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Abstract

An optimal control problem governed by the Stokes equations with L?-norm state con-
straints is studied. Finite element approximation is constructed. The optimality conditions
of both the exact and discretized problems are discussed, and the a priori error estimates
of the optimal order accuracy in L?-norm and H'-norm are given. Some numerical exper-
iments are presented to verify the theoretical results.
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1. Introduction

In many engineering applications, the control problems of various flow are very important.
One can find lots of useful models for optimal control problems of flow motion with purposes
of achieving some desired objectives in real-life applications. Many of those problems come
from the fluids flow, aeronautical, chemical engineering, magnetic field and heat sources using
radiation or the laser technology, see, for instance, [14, 15,19, 21,22, 31] and the references
cited therein. There have been extensive research carried out on various theoretical aspects
of optimal control problems governed by flow, for example, see [1,15-18,24], where control-
constrained problems are studied. The state constrained control problems are also frequently
met in practical applications, which have aroused many researchers’ interests, for example,
see [6,7,11,35] for state constrained elliptic control problems. Besides the pointwise state
constrained cases as in the above references [6,11], the integral or the energy of the state are
worth concerning in many control problems. For example, one probably wishes to constrain the
concentration, the temperature in the average sense in some domain, or the kinetic energy of
the flow, etc. In [7], Casas discussed the numerical approximation of optimal control problems
governed by a second order semi-linear elliptic partial differential equation associated with
finitely many state constraints and gave a priori error estimates in H'-norm. In [25], Liu,
Yang and Yuan studied the integral state-constrained control problems governed by an elliptic
PDE, proposed a gradient projection algorithm and derived the a priori error estimates of the
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optimal order accuracy in L?- and L>°-norms. Furthermore, Yuan and Yang analyzed the finite
element approximation of L?-norm state-constrained elliptic control problems and constructed
the Uzawa type iterative method in [35]. However, up to now, there has no systematical
analysis in the literature for optimal control problems governed by the Stokes equations with
state constraints. It is more complicated to study the finite element approximation of the flow
control since one has to handle the mixed element.

The purpose of this article is to study the optimal control problems governed by the Stokes
equations with L2-norm constraints for the velocity, where the control is distributed in Q without
constraint. We construct the finite element approximation and analyze optimality conditions
for both the exact and the discretized problems. We study a priori error estimates between the
exact solution and its finite element approximation in L?-norm and H'-norm.

The outline of the article is as follows. In Section 2, we state the model problem and
construct its finite element approximation. In Section 3, we derive the a priori error estimates
for the finite element approximation. Finally, in Section 4, we give the Arrow-Hurwicz algorithm
and perform some numerical experiments to verify the theoretical results given in Section 3.

2. Control Problem and Finite Element Approximation

Throughout the article, we use the standard definitions and notations of the Sobolev spaces
as in [2]. Let Q be a bounded and open connected domains in R¢ for d = 2 or 3. Denote
by v = (v1,- - ,vq) the d-dimensional vector-valued function, LP(Q2) = (LP(Q))d, H™(Q) =
(Hm(Q))d and W™P(Q) = (W””’(Q))d the usual vector-valued Sobolev spaces with norms
[ Mmse =1l - [l and || - lmpe = [ - [[wme(a), respectively. We use (-,-)¢ to denote the
inner product defined on the bounded and open set GG, and if the G = {2 we omit the subscript,
e.g., (+,+) . Introduce some function spaces

U-1@)., H-(#®), Q={sc@; [q-o}.
Q
which stand for the control space, the velocity sate space and the pressure state space, respec-
tively.
2.1. Optimal control problem

We first state the model problem and its weak form. Let a be a positive constant and the
objective functional J : L2(Q) x L2(f2) be defined as:

1 «
T = [y v+ [ el
M

For a positive integer M, the constraint set is given by K = (] K;, where
i=1

Ki = {w e 12(Q); |wloo, <7}, 1<i<M, (2.1)

and {€;}M, are nonempty subsets of Q such that Q; Q) =0 for all 1 < j <k < M, and the
real number ~; satisfies v; > 0 for all 1 <¢ < M.
We investigate the following state-constrained optimal control problem:

y(rg)igK J(y(u),u) (2.2)
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subject to the Stokes equations:

—vAy(u) + Vp(u) = f + Bu, in Q,
V-y(u) =0, in Q, (2.3)
y(u) = 07 on aQ,
where the constant number v > 0 and B is a continuous linear operator from L?(Q) to itself.
To derive the weak form of the problem, define some bi-linear forms:

d d
(w,z) = Z/ﬂwizi, a(w,z) = VZ(VUH,V%), b(z,q) = —(q,V - 2).

