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Abstract

We propose a new trust region algorithm for nonlinear constrained optimization prob-

lems. In each iteration of our algorithm, the trial step is computed by minimizing a

quadratic approximation to the augmented Lagrange function in the trust region. The

augmented Lagrange function is also used as a merit function to decide whether the trial

step should be accepted. Our method extends the traditional trust region approach by

combining a filter technique into the rules for accepting trial steps so that a trial step

could still be accepted even when it is rejected by the traditional rule based on merit func-

tion reduction. An estimate of the Lagrange multiplier is updated at each iteration, and

the penalty parameter is updated to force sufficient reduction in the norm of the constraint

violations. Active set technique is used to handle the inequality constraints. Numerical

results for a set of constrained problems from the CUTEr collection are also reported.
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1. Introduction

This paper presents a new trust region algorithm for general constrained optimization prob-
lems having the form:

min f(x) (1.1a)

subject to ci(x) = 0, i ∈ E = {1, ..., me} (1.1b)

ci(x) ≥ 0, i ∈ I = {me + 1, ...,m} (1.1c)

where f : <n → < and c : <n → <m are twice continuously differentiable functions.
The trust-region methods are a class of numerical methods for optimization. While line

search type methods search the next iteration in a line, trust region methods try to find the
next iteration point within a region. Such a region is called the trust region and it is normally
a set (say, a ball or box) centered at the current iterate. The essential parts of a trust region
method are finding the trial step in the trust region and deciding whether the trial step should
be accepted [28].

The trial step of a trust region method is normally computed by solving a trust region
subproblem. There are mainly three different approaches. The null space type method decom-
poses the trial step into a range space step and a null space step with the range space step
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reducing the constraint violations and the null space step decreasing the Lagrange function in
the null space (for example, see [1,18,26]). The second type of trust region subproblems is the
the two-ball subproblem, which minimizes a quadratic approximation to the objective function
subject to a reduction of the norm of the linearized constraints (see, e.g., [2, 21]). The third
kind of trust region subproblems can be derived by exact penalty functions, which minimize
an approximation to some penalty function. Such subproblems include the SL1QP subprob-
lem [10] and L∞ subproblem [27]. The subproblem we use in our new method belongs to the
third type. Our subproblem is to minimize an approximate augmented Lagrangian function.
Augmented Lagrangian function [19] is an exact penalty function if the Lagrange multiplier is
exact and the penalty parameter is sufficiently large.

Recently, merit-function-free algorithms have been attracted much attention from researchers,
for example see [12, 25]. The basic idea of such algorithms is to regard the constrained opti-
mization problem as a two objective problem. One is to decrease the original objective function
while the other is to decrease the constraint violations. Algorithms based on merit functions
normally require a monotone decrease in a merit function, while merit-function-free algorithms
use non-monotone decrease conditions on the original objective function and the constraint
violations. In our algorithm, we also use the filter idea and a trial step will not be thrown away
unless it not only does not reduce the merit function, but also not accepted by a filter.

This paper is organized as follows. The next section introduces the motivation and the basic
idea of our new algorithm based on the equality constrained problem. In section 3 we extend
our algorithm to general constrained problems by employing the active set technique. Section 4
presents some numerical results for problems from the CUTEr collection [14] and gives a brief
conclusion.

Throughout the paper ‖·‖ denotes the Euclidean norm. We denote the gradient of f by g =
g(x) = ∇f(x), the Jacobian of the constraints by A = A(x) = (∇c1(x),∇c2(x), · · · ,∇cm(x)).
Superscripts (k) refer to iteration indices and f (k) is taken to mean f(x(k)) etc.Subscripts k

refer to elements of vector. Quantities related to a local solution are superscripted by ∗.

2. An Algorithm for Equality Constrained Optimization

In this section, we give a new algorithm for the equality constrained optimization

min f(x) (2.1a)

subject to ci(x) = 0, i ∈ E . (2.1b)

Before giving the detailed descriptions of our algorithm, we need to address some issues such
as the calculations of the trial step, techniques for updating the Lagrange multiplier and the
penalty parameter, and the criteria for accepting the trial step.

2.1. Computing the trust region step

The trust region step is computed by minimizing a quadratic function which approximates
the augmented Lagrangian function. The augmented Lagrangian function has the form

Φ(x, λ, σ) = f(x)− λT c(x) + σ‖c(x)‖2, (2.2)

where λ ∈ <|E| is the Lagrange multiplier and σ ≥ 0 is the penalty parameter.



