q̂ = diag(10−5, 1). Then we choose the starting

matrices X0 and Y0 in the iterations (1.5) and (4.1) as

X0 = Q̂ and Y0 = (Q̂−1 +R)−1,

respectively. After 2 steps of the iterations (1.5) and (4.1), we obtain X2 = diag(0.25, 1). If we

define

Q̂ = diag(10−4, 1), diag(10−3, 1), diag(10−2, 1) and diag(10−1, 1),

respectively, then the iterations (1.5) and (4.1) also yield the same result after 2 steps.

We remark that ρ((I +RX⋆)
−1A) = 0 holds for this example. Hence, both iterations (1.5)

and (4.1) converge to the exact solution of the DARE (1.3) R-superlinearly.

Example 5.2. ([27]) Consider the DARE (1.3) with

A =




0.4 0.2 0.2

−0.6 0 0.1

0 0 0.1


 , Q =



3 1 1

1 2 0

1 0 2


 and R =



1 0 1

0 0 0

1 0 1


 .
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Then its unique symmetric positive definite solution is

X⋆ =



3.6590085409 1.0407861936 0.9379715209

1.0407861936 2.0480405499 0.0439300472

0.9379715209 0.0439300472 2.0623919675


 .

Evidently, R is a singular matrix. In addition, we have

λ1(X⋆) = 4.4824, λ2(X⋆) = 2.0124, λ3(X⋆) = 1.2747 and tr(X⋆) = 7.7694.

By applying Theorems 2.1 and 2.2, and Corollaries 2.1 and 2.2, we know that

4 ≤ λ1(X⋆) ≤ 8.5903, 3.2110 ≤ λ1(X⋆) + λ2(X⋆) ≤ 12.8855, 7.2125 ≤ tr(X⋆) ≤ 59.2791.

Obviously, these estimated bounds are very close to the actual ones.

Because the matrix R is singular, the lower and the upper bounds in [9] about the maximal

eigenvalue, and the upper bounds in [17] about individual eigenvalues, partial sum and partial

product of the eigenvalues of the solution for the DARE (1.3) are failed. In addition, the upper

bounds about the solution given in [18,26,30] cannot be applied, too. We have noticed that the

lower bounds in [19, 22] about trace of the solution are 6.5338 and 3.435, respectively, which

are much rougher than ours.

As the matrix Q is nonsingular, we choose the starting matrices X0 and Y0 in the iterations

(1.5) and (4.1) as X0 = Q and Y0 = (Q−1 + R)−1, respectively. After 8 steps of the iterations

(1.5) and (4.1), we obtain

X8 =



3.65900854086 1.04078619363 0.93797152094

1.04078619363 2.04804054987 0.04393004718

0.93797152094 0.04393004718 2.06239196746


 ,

X8 =



3.65900854028 1.04078619344 0.93797152087

1.04078619344 2.04804054979 0.04393004713

0.93797152087 0.04393004713 2.06239196743


 ,

respectively.

We remark that ρ((I +RX⋆)
−1A) = 0.2321 holds for this example. Hence, both iterations

(1.5) and (4.1) converge to the exact solution of the DARE (1.3) R-linearly.

Example 5.3. ([5, 40]) Consider the DARE (1.3) with

A =




0 1 0 . . . 0
...

. . .
. . .

. . .
...

0

0 · · · · · · 0 1

0 · · · · · · 0 0



, B =




0
...

0

1


 , R = BBT and Q = In,

where In is the identity matrix. Then its stabilized symmetric positive definite solution is

X⋆ = diag(1, 2, · · · , n).

As the matrix Q is nonsingular, we choose the starting matrices X0 and Y0 in the iterations

(1.5) and (4.1) as X0 = Q and Y0 = (Q−1 + R)−1, respectively. For n = 100, after 100 and
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106 steps of the iterations (1.5) and (4.1), we obtain the exact solution X⋆ of the DARE (1.3),

respectively. And for n = 1000, after 1000 and 1011 steps of the iterations (1.5) and (4.1), we

obtain the exact solution X⋆, respectively.

We remark that ρ((I +RX⋆)
−1A) = 0 holds for this example. Hence, both iterations (1.5)

and (4.1) converge to the exact solution of the DARE (1.3) R-superlinearly.

6. Concluding Remarks

The lower and the upper bounds for partial sum about the eigenvalues, the upper bounds

for partial product about the eigenvalues, and the upper bounds for trace and determinant

of the solution for the DARE (1.3) are derived. Examples show that these bounds are much

sharper than the existing ones. However, the condition σ1(A) < 1 may restrict applications of

these upper bounds. A possible remedy is to use a nonsingular and symmetric matrix D to

congruently transform the DARE (1.3), so that the obtained discrete algebraic Riccati equation

X̃ = ÃT (X̃−1 + R̃)−1Ã+ Q̃,

with

X̃ = DAD, Ã = D−1AD, Q̃ = DQD and R̃ = D−1RD−1,

satisfies σ1(Ã) < 1. For example, in Example 5.3 if we choose D = diag
(
1, 2−1, · · · , 21−n

)
,

then it holds that σ1(Ã) = 0.5.

By technically incorporating the Schulz iteration into the fixed-point iteration (1.5), we have

established a modified fixed-point iteration (4.1) for computing the unique symmetric positive

definite solution of the DARE (1.3). This iteration scheme is convergent monotonically and

R-linearly. Of course, the Schulz iteration may be applied to the modified fixed-point iteration

(4.1) again so that an inversion-free variant of the iteration scheme (1.5) can be established,

which completely avoids computing the matrix inversion. The establishment of such a fixed-

point iteration scheme and the analysis of its monotone convergence property should be an

interesting problem to be discussed in future.
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