It is clear that the bi-linear form a( -, - ) is continuous and elliptic in H, i.e., there exist
constants a; > 0 and a, > 0 such that

alllz|iq < alz,2), |a(w,2)| < aullwliolzlie, ¥ w,zeH. (2.4)
On the other hand, it can be seen from [8,12,33] that the bi-linear form b( -, - ) satisfies
LBB-condition and the continuous condition, i.e., there exist constants b; > 0 and b,, > 0 such
that
. b(z, q)
by < inf sup b(z,q) < bullzl1;ellglloe, VzeH, g€ Q. (2.5)

9€Q zen |12]1;0lq] 0;Q ’

Hence the weak form of the optimal control problem (2.2) reads:
(2) y(II{l)ngJ(y(U), u) (2.6)
subject to
{ a(y(u),w) +b(w,p(u)) = (f + Bu,w), VweH,
b<y(u)aQ) =0, VqgeQ.

It is obvious that K; is closed and convex in L2-topology for 1 <4 < M, and so is the set
K. The existence and uniqueness of the solution of problem (2.6) can be obtained by the usual
way, see e.g. [24].

2.2. Optimality conditions

To get the optimality condition, we introduce the Lagrange functional £(u,s) : UxRM — R
associated with problem (2.6) such that

M
E(U,S) - j(y(u)vu) +ZSiFi(u)a (27)

where

1 .
Fi(u):§(HY(u)|g;Qi_7i2)a VuelU, 1<i<M,

and s; denotes the i-th component of real vector s. Then the optimality conditions can be
stated as the following lemma, for the details of the proof the readers may refer to [10, Clarke].

Lemma 2.1. Let u be the solution of problem (2.6), then there exists a real vector s =
(s1,++ ,8m) such that

(1) s;>0, s;F;(u)=0, 1<i< M,

(2.8)
(2) g—ﬁ(u, s) =0.
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Observing that the operator y(-) is linear, we know that the second equation of (2.8) is equiv-

alent to "
(v = ya, Yy (W) ov) + > (siy,y'(w) o V)g, ta(u—ug,v) =0,
i=1
or

B'y" +a(u—up) =0, inQ,
where the co-state y* is defined by
M
vy = (y'(w) <y —ya+ ZtiY>
i=1

associated with ¢; being defined by

o] osi if x ey,
1 0, otherwise,

for 1 <i < M. Define the piecewise constant function space T as:
T = {t:(tl,m ) G ER in Qi ;=0 in Q\Q 1§¢§M}.
Therefore, we can obtain another form of the optimality conditions for problem (2.6).

Theorem 2.1. The triplet (y,p,u) € Hx Q x U is the solution of the problem (2.6) if and only
if there exists a triplet (y*,p*,t) € HxQxT such that (y,p,u,y*,p*,t) € HxQxUxHxQxT
satisfies

a(y,w) + b(w,p) = (f + Bu,w), VweH,
b()’a‘]):Oa VQEQ,
M
@ {ayw ) = (145 6)yvaw). vwer @29
b(y*,q) =0, VaqeQ,
B*y* + a(u—ug) =0, in Q,

where the components of vector t satisfy

(2.10)

constant > 0, I¥llo,2;:0, = vi, in €,
0, otherwise,

for1<i< M.

2.3. Finite element approximation

We only consider n-simply elements, which are widely used in engineering applications.
For the sake of simplicity, we assume that € is a polygon in R? or polyhedron in R3. Let
Th = UT be a family of quasi-regular triangulations of © with maximum mesh size h :=
max, ¢ zn{diam(7T)} and Z;# = |JTy be a family of quasi-regular triangulations of Q with
maximum mesh size hy := maxp, ¢ Fh {diam(TU)}, in which each element has at most one face

on 0Q, and T and T' (or Ty and T/U ) have either only one common vertex or a whole edge
in 2-d case if T and T € T (or Ty and T/U eI,
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Associated with 7" are two finite element spaces H* ¢ H and Q" C @ such that the finite
element spaces H" x Q" satisfies the discrete LBB-condition, i.e., there exists a constant b, >0

such that

inf  sup _ bz an) > 0. (2.11)

an€Q" 5, crr ||Znll1:0llan o0

And there exist two integers m > 1 and n > 1 such that

inf 1z = zulloo + hllz — Znlli0 < Ch™Y|z|mie,  Vze HNH™(Q),
Zp g

inf, lg = anlloe < Ch"Hlgllns1i0, VgeQnH" Q).  (2.12)
qn v

The above assumptions are satisfied for Hood-Taylor ( P,,41, P, ) finite elements when m = n+1

and for Mini (P @Bubble, P;) finite elements when m = n =1, see, e.g., [5,9,12,20],.
Associated with Z}L is another finite dimensional subspace U" := {vh € U : vy|p, are

polynomials of degree less than or equal to k ( 0 < k < m) for each Ty € fUh} such that