74 L.F. NIU AND Y.X. YUAN

At the beginning of the k−th iteration, we have the current iterate x(k), the current ap-
proximate Lagrange multiplier λ(k), and the penalty parameter σ(k). Thus, the augmented
Lagrangian function at the k−th iteration is

Φ(x, λ(k), σ(k)) = f(x)− (λ(k))
T
c(x) + σ(k)‖c(x)‖2. (2.3)

Define the quadratic function

Q(k)(d) = (g(k) −A(k)λ(k))T d +
1
2
dT B(k)d + σ(k)‖c(k) + (A(k))T d‖2, (2.4)

where A(k) is the Jacobian of the constraints computed at x(k), and B(k) is a symmetric matrix
approximating either the Hessian of the Lagrangian function

W (k) = ∇2f(x(k))−
∑

i∈E
λ

(k)
i ∇2ci(x(k)) (2.5)

or
W

(k)
= ∇2f(x(k))−

∑

i∈E
λ

(k)
i ∇2ci(x(k)) + 2σ(k)

∑

i∈E
ci(x(k))∇2ci(x(k)). (2.6)

If B(k) = W
(k)

, Q(k) is the second order Taylor expansion of the augmented Lagrangian function
Φ(x, λ(k), σ(k)). If B(k) = W (k), we use the second order Taylor expansion of the Lagrangian
function

L(x, λ) = f(x)− λT c(x)

and the linear approximation of the constraints. Thus, function (2.4) is a quadratic approxi-
mation to the augmented Lagrangian function, and our trust region subproblem is

min Q(k)(d) (2.7a)

subject to ||d|| ≤ ∆(k), (2.7b)

where ∆(k) > 0 is the trust region radius at the current iteration. An advantage of our ap-
proach is that subproblem (2.7), just as the standard subproblem of trust region algorithms
for unconstrained optimization, is to minimize a quadratic function within a ball. This sim-
ple subproblem has been studied extensively and there are many mature methods for solving
it [8, 13, 15, 16, 20, 22–24, 29]. Another advantage of our approach is that by using formulation
(2.7) we do not need to worry about the possible inconsistency between the linearized con-
straints and the trust region constraint, nor about linearly dependency of the gradients of the
constraints.

2.2. Updating the Lagrange Multiplier

The Lagrange multiplier λ(k) is updated from iteration to iteration, and we hope that it will
converge to the true Lagrange multiplier λ∗ at the solution x∗.

From the definition of the trial step d(k), there exists a non-negative parameter ζ(k) such
that

g(k) −A(k)(λ(k) − 2σ(k)(A(k)T
d(k) + c(k))) + B(k)d(k) + ζ(k)d(k) = 0 , (2.8a)

ζ(k)(||d(k)|| −∆(k)) = 0 . (2.8b)
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A good estimate of the Lagrange multiplier is the least squares solution of

g(x)−A(x)λ = 0, (2.9)

namely λ = (A(x))+g(x) (see [11]). Thus, it would be desirable to set the new estimate of the
Lagrange multiplier λnew to

λ(k) − 2σ(k)(A(k)T
d(k) + c(k))− (A(k))+(B(k) + ζ(k)I)d(k). (2.10)

Ignoring the last term, because it is difficult to obtain, we derive our Lagrange multiplier update
formula

λtrial = λ(k) − 2σ(k)(A(k)T
d(k) + c(k)). (2.11)

The above update formula for the Lagrange multiplier is new, though it can be viewed as a
kind of approximation to the well known first-order Lagrange multiplier formula:

λ+ = λ(k) − 2σ(k)c(xk+1) (2.12)

(for example, see (14.2.5) in [7] and (12.2.15) in [11]) if xk+1 = xk + dk.

2.3. Updating the penalty parameter

Now we consider how to update the penalty parameter. Let x∗ be a solution of (2.1) at
which the LICQ is satisfied (that is, the gradients ∇ci(x∗), i ∈ E , are linearly independent
vectors), and the second sufficient conditions are satisfied for λ = λ∗. Then there is a threshold
value σ ≥ 0 such that for all σ ≥ σ, x∗ is a local minimizer of the augmented Lagrangian
function Φ(x, λ∗, σ) which is defined by (2.2). However, it is not easy to estimate an accurate
upper bound for such a threshold value σ. Consider the points which are not too far from the
feasible set (say, ‖c(x)‖ ≤ 1), we have that

Φ(x, λ∗, σ) = f(x)− (λ∗)T c(x) + σ||c(x)||2
≤ f(x) + (σ||c(x)|| − (λ∗)T c(x))

= f(x) +
1
2
σ||c(x)||+

(
1
2
σ||c(x)|| − (λ∗)T c(x)

)
. (2.13)

If σ ≥ 2‖λ∗‖, the first two terms in the last line of (2.13) is an exact penalty function and
the last term in the last line of (2.13) is non-negative. Thus, it is natural for us to impose the
condition

σ(k+1) ≥ 2‖λ(k+1)‖. (2.14)

The main aim of the penalty term is to force the iterates converging to the feasible set. Hence
we increase the penalty parameter by at least twice if the trial step fails to reduce the norm of
the constraint violations by half, namely

σ(k+1) ≥ 2σ(k) (2.15)

if ||c(x(k) + d(k))|| ≥ 0.5||c(k)||.
To summarize, our update formula for the new penalty parameter is

σ(k+1) =

{
max

(
2σ(k), 2||λ(k+1)||

)
, if ||c(x(k) + d(k))|| ≥ 0.5||c(k)||;

max
(
σ(k), 2||λ(k+1)||) , otherwise.

(2.16)
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The above update for the parameter is different from any of the known techniques, though our
approach used for deriving the formula is similar to that in [21].

2.4. Criteria for accepting the trial point

First, the augmented Lagrangian function is used as a merit function to decide whether the
trial step d(k) should be accepted. The ratio of the actual reduction to the predicted reduction
in the merit function

ρ(k) =
Φ(x(k), λ(k), σ(k))− Φ(x(k) + d(k), λtrial, σ(k))

Q(k)(0)−Q(k)(d(k))
(2.17)

is computed. If this ratio is positive, the trial step is accepted (namely x(k+1) = x(k) + d(k)).
Otherwise, we do not simply throw away the trial step. Instead, we give it another chance by
testing whether it can be accepted by the filter.

A pair (h(k), f (k)) is said to dominate another pair (h(l), f (l)) if and only if both f (k) ≤ f (l)

and h(k) ≤ h(l). A filter F is a list of pairs (f, h) such that no pair dominates any other [?]. For
equality constrained optimization, h(k) = ‖c(k)‖. In order to make the filter an efficient tool for
forcing convergence in real computation, we require either the objective function value or the
constraint violation to be reduced sufficiently in a successful step. Hence, only when

hnew < (1− γϑ)h(k) or fnew < f (k) − γϑhnew for all (h(k), f (k)) ∈ F , (2.18)

we accept the new point xnew = x(k) +d(k) and add it into the filter. The parameter γϑ ∈ (0, 1)
is a very small constant, which sets a small “margin” around the border of the dominated part
of the (h, f)-space in which we shall reject trial points [7].

There are two advantages to combine the filter and traditional actual vs predicted reduction
ratio test together. Firstly, the utilization of the filter increases the opportunity of trial points
to be accepted. Intuitively, it is likely that the new algorithm will accelerate the convergence
of the traditional trust region method. Secondly, since the filter is only used as the supplement
of the merit function, it contains only a few elements. Thus, there is no need to consider
removing excessive elements from the filter. Consequently, the maintenance of the filter in the
new algorithm is simpler than that in the method which uses the filter as the only criterion for
trial point acceptance [12].

2.5. An algorithm for equality constrained optimization

Base on the above preparation we can give our new trust region algorithm for equality
constrained problems:

Algorithm A

Step 0 Initialization. Let x(0) ∈ <n, ∆(0) > 0, λ(0) ∈ <m, σ(0) > 0, and a symmetric
matrix B(0) be given, as well as constants 0 < η1 ≤ η2 < 1, γϑ ∈ (0, 1), εs, εc.
Compute f (0) and c(0). Set the initial filter as F = {(c(0), f (0)), (10c(0),−∞)}
and k = 0.

Step 1 Step calculation. Solve the trust region subproblem (2.7) obtaining d(k).
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Step 2 Termination test. If ||d(k)|| > εs, go to Step 3;
If ||c(k)|| < εc, stop and return x(k) as a solution;
Set σ(k) := 10σ(k), go to Step 1.

Step 3 Acceptance of the trial point.

3.1 Trial point information calculation. Let xtrial = x(k) + d(k). Eval-
uate f(xtrial), c(xtrial) and the corresponding Lagrange multiplier denoted by
λtrial according to formula (2.11).

3.2 Acceptance determined by Penalty Function. Compute ρ(k) by
(2.17); If ρ(k) ≥ 0, set x(k+1) = x(k) + d(k) and go to Step 4.

3.3 Acceptance determined by Filter. If xtrial is accepted by the filter,
update filter, set x(k+1) = x(k) + d(k) and go to Step 4; else set x(k+1) = x(k),
go to Step 4.4.

Step 4 Parameters update.

4.1 Lagrange multiplier update. Set λ(k+1) = λtrial;

4.2 Penalty parameter update. Update σ(k+1) by (2.16);

4.3 Generate the next approximate Hessian. Update B(k+1);

4.4 Trust-region radius update. Set

∆(k+1) =





max
(
2∆(k), 2||d(k)||) , if ρ(k) ≥ η2,

∆(k), if ρ(k) ∈ [η1, η2] ,
min

(
0.5∆(k), 0.5||d(k)||) , if ρ(k) < η1,

(2.19)

4.5 Incremental iteration index. Set k := k + 1 and go to Step 1.

In the above algorithm, how to update B(k+1) is not given. Possible choices are B(k+1) =
W (k+1) or B(k+1) = W

(k+1)
. We can also use quasi-Newton update formulae [11] to generate

B(k+1).