00 < ChE V|0, Vv eUNHM(Q). (2.13)

inf |[v—wvp]
Vi cUuh
Introduce the discretized constraint set K" = H" N K. So the finite element approximation
of problem (2.6) reads:

(") min J(yn,up) (2.14)
yheKh

subject to
{ a(yn, wn) + b(wn,pn) = (f + Bup,wy), ¥V w, € H,
b(Yhth) :07 Vqh GQh'
Similarly, we obtain the optimality conditions of problem (2.14), which is stated in the following
theorem.

Theorem 2.2. The triplet (yn,pn,un) € H* x Q" x U" is the solution of the problem (2.14) if
and only if there exists a triplet (y,p},tn) € H" x Q" x T such that (yh,pn, un, ¥}, 05, tn) €
H" x Q" x U" x H* x Q" x T satisfies the following optimality conditions:

a(yn,wn) + b(wpy,pn) = (f + Buy, wp), v wy, € HY,
b(y}mqh) = 07 v qh E Qh7
M
(@) Satiow+oowp) = (14 X7 o)y -vawn ) v wi e HY
b(yr,an) =0 Y an €Q",
auy, + ’P{}B*(y,*l —aug) =0, in Q,
(2.15)

where the components {tn ;}}, of vector t satisfy

(2.16)

. constant > 0 Iyzllo.2:0 = v, in €,
hyi — .
‘ 0 otherwise,

and P{} is the L?-projection operator from U to U" such that

(P(}}(,O,Vh) = (¢, Vn), Veel, vy e U,
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It is obvious that ’P{} is a linear operator since U” is a linear subspace of the Banach space U.
Here the first order optimality conditions (2.15) are also sufficient since the state equations are
linear and the object functional J( - - ) is convex, so problem (2.14) is equivalent to problem
(2.15).

3. A Priori Estimates

In this section, we analyze the convergent rates of the algorithm. We assume that the
operator B is reversible from L?(Q) to itself and from H! () to itself. It is easy to be proved
there exits the constant independent of h and hy such that

lan o + llyallie + lIpalloe + Iyalue + lIpklloe + max i@ < C.

So there there exists a subsequence which weakly converges to one of solutions of the problem
(2.9) as h — 0. Since the solution of the problem (2.9) is unique, the sequence (un, y1, pr, ¥, Pjs
ty) weakly converges to the exact solution (u,y,p,y*,p*,t). Now we are ready to study the
a priori error estimates between the exact solution and the finite element solution. In this
article, we consider finite element methods including Hood-Taylor element (P;y1, B; I > 1)
and Mini-element (P;11 € Bubble, P11;1 = 0), so we assume the solution of the optimality
conditions has the following regularity properties (see [8] for more details):

y, y* e H2(Q), p, p* € HT(Q). (3.1)

We first state the H'-norm error estimates and the L?-norm error estimates in the next two
theorems, respectively. The constant number [ is defined in above (3.1) and k& < I+1 is described
in (2.13).

Theorem 3.1. Let (y,p,y*,p*,t,u) and (yn,pn, P}, D}, th, un) be the solutions of (2.9) and
(2.15), respectively. Then there hold the H* x H°-norm error estimates for the wvelocity field
and the pressure field as follows:

Iy = e+ Iy* = villa + 1l = palloe + 16" = pilloe < C(AH + 1), (3.2)
and L?-norm error estimate for the control as follows:
lu— wplloe < c(hl+2 + h@“). (3.3)
In the following theorem, we denote the infinite-norm of the real vector by || - ||co-

Theorem 3.2. Let (y,p,y*,p*,t,u) and (yn,pn, P, D}, th, un) be the solutions of (2.9) and
(2.15), respectively. Then there hold the following L*-norm error estimates:

Iy = yalloe + Iy* = ¥illoq + 1t — talle + [IPhu — wnlog < C (W2 +E2). (3.4)

The proofs of Theorem 3.1 and 3.2 follow from the following five lemmas. Introduce the
following auxiliary equations:

a(yn(w),wp) + b(wp, pp(u)) = (f + Bu,wy,), v wy, € H",
b(yn(a),qn) =0, Van € Q" (3.5)
alyh (W), w) +bwipp(w) = (14 DX )y —yawn),  Vw,err,

by} (), qn) =0, YV qn € Q"
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Firstly, we estimate the terms ||y (u) —ynll1;0 + [[pa(0) — prllo:o, ||t — th||s and |y} (u) —
yillie + [lpy(w) — pj|