3. Extend the Algorithm to Inequality Constraints Case

Now we consider extending the algorithm to problems with inequality constraints. We in-
troduce slack variables si, i ∈ I and transform the inequality constraints to equality constraints
and bound constraints:

min f(x) (3.1a)

subject to ci(x) = 0, i ∈ E ; (3.1b)

ci − si = 0, i ∈ I; (3.1c)

si ≥ 0, i ∈ I. (3.1d)

One way for handling the non-negative constraints on the slack variables is the popular in-
terior point approach, which replaces the inequality constraints by the log-penalty function.
For example, see [3–5]. Here we use a different approach. Keeping the inequality constraint
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(3.1d) and replacing the equality constraint problem (3.1a)-(3.1c) by the minimization of the
corresponding augmented Lagrange function, we obtain the following problem:

min
x,s

f(x)−
∑

i∈E
λici(x)−

∑

i∈I
λi(ci(x)− si) + σ

∑

i∈E
(ci(x))2 + σ

∑

i∈I
(ci(x)− si)2 (3.2a)

s.t. si ≥ 0, for all i ∈ I. (3.2b)

For a given x, the objective function in (3.2a) is a convex quadratic function with respect
to each of the slack variables si. Thus we can easily find the optimal value for each si:

si = max (ci(x)− λi/(2σ), 0) , for all i ∈ I. (3.3)

Substituting the above relation into (3.2a), we derive an unconstrained minimization problem
on variables x:

min
x

ΦA(x,λ,σ)(x, λ, σ) (3.4)

where A(x, λ, σ) = E ∪ {i ∈ I | ci(x) < λi/2σ} is the active set, and

ΦA(x, λ, σ) = f(x)−
∑

i∈A
λici(x) + σ

∑

i∈A
(ci(x))2 (3.5)

is the augmented Lagrangian function based on the active constraints. If x(k), λ(k) and σ(k)

are known, we define the working set as:

A(k) = A(x(k), λ(k), σ(k)) = E ∪ {i ∈ I | c(k)
i < λ

(k)
i /2σ(k)}. (3.6)

Similar to the previous section, we can compute the trial step by minimizing a quadratic
approximation to (3.5). The subproblem at the k−th iteration can be written as

min
d

Q
(k)
A (d) (3.7a)

subject to ‖d‖ ≤ ∆(k), (3.7b)

where
Q

(k)
A (d) = (g(k) −A

(k)
A λ

(k)
A )T d +

1
2
dT B

(k)
A d + σ(k)‖c(k)

A + (A(k)
A )T d‖2, (3.8)

with

c
(k)
A = ( ci(x(k)) | i ∈ A(k))T , (3.9)

λ
(k)
A = ( λ

(k)
i | i ∈ A(k))T , (3.10)

A
(k)
A = ( ∇ci(x(k)) | i ∈ A(k)) , (3.11)

and B
(k)
A is an approximation to the Hessian of the Lagrangian function based on A(k). Let

d(k) be the solution of subproblem (3.7), and we use d(k) as our trial step.
As for the update of Lagrange multipliers, it is very similar to the equality constrained

case, except that we require all the multipliers corresponding to the inequality constraints to
be non-negative. For constraints not in the active set, we simply set those multipliers to be
zero. Thus, we can obtain the following formula for updating the Lagrange multipliers:

λi
trial =





λi
(k) − 2σ(k)(∇ci

(k)T
d(k) + ci

(k)), i ∈ E ,

max{λi
(k) − 2σ(k)(∇ci

(k)T
d(k) + ci

(k)), 0}, i ∈ A(k) \ E ,

0, otherwise.

(3.12)
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The filter for general constrained problems is also similar to that for equality constrained
problems, except that the definition of h(x) is changed to

h(x) =
√∑

i∈E
(ci(x))2 +

∑

i∈I
[min(ci(x), 0)]2 . (3.13)

Therefore, we can give our algorithm for general nonlinear optimization problems as follows.

Algorithm B

Step 0 Initialization. Let x(0) ∈ <n, ∆(0) > 0, λ(0) ∈ <m, σ(0) > 0 be given, as
well as constants 0 < η1 ≤ η2 < 1, γϑ ∈ (0, 1), εs, εc. Compute f(x(0)), c(x(0)),
initial working set A(0) and B(0). Set F = {(c0, f0), (10c0,−∞)} and k = 0.

Step 1 Step calculation. Solve (3.7) obtaining a trial step d(k).

Step 2 Termination test. If ||d(k)|| > εs, go to Step 3;
If h(k) < εc, stop and return x(k) as a solution;
Set σ(k) := 10σ(k), go to Step 1.

Step 3 Acceptance of the trial point.

3.1 Trial point information calculation. Let xtrial = x(k) + d(k). Eval-
uate f(xtrial), c(xtrial), Atrial and the corresponding Lagrange multiplier de-
noted by λtrial according to formula (3.12).

3.2 Acceptance determined by Penalty Function. Compute the ratio of
the actual reduction to the predicted reduction, i.e.

ρ(k) =
ΦA(k)(x(k), λ(k), σ(k))− ΦAtrial(xtrial, λtrial, σ(k))

Q
(k)

A(k)(0)−Q
(k)

A(k)(d(k))
(3.14)

If ρ(k) > 0, set x(k+1) = xtrial and go to Step 4.

3.3 Acceptance determined by Filter.

If xtrial is accepted by the filter, set x(k+1) = x(k) + d(k), update the filter and
go to Step 4; else x(k+1) = x(k), go to Step 4.5.

Step 4 Parameters update.

4.1 Lagrange multiplier update. Set λ(k+1) = λtrial;

4.2 working set update. Set A(k+1) = Atrial.

4.3 Penalty parameter update. Update σ(k+1) by

σ(k+1) =

{
max

(
2σ(k), 2||λ(k+1)||

)
, if h(x(k) + d(k)) ≥ 0.5h(x(k));

max
(
σ(k), 2||λ(k+1)||) , otherwise.

(3.15)

4.4 Generate the next approximate Hessian. Update B(k+1).

4.5 Trust-region radius update. Set ∆k+1 by (2.19).

4.6 Incremental iteration index Set k := k + 1 and go to Step 1.
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Obviously, Algorithm B reduces to Algorithm A when there is no inequality constraints.

4. Numerical Results and Discussion

We implemented our new algorithm in MATLAB and run the experiments with MATLAB
7.0 in Fedora Core Linux environment. The computer used is a DELL Inspiron 2200 laptop
with 256MB RAM memory and Celeron processor.

The test problems are from CUTEr [14] collection. There are 930 test problems in CUTEr,
whose SIF file size is less then 100 Kbytes. Due to the memory limitation, 924 problems can
be decoded by SifDec in our machine. Among the problems which can be decoded, 748 are
constrained optimization, which consist of 458 problems with simple bounds and 290 problems
without simple bounds. For the bound constraints, although they can be treated as the gen-
eral inequalities, we prefer to handle them explicitly, which wil be one of the extensions of our
algorithm in the future. Thus, for the current experiments, only the nonlinear constrained op-
timization problems without simple bounds in CUTEr are chosen: except linear programming,
there are 171 equality constrained problems and 115 general constrained problems.

The parameters used in our implementation for the following numerical tests are:

∆0 = 1, σ0 = 1, , η1 = 0.1, η2 = 0.9,

γϑ = 0.0001, εs = 0.00001, εc = 0.00001.

Exact Hessian matrices were used to construct the trust region subproblems in all the runs.
Namely, for equality constrained problems, we set B(k) = W (k), where W (k) is defined by (2.5),
while for general constrained problems, we use

B(k) = ∇2f(x(k))−
∑

i∈A(k)

λ
(k)
i ∇2ci(x(k)). (4.1)

CUTEr problems provide initial Lagrange multiplier λ0. However, for most CUTEr problems,
this initial multiplier λ0 is the null vector. For such problems, we begin to utilize the Lagrange
multiplier only when the constraints violation is less than a tolerance which is set to 0.1. Moré’s
subroutine gqptar [16] is called at each iteration to solve the subproblem.

To examine the effectiveness of the new algorithm, we also run LANCELOT [5], which is a
well-known package based on minimizing the augmented Lagrangian function, with the same set
of test problems and compare the results. To have a fair comparison, we let LANCELOT also
use the exact Hessian matrices to form the 2-norm trust region subproblems and solve them ac-
curately. Both algorithms use the same termination accuracy 0.00001, which is LANCELOT’s
default setting. Since our algorithm is implemented in MATLAB and LANCELOT is in For-
tran, the numbers of function evaluations and gradient evaluations are recorded instead of the
computing time. If the algorithm can not converge after 1,000 objective function evaluations,
it is considered as “failed” on the problem. For the 286 problems we tested, there are 5 equal-
ity constrained problems and 8 general constrained problems on which both our method and
LANCELOT failed. And there are 20 equality constrained problems and 12 general constrained
problems on which two algorithms found local optima with different objective function values.
We report the results on all the other problems which both algorithms obtained the same opti-
mal objective function values in Tables 4.1 and 4.2. Columns “f, c” and “g, A” give the number
of function and gradient evaluations respectively. Column “n” and “m” show the dimension of
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the problems (n variables and m constraints). An entry of “F” indicates that the algorithm is
terminated without finding a solution after 1,000 function evaluations.

Table 4.1: Results for equality constrained problems.

Alg.A LANCELOT Pro. Dim. Alg.A LANCELOT Pro. Dim.