0;92-

Lemma 3.1. Let (yh(u),ph(u)) and (y;l,ph) be the solutions of Eqs. (3.5) and (2.15), respec-
tively. Then there holds the following inequality

o0 < C(IIPhu — w

lyn(a) = ynll0 + lpn(w) — pal 0;0 +hU|\7>{}u—u||0;Q). (3.6)

Proof. From Egs. (2.15) and (3.5), we have

{ a(yn(u) = yn, wn) + b(wn,pu(u) — pr) = (B(u — up), ws), vV wy, € H, (3.7)
b(yrn(a) = yn,qn) =0, Vgn € Q"
Observing that
|(u —up, B*wy,) < |(u— Phu, B*w), — PEB*wy,) + |(Plu — uy, B wy,)|

< C(IPhu = willoa + holla = Phullog) 1B Wil

< C(IPhu = unllog + hullu = Phullos ) [whllo,
and by taking wj, = y,(u) — y» and using (2.4), we have

(W) = yallie < C(I1PEu = wnlloq + hu[Phu - ulleo).
With LBB-condition (2.11), we can obtain
billpn (@) = prlloe < sup ———(|(u = wn, B*wn)| + layn(w) = yu. wa))
whenn [[Whll10
< O(IPa = willoo + hu[Phu - uloa ).

Combining the above two inequalities, we have (3.6). Hence Lemma 3.1 is proved. O

Lemma 3.2. Let t and t, be the solutions of Eqs. (2.9) and (2.15), respectively. There exists
ho > 0 such that for 0 < h, hy < hyg,

It = talloe < C(IIPEw— wnlloq + lly — ya(w)

+ (h+ho)[IV(y" —y3)l

0;Q

0:0 + hollu — Pl

0;9). (3.8)

Proof. For 1 <1 < M, since }Limo th; =t; and t; = 0 if ||ly|lo.0; < Vi, we only need to check
—

the case ||yllo.; = Y- Let ¢ € C5°(£2;) such that 0 < ¢; < 1 and ||¢;y]
that

0:; > 7i/2. Noting

M
aly” = yh,wi) = Y _(tiy = thi¥n, Wh)o, + (Y = Yr, W)
=1
M
Z(ti +th,i) (Y = Yh Wh)o, + (Y — Yh Wh)

i=1

1
2

N~

M
Z(ti —th,i)(Y + Yn, Wh)a, +
i=1



596 H. F. NIU AND D. P. YANG
and taking wj, = Zp,(¢;yn), we have
a(y” = ¥n: Zn(9iyn))
Z%(ti —tn, ) (Y + Yn, Zn(Piyn))e, + (ti + thi)(y — Yoo Za(diyn))a: + (¥ — Y, Zn(iyn))
such that
(ti —th,) (¥, $iy)e,

=a(y" = y5, Zn(diyn)) — (ti + tni)(y — Yu, Zn(biyn))o, — (v — Yr, Tn(diyn))
= (ti = thi)(y, (Zn — ) (Piy))a, — (ti — thi) (¥, Tn(di(yn — ¥)))e;

- %(ti —tni)(Yh — ¥, Zn(iyn))a;-

On the other hand, we have

a(y” = ¥h: In(9iyn))
=a(y” —yh, @n — I)(diyn)) +v(y" = ¥h. YrAd:) = 2v((y" —y,)Véi, Vyn)
+v(V(oi(y" —y4), V(yn —¥) +v(V(oi(y" = ¥4)), VY)

and

v(V(¢i(y* — 1)), Vy) =(f + Bu,¢i(y" —y3)) + (0, V- (0i(y" —¥3)))
=(¢i(f + Bu—Vp),y" —y;).

So we get
Tt =t < 1+t 4 0)lly - il

+ [t — thilvi ((Zn — Z)(diy)|

Tn(diyn)l 2o

0:2 + 1 Zn (@i (yn — ¥))llo:2,)

Q;

1
+ §|ti = tnilllyn — yllo;o: 1Zn(diyn) loses
IV(Zh — I)(¢iyn)lloe; + Vil

0,000 + 2[|V i

+ V" = yi)loe

+ vy = villo, (Iyalloal A
+ [ly* = yillo;: If + Bu— V|

V(yn —y)|

0,2;97,)

O,Q;Qi)

0,00;02;

0,009 | V|

0;Q;

such that

i = thil < C(hlti = il + Iy = yullos, + 1By = yillos, + IV = yidlow, ) (39)

Applying B*(y*—y;) = (Z—P!)(B*(y*—y;))+a(Phu—us) and Lemma 3.3 and the standard
finite element error estimates ( as listed later in (3.15) ) to (3.9), we have