Problem f, c g, A f, c g, A n m Problem f, c g, A f, c g, A n m

AIRCRFTA 2 2 5 5 8 5 HS26 27 27 22 20 3 1

ARGTRIG 3 3 7 6 200 200 HS27 22 20 14 14 3 1

ARTIF 13 13 230 223 102 100 HS28 4 4 7 7 3 1

AUG2DC 12 12 30 30 703 300 HS39 18 13 20 20 4 2

AUG2D 13 13 30 30 703 300 HS40 12 9 16 15 4 3

BDVALUE 8 7 2 2 102 100 HS42 16 13 13 13 4 2

BDVALUES 32 26 211 211 102 100 HS46 32 31 19 18 5 2

BOOTH 3 3 3 3 2 2 HS47 24 22 21 20 5 3

BRATU2D 32 20 3 3 484 400 HS48 4 4 8 8 5 2

BRATU2DT 7 7 8 8 484 400 HS49 31 31 18 18 5 2

BRATU3D 3 3 5 5 125 27 HS50 8 8 11 11 5 3

BROWNALE 6 6 3 3 200 200 HS51 8 8 7 7 5 3

BROYDN3D 5 5 6 6 500 500 HS52 11 11 13 13 5 3

BT10 13 13 19 19 2 2 HS56 11 8 18 16 7 4

BT11 12 12 19 19 5 3 HS61 9 8 16 15 3 2

BT12 14 10 21 21 5 3 HS6 14 11 30 27 2 1

BT1 11 11 48 41 2 1 HS77 12 12 23 22 5 2

BT2 11 11 22 22 3 1 HS78 10 8 12 11 5 3

BT3 10 10 16 16 3 5 HS79 7 7 11 11 5 3

BT4 8 6 28 27 3 2 HS7 9 8 17 17 2 1

BT5 17 13 16 15 3 2 HS8 5 5 10 9 2 2

BT6 12 12 26 24 5 2 HS9 5 5 6 6 2 1

BT7 24 19 48 46 5 3 HYDCAR20 111 98 F F 99 99

BT8 31 27 25 23 5 2 HYDCAR6 50 43 785 767 29 29

BT9 18 13 20 20 4 2 HYPCIR 4 4 9 8 2 2

BYRDSPHR 14 10 22 21 3 2 INTEGREQ 2 2 4 4 102 100

CATENARY 171 122 58 56 501 166 JUNKTURN 54 34 131 108 510 350

CATENA 449 296 495 417 501 166 LCH 39 25 F F 600 1

CBRATU2D 6 6 5 5 98 50 LUKVLE10 17 15 F F 1000 998

CBRATU3D 16 13 5 5 128 16 LUKVLE11 46 46 18 16 998 664

CHAIN 560 251 465 413 402 201 LUKVLE13 45 29 480 406 998 664

CHANDHEU 22 22 14 14 100 100 LUKVLE14 80 51 F F 998 664

CHNRSBNE 57 41 79 64 50 98 LUKVLE15 67 54 106 101 997 747

CLUSTER 8 8 10 10 2 2 LUKVLE16 47 26 14 14 997 747

CUBENE 10 8 43 37 2 2 LUKVLE17 97 89 340 292 997 747

DECONVNE 59 39 16 13 61 40 LUKVLE18 100 93 187 166 997 747

DTOC1L 9 9 11 10 598 396 LUKVLE1 11 11 24 23 1000 998

DTOC2 12 12 21 21 598 396 LUKVLE2 525 211 36 36 1000 499

DTOC3 5 5 26 26 299 198 LUKVLE3 13 13 29 29 100 2

DTOC4 24 24 17 17 299 198 LUKVLE4 185 109 F F 1000 499

DTOC5 4 4 23 23 999 499 LUKVLE5 25 21 35 32 102 96

DTOC6 25 17 39 39 201 100 LUKVLE6 20 18 37 37 999 499

DRCAVTY1 5 1 60 55 196 100 LUKVLE7 23 15 44 43 1000 4

DRCAVTY2 5 1 52 49 196 100 LUKVLE8 60 53 351 338 1000 998

DRCAVTY3 5 1 48 43 196 100 LUKVLE9 92 68 190 169 1000 6

EIGENA2 5 5 7 7 6 3 MARATOS 8 5 9 9 2 1

EIGENACO 15 12 19 19 110 55 MWRIGHT 14 11 19 18 5 3

EIGENAU 9 8 16 16 110 110 METHANB8 4 4 41 41 31 31

EIGENB2 10 8 39 33 6 3 METHANL8 11 11 151 147 31 31
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Table 4.1: Results for equality constrained problems (continued).

Alg.A LANCELOT Pro. Dim. Alg.A LANCELOT Pro. Dim.

Problem f, c g, A f, c g, A n m Problem f, c g, A f, c g, A n m

EIGENB 97 63 145 121 110 110 MSQRTA 7 7 22 17 100 100

EIGENBCO 14 10 20 16 6 2 MSQRTB 7 7 21 18 100 100

EIGENC2 23 15 60 49 30 15 OPTCTRL3 36 36 54 54 302 200

EIGENC 51 36 104 86 462 462 OPTCTRL6 36 36 54 54 302 200

EIGENCCO 35 25 86 70 462 231 ORTHRDM2 6 6 31 27 203 100

ELEC 40 28 48 39 75 25 ORTHRDS2 56 46 83 73 503 250

FLOSP2TH 356 275 F F 363 323 ORTHREGA 25 25 146 136 517 256

FLOSP2TL 65 43 F F 363 323 ORTHREGB 3 3 10 9 27 6

FLOSP2TM 486 351 F F 363 323 ORTHREGC 15 15 30 28 505 250

GENHS28 5 5 11 11 10 8 ORTHREGD 57 46 37 34 503 250

GOTTFR 8 7 17 14 2 2 ORTHRGDM 8 8 32 29 503 250

GRIDNETB 13 13 17 17 924 484 ORTHRGDS 118 86 114 105 503 250

HAGER1 1 1 8 8 201 100 POWELLBS 12 12 48 42 2 2

HAGER2 1 1 6 6 201 100 POWELLSQ 45 37 24 20 2 2

HAGER3 1 1 7 7 201 100 RECIPE 19 19 17 17 3 3

HATFLDF 20 14 62 53 3 3 RSNBRNE 14 11 28 25 2 2

HATFLDG 8 7 16 14 25 25 S316-322 13 13 27 27 2 1

HEART6 504 411 F F 6 6 SINVALNE 25 16 36 31 2 2

HEART8 40 30 149 127 8 8 SPMSQRT 8 8 13 11 100 164

HIMMELBA 3 3 3 3 2 2 TRIGGER 15 12 21 18 7 6

HIMMELBC 5 5 9 8 2 2 YATP1SQ 10 10 46 37 120 120

HIMMELBE 3 3 6 6 3 3 YATP2SQ 11 11 241 218 120 120

HS100LNP 17 10 23 22 7 2 YFITNE 21 20 88 73 3 17

HS111LNP 24 20 69 62 10 3 ZANGWIL3 7 7 8 8 3 3

We use the performance profile proposed by Dolan and Moré [9] to display the performance of
each implementation on the set of test problems, which has some advantages over other existing
benchmarking tools, especially for large test sets where tables tend to be overwhelming. Let
lp,s denote the number of objective function evaluations required to solve problem p by solver
s. Define the performance ratio as

rp,s =
lp,s

l∗p
,

where l∗p is the smallest number of objective function evaluations required by any solver to solve
problem p. Therefore, rp,s ≥ 1 for all p and s. If a solver does not solve a problem, the ratiorp,s

is assigned a large number M , which satisfies rp,s < M for all p, s, where solver s succeeds in
solving problem p. Then the performance profile for each solver s is defined as the cumulative
distribution function for the performance ratio rp,s, which is

Ps(τ) =
no. of problems s.t. rp,s ≤ τ

total no. of problems
.

Obviously, Ps(1) represents the percentage of problems for which the number of objective
function evaluations required is the smallest. For more details about the performance profile
please see [9]. The performance profile will also be used to analyze the number of gradient
evaluations required. We give the performance profile base on the computational results in
Tables 4.1 and 4.2 in Figures 4.1 and 4.2, respectively.
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Table 4.2: Results for general problems.

Alg.B LANCELOT Pro. Dim. Alg.B LANCELOT Pro. Dim.