[ti — thql
< C(Ihun ~ Pirul

o2 + [y = ya(@llo:e + (b + ho) [V = yh)llose + hullu — Pz}}ullo;n)
for sufficiently small A. Then Lemma 3.2 is proved. o

Secondly, we estimate the term ||y} (u) — y| 1.0 and ||p}(a) — prllo:-
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Lemma 3.3. Let (y;‘b(u),p;‘l(u)) and (y,*l,p;‘l) be the solutions of Eqs. (3.5) and (2.15), respec-
tively. Then there holds the following inequality

o + hul|Piu — ulloe

Ilyn(w) = yalle + P4 () = phlloa < C(llpﬁu — uy|

0;9)- (3.10)

+ Iy = ya(Wllo:o + (b + ko) [V(y" — yi,(w)]

Proof. From Egs. (2.15) and (3.5), we have

(tiy—tn,iyn, Wn)o, + (¥ — yn,wn), V wy, € H",

M=

=%

a(y}, (W) =yh, W) + b(wh, pj,(0)—p} )= .

b(Y;;(u) - Y;kmq}z) =0, Vagn € Qh-

Il
—

By taking wp, =y} (u) — y;, we get

M
a(y;,(w) = yi, yi(w) = yi) = Y (tiy = thayn yi(0) = yi)a, + (v — ya, vi (@) — v7),
=1
such that
I¥300) ~ ¥il0 < C (16—l + Iy — vilie). (3.11)

Applying (3.8) to (3.11) and letting h and hy suitably small lead to (3.10) for y;(u) — y.
Further, by LBB-condition (2.11), we can obtain

illpy(w) — pil
1

M
T (Z |ty = th,iyn, Wn)a:| + (¥ — yh, Wa)| + |a(yr (u) — YZ,Wh)|>
wern [Wallue \ =

<C(llt = talloo + Iy =yl

0;Q

< sup

o0 + Vi) = yi)loe)-

This leads (3.10) for pj,(u) — pj,. Hence Lemma 3.3 is proved. O

Thirdly, we estimate the term | P"u — up,||o.q-

Lemma 3.4. Let u and uy, be the solutions of Eqs. (2.9) and (2.15), respectively. Then there
holds the estimate:

[P~ wnlloe < C(lly = yu(lon + Iy~ yi@loo + hvlu - Phullge).  (312)

Proof. Tt follows from (2.10), (2.16), ||y]|

0;82; < and Hyh| 0;€2; < that
(tiy—thiyn, yn(0) —y)a, — (tiy — th,iyn, yn(0)=yn)a, = iy, yn — ¥)+tni(Yn. y—¥n)o, <0,
which implies that

—(tiy — th,iyn, yr(0) —yn)a, < —(tiy — thiyn, yr(u) — y)a,.
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Then from equations (2.9), (2.15) and (3.5) we have
a(’P(}}u — up, ’P{}u — uh) = a(’P{}u —up,u — u;l) = —(’Phu —uy, B'y" — ’P{}B*yfl)
=~ (B(Pju—wp),y" —yj(u)) — (Piu —uy, By} (w) + a(uy — o))
—(B(Pyu—up),y* —yj(u)) = (B(u—up),yj(u) —y;) — (B(Pfu—u),y;(u) - y})
=~ (B(Phu—un),y" —yi()) —alyn(w) —yn,y;(w) —y,) — (B(Piu —u),y;(u) —y})

=- (B(P{}u —up),y" — y;(u)) - ((1 + Z%) y— <1 + me) Yh, yn(u) — Yh>

— (B(P{u—u),y;(a) —y})
< — (B(Ppu—upn),y* = yi(w) = (y = yn,ya(w) <Z tiy — Zth iyn, yn(a y)

— (B(Pju—u),y;(u) - y;).
So for 0 < € < 1, there holds

(/P(}Jlu - u}l’,PI}JLu - uh)Q + (y (u) —Y}L,Yh(u) _y}z)
< - ( (PUU u,),y" —yu(u) ) - (y—yh(U)Jh(u) —Yh)

M
— (Zti(}’*}’h +Z (ti = thi)yn, yn(u) — Y) - (B(Pz’}ufu),y?;(u) *y}i)

<e(allPhu—unlq + lyn(u) - v (vi(w) = yi)l3a + It = tal%)
4+ca*QW—»mon%ﬂ+ww*—ya Za + hElu - Phulg). (3.13)
Applying (3.6)—(3.10) in (3.13), we obtain (3.12). Thus Lemma 3.4 is proved. 0

Next, combining the results in Lemma 3.1-3.4, we have the following conclusion:

Lemma 3.5. There holds the estimate

IPa -, (w) - (W)~
+ llpn(a) — pn n(w) = pillose + (It — thlleo
<C(lly = yu(w) () «)- (3.14)

Finally, we give the proof of Theorems 3.1 and 3.2.
Proof. Using the standard finite element analysis for the Stokes equations (for the proof the
readers may refer to [12]), we have the following H!-norm estimates:

Iy = yn(@le + o = pa@)lloe < CA (Iylz + Ipliie),
Iy* =yl + [lp* — pj(w)lloe < Ch™ (Hy*llm;n + Hp*llm;n), (3.15)
and the L?-norm estimates:
Iy = ya@lloe < OB (Iy iz + Ipllie).

Ily* = yi@loo < CA2(Ily 20 + 9 l10)- (3.16)

Combining these estimates with the results in Lemma 3.5, we derive (3.2)—(3.4). 0
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4. Numerical Experiments

An augmented Lagrangian method was proposed to solve the state and control constrained
optimal control problems by Bergounioux and Kunisch in [3], and they also constructed another
method named a primal-dual strategy to solve these problems, which can be seen in [4]. In
[25], Liu, Yang and Yuan proposed a project gradient algorithm to deal with the integral
state constraint problem. To solve problem (2.6), we use the Arrow-Hurwicz algorithm in
our following experiments, which has been studied in [9], [13] and [35]. The Arrow-Hurwicz
algorithm is described briefly as follows.

Arrow-Hurwicz algorithm

Step 1. Set k=0 and fix a step length p > 0.
Select initial approximations t° and u(})l.

Step 2. Set [ =0 and ukofuﬁ.

Step 3. Solve equations:

a(yy',wn) + (", wa) = (£ + Buy', wy,) ¥V w, € H",
b(yy' an) =0, YV an € Q"
a(yzk’l Wh) + b(ph Wh 1+ Ztk yh ,Wh (* Yd,Wh) v wy, € H",
b(y™ an) =0, Y qn € QM.

Step 4. Let uy'' =up! — PL(B*y " + a(u)! — w)).

If [ju, k M uh "o.o > Toly, set I =+ 1 and then go to Step 3.

Step 5. For all i=1,....,M, let

max {O,tf + p( . — %)} in

0 elsewhere.

k41 _
t;T =

Step 6. Stop if [tF*! —t*|, < Tolr and output

_ ki _ kil _ Lkl
up =4, Yrn =Yy, s Ph=Dy -

Otherwise let u’fL'H uZ Hl, set k:=k+ 1. Then go to step 2.

For the proof of the convergence of the above algorithm, the readers may refer to [9,13]
or [35].

In this section, we perform some numerical experiments to verify the theoretical results
derived in Section 3. In these numerical experiments, we use the C++ software package: AFEpack,
the readers may read [30] or browse http://www.acm.caltech.edu/rli/AFEPack for more
details.
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Let = (0,1) x (0,1) and K = {w; [[w[jo;o < 1}, we investigate the problem as follows:

(1 , 1 )
- - - - 4.1
;nelg{Q/Qw val +2/Q|u w2}, (4.1)

subject to
—1—10Ay+Vp:f+u, in Q,
V.y=0, in Q, (4.2)
y=0, on 0,

which means that d =2, « =1, v =0.1, M =1 and 7 = 1 in problem (2.6). In the following
experiments, we adopt the exact solution as:

Y1 = 10001‘%(11 - 1)2(2562 - 1)(56% - IQ)/C(),

Yo = 71000(2561 - 1)(56% - Zl)lg(lCQ - 1)2/0(),

p =1000(z 122 — 0.25), w1 = ug = 100sin(47z) sin(4drzs),
y*=-0.1y, p*=-100(x122—0.25), t=(Co—1),

(4.3)

where Cp = 3.8880789567826111 such that ||y|lo.o = 1. The right-hand term is given by
f=—-0.1Ay + Vp—uand yg = 0.1Ay* — Vp* + Cpy, and up = y* + u.

We perform two groups of numerical experiments, in which we compute all the variables on
one mesh in Experiment 1 and on multi-mesh in Experiment 2, respectively. For abbreviation,
we denote the L2-norm, H'-norm and the L2-norm, H!-norm defined in the domain Q by
I lo, || - ||z in below, respectively.

4.1. Numerical experiment 1: on uniform mesh

In the first experiment, we check the convergence rates to verify the a priori error estimates
given in Section 3. We solve the problem in three cases. In these cases we use Hood-Taylor
elements to approximate the Stokes equations, and the piecewise quadratic, linear, constant
elements to approximate the control, respectively. Namely, we want to confirm the convergence
rates with respect to k = 2,1 and 0 in Theorems 3.1 and 3.2.