Problem f, c g, A f, c g, A n m Problem f, c g, A f, c g, A n m

CB2 17 11 15 15 3 3 LISWET9 28 28 F F 102 100

CB3 9 9 13 13 3 3 LUKVLI11 46 46 19 18 998 664

CHACONN1 12 9 13 13 3 3 LUKVLI12 195 148 63 52 997 747

CHACONN2 9 9 13 13 3 3 LUKVLI13 276 93 63 53 998 664

CHARDIS1 4 4 369 295 400 199 LUKVLI15 100 79 110 108 97 72

CONGIGMZ 15 13 48 45 3 5 LUKVLI16 58 57 24 26 997 747

DEMYMALO 12 12 20 18 3 3 LUKVLI17 40 28 84 78 97 72

DIPIGRI 11 11 31 28 7 4 LUKVLI18 31 31 23 26 997 747

ELATTAR 83 56 234 216 7 102 LUKVLI1 163 114 F F 1000 998

EXPFITA 20 19 29 29 5 22 LUKVLI2 114 96 40 39 100 49

EXPFITB 36 36 46 46 5 102 LUKVLI3 40 27 23 23 1000 2

EXPFITC 153 104 84 84 5 502 LUKVLI4 71 48 65 56 100 49

GPP 21 21 86 86 250 498 LUKVLI5 192 132 55 53 102 96

GIGOMEZ1 12 12 26 23 3 3 LUKVLI6 17 17 37 38 999 499

GIGOMEZ2 8 8 17 17 3 3 LUKVLI7 19 19 145 129 1000 4

GIGOMEZ3 9 9 14 14 3 3 LUKVLI8 125 72 315 301 100 98

GOFFIN 10 10 11 11 51 50 LUKVLI9 423 268 70 59 100 6

HAIFAS 11 8 20 18 13 9 MADSEN 14 10 21 21 3 6

HALDMADS 21 20 33 33 6 42 MADSSCHJ 85 80 522 465 198 101

HS100MOD 10 10 66 61 7 4 MAKELA1 13 8 11 11 3 2

HS100 11 11 31 28 7 4 MAKELA2 21 13 29 28 3 3

HS10 25 18 21 21 2 1 MAKELA3 34 24 55 48 21 20

HS113 14 14 37 35 10 8 MAKELA4 8 8 8 8 21 40

HS11 10 10 19 19 2 1 MIFFLIN1 9 7 8 8 3 2

HS12 8 8 17 16 2 1 MIFFLIN2 14 9 27 25 3 2

HS14 10 10 15 15 2 2 MINMAXBD 156 48 266 237 5 20

HS22 8 8 11 11 2 2 MINMAXRB 16 13 51 45 3 4

HS268 5 5 21 21 5 5 OPTMASS 34 25 201 164 70 55

HS29 8 6 19 18 3 1 PENTAGON 31 31 8 8 6 15

HS43 11 11 23 22 4 3 POLAK1 22 21 22 21 3 2

HS88 43 35 49 48 2 1 POLAK3 53 46 42 36 12 10

HS89 39 35 63 58 3 1 POLAK4 14 13 16 15 3 3

HS90 134 104 51 50 4 1 POLAK5 71 54 11 11 3 2

HS91 126 100 49 49 5 1 POLAK6 40 26 97 87 5 4

HS92 244 164 50 49 6 1 PT 22 22 33 33 2 501

KISSING 130 91 140 123 40 91 POWELL20 34 34 47 47 100 100

KIWCRESC 142 108 17 16 3 2 ROSENMMX 22 15 61 54 5 4

LISWET10 26 26 F F 102 100 S268 5 5 21 21 5 5

LISWET11 25 25 F F 102 100 SPIRAL 88 57 122 107 3 2

LISWET12 204 204 F F 102 100 TFI1 118 93 52 47 3 101

LISWET1 27 27 320 320 102 100 TFI2 15 15 27 27 3 101

LISWET2 31 31 355 356 102 100 TFI3 21 21 24 24 3 101

LISWET3 26 26 18 19 402 400 VANDERM1 60 47 16 15 5 9

LISWET4 28 28 19 20 402 400 VANDERM2 111 65 26 24 10 19

LISWET5 26 26 18 19 402 400 VANDERM3 30 27 26 23 4 7

LISWET6 27 27 20 20 402 400 VANDERM4 57 54 84 76 5 9

LISWET7 45 45 F F 402 400 WOMFLET 181 46 66 33 3 3

LISWET8 38 38 F F 102 100

From the performance profile, we can see that the new algorithm outperforms LANCELOT
on the selected test problems from CUTEr. Further analyzing the computation results, we found
the faster convergence benefits from the combining use of merit function and filter together.
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Fig. 4.1. Performance profile between Algorithm A and LANCELOT for the number of function

evaluations (left) and gradient evaluations (right)
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Fig. 4.2. Performance profile between Algorithm B and LANCELOT for the number of function

evaluations (left) and gradient evaluations (right)

These new trial point acceptance criteria accelerate the convergence of the iterations on most of
the problems, which validates the effectiveness of our original idea in designing the algorithm.
This may also explain why LANCELOT has 9 more failures than our new algorithm on the
test problems. However, sometimes the new acceptance criteria seem too aggressive on a few
problems such as HS90-HS92, which results in the new algorithm needing more iterations than
LANCELOT. How to recognize those too aggressive steps and try to avoid them is important
for improving our algorithm further.

The other thing we observed from the experiment results is that, the advantage of saving
the numbers of function and gradient evaluations for the general constrained problems is not
as obvious as for the equality constrained problems. This stems from the fact Algorithm B and
LANCELOT using different methods to handle inequality constraints. For our new algorithm,
the inequality constraints are handled by the active set method directly. The inexact estimation
of the active set during the computing process will cause the increase of iteration numbers. On
the other hand, LANCELOT introduces slack variables explicitly and converts the inequality
constraints to the equalities. This approach can avoid the increase of iteration numbers during
the active set estimation process.
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Last but not least, since the merit function in our algorithm is an approximate augmented
Lagrangian function, it is expected that Maratos effect will not happen, thus no second order
correction steps are needed to force local superlinear convergence. Indeed, fast local convergence
behavior of the new algorithm is observed from our numerical experiments. However, we have
not yet established the global convergence and local superlinear convergence results for our
algorithm, which is a problem that we are still studying.
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