Table 4.1: Numerical results of Example 1 (=1, k=2).

Variable - element | yj,y}, - P2 element, pp,p; - P1 element, up - P2 element
mesh meshl mesh?2 mesh3 mesh4
h 0.05 0.025 0.0125 0.00625
DOFs: states 8794 34016 134446 534566
IPEw — o 7.38e-05 1.35e-05 8.53e-07 4.45e-08
lly — yrllo 2.89¢-03 2.47e-04 3.04e-05 2.76e-06
Iy —yanllo 7.38e-05 1.35e-05 8.53e-07 4.45e-08
[t — tn] 3.40e-04 7.18e-05 4.53e-06 2.36e-07
[lu —unllo 1.41e-01 1.91e-02 2.44e-03 3.08e-04
ly —yalla 3.94¢-01 6.68¢-02 1.38¢-02 2.52¢-03
ly* —yils 1.55e-03 1.53e-04 1.94e-05 3.28e-06
llp = prllo 2.32e-01 5.78e-02 1.44e-02 3.60e-03
llp™ = pillo 2.39e-04 5.80e-05 1.44e-05 3.60e-06
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Example 1. Firstly, we use the piecewise quadratic elements to approximate the control, i.e.,
Il =1 and k = 2. The numerical results are listed in Table 4.1.
From Table 4.1, it is easy to calculate the convergence rates, which are listed in Table 4.2.

Iy = wullo+1ly* =¥hllo + PG —unllo + [t — tu] = O(h'*? + 1*2) = O(K?),
Iy =yulli +lly* = yhll < O+ 0H42) = O(r?),

which are consistent with the a priori error estimates given in Section 3.

Table 4.2: Convergence rates of numerical Example 1.

Mesh | [Pu—unllo lly —yullo  lly* —yillo [t—=tul [u—wnllo lly —ynls lly* —yills
12 2.44 3.54 2.44 2.24 2.88 2.56 3.33
253 3.08 3.02 3.98 3.08 2.96 2.27 2.98
34 4.26 3.45 4.26 4.25 2.98 2.45 2.56

Example 2. Next, we approximate the control u by the piecewise linear elements. The
numerical results provided in Table 4.3, from which the convergence rates are obtained and
listed in Table 4.4.

Table 4.3: Numerical results of Example 2 (I =1, k= 1).

Variable - element | yj,y; - P2 element, pp,p;, - P1 element, u), - P1 element
mesh meshl mesh2 mesh3 mesh4
h 0.05 0.025 0.0125 0.00625
(IPEw — o 7.21e-04 7.09e-05 5.64e-06 5.07e-07
lly = yrllo 6.14e-03 4.41e-04 3.96e-05 3.38e-06
ly* —yullo 7.25e-04 7.09e-05 5.64e-06 5.07e-07
|t — tn] 5.75e-03 2.57e-04 2.19e-05 2.06e-06
[u—anllo 1.70e+0 4.01e-01 9.91e-02 2.46e-02
ly —yullh 4.21e-01 6.82e-02 1.39¢-02 2.53e-03
ly* —yul 1.19e-02 9.05e-04 6.85e-05 6.36e-06
lp = prllo 2.33e-01 5.78¢-02 1.44e-02 3.60e-03
lp* — i llo 4.81e-04 6.58e-05 1.46e-05 3.60e-06

Table 4.4: Convergence rates of numerical Example 2.

Mesh | [[Piu—unlo lly —yallo Iy —yillo [t—tal [la—unllo lly —yallh lly* =il
1—2 3.34 3.80 3.35 4.48 2.08 2.62 3.72
2—3 3.65 3.47 3.65 3.55 2.01 2.29 3.72
3—4 3.47 3.54 3.47 3.41 2.00 2.45 3.43

By the above two examples, it can be seen that ||u — upllo.o = O(h**1), where k = 2 in
Example 1 and £ = 1 in Example 2, respectively. At the same time,

00+ |t - th| = O(hg)

00 + [|Pfu — uy|

Iy = yrlloe + ly" — il

whatever |[u — upljo.o = O(h3) or |[u — upllo.o = O(h?), which are consistent with Theorem
3.2.

In these numerical results, it is interesting to see that the convergence order between ¢
and tp, is better than the theoretical results obtained in Section 3. That may lead to good



602 H. F. NIU AND D. P. YANG

approximations of [|y* —y7|lo.0 + [|PEu—up| 0,0 in the above two examples. It is not clear that
whether there exist some super-convergence or this is caused by some other reasons. However,
the approximation of t determines the approximation of y* directly, because t is the right-hand
side term of of the equation for the co-state equation of y*. To further examine that, one can
see the next example, where we use the piecewise constant elements to discretize uy,.

;0 and [[p* — pj[lo,o are omitted in all
1o and [|ly* — yillie,

For abbreviation, the convergence rates of ||p — pp|
tables, it is obvious that they are the same as the orders of ||y — y|
respectively.

Example 3. Finally, let us use the piecewise constant elements to approximate the control
u. The numerical results are given in Table 4.5. From Table 4.5, it is easy to obtain the

convergence rates, see Table 4.6.

Table 4.5: Numerical results of Example 3 (I =1, k= 0).

variable - element | yp,y; - P2 element, pp,p; - P1 element, uj - Po element
mesh meshl mesh?2 mesh3 mesh4
h 0.05 0.025 0.0125 0.00625
[Phu—unlfo 7.81e-03 2.11e-03 4.91e-04 1.20e-04
|y — yallo 4.38¢-02 1.08¢-02 2.69¢-03 6.73¢-04
ly* = villo 7.88¢-03 2.12e-03 4.92e-04 1.20e-04
[t — tn] 2.95e-02 7.91e-03 1.63e-03 3.88e-04
|[lu—uxnllo 1.27e+1 6.42e+0 3.21e+0 1.60e+0
Iy —ynll 8.93e-01 2.06e-01 5.04e-02 1.23e-02
ly* —yilh 1.06e-01 2.70e-02 6.57e-03 1.63e-03
Ilp = prllo 2.71e-01 6.68e-02 1.66e-02 4.16e-03
Ilp* = pillo 3.89e-03 9.71e-04 2.39e-04 5.94e-05
Table 4.6: Convergence rates of numerical Example 3.
mesh | [[Piu—unllo [ly —ynllo lly" —willo [t—ta| lu—unfo [ly —yullr lly* —yalh
1—2 1.88 2.01 1.89 1.89 0.99 2.11 1.97
2—3 2.10 2.00 2.10 2.27 0.99 2.03 2.03
3—4 2.02 2.00 2.02 2.07 0.99 2.02 2.00

From the above three examples, it can be seen that [|u— uyl/o.o = O(h**1) with respect to
k= 2,1,0, respectively. At the same time,

o + y* = ¥illua + Ip° = pilloe = O(R?)

ly —yullio + llp — &l

o0 = O(h?) or [lu— upl

0:0 = O(h), which coincides

whatever ||u —upljo.0 = O(h3), |lu — uy|
with the theoretical results in Section 3.

4.2. Numerical experiment 2: on multi-mesh

In this experiment we consider the case of using the multi-mesh, on which we use a coarse
mesh to approximate the state and co-state, and another dense mesh to approximate the control.
This strategy can save much computational work since most of the calculation is to solve the
state equations and co-state equations repeatedly. In fact, a precise optimal control arouses
more of our interests in applications, so there is no point to over-compute the state variables.
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Example 4. For the sake of comparison, we compute the same problem as the above, and use
the piecewise quadric elements to approximate the control as in Example 1, but adopt two sets
of meshes. In the meantime, we use the same set of mesh as in Example 1 to approximate the
control, but another set of coarser mesh to approximate the states.

The numerical results are listed in Table 4.7. It is seen from Table 4.7 that the number of
DOFs of the state-mesh reduces substantially in comparison with the data corresponding to
Example 1 (Table 4.1). At the same time, the accuracy of the control is kept (when h < 0.025),
so it is clear that much computational work is saved.

Table 4.7: Numerical results of Example 4 (I = 1, k = 2 on multi-mesh).

variable - element | yn,yj, - P2 element, pp,pj, - P1 element, up, - P2 element
mesh multi-meshl  multi-mesh2 multi-mesh3  multi-mesh4
h 0.2 0.1 0.05 0.025
DOFs: states 664 2330 8794 34016
hu 0.05 0.025 0.0125 0.00625
DOFs: control 2065 7713 30145 118721
IPEu — o 3.63e-01 3.95e-03 7.23e-05 1.15e-05
ly = ynllo 3.28¢-01 3.35e-02 2.89¢-03 2.47e-04
Iy —yrllo 3.63e-01 3.95e-03 7.23e-05 1.15e-05
[t — t| 2.24e+0 2.25e-02 3.31e-04 6.31e-05
[lu —unllo 3.91e-01 2.00e-02 2.42e-03 3.08e-04
ly =yl 1.14e+1 2.27e+0 3.94e-01 6.68e-02
ly” — yilh 2.74e+0 3.85¢-02 1.54e-03 1.45e-04
llp = pallo 3.79e+0 9.57e-01 2.32¢-01 5.78¢-02
llp™ — phllo 9.51e-02 1.86e-03 2.39e-04 5.80e-05
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