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Abstract

In this work we consider the Reduced Basis method for the solution of parametrized

advection–reaction partial differential equations. For the generation of the basis we adopt a

stabilized finite element method and we define the Reduced Basis method in the “primal–

dual” formulation for this stabilized problem. We provide a priori Reduced Basis error

estimates and we discuss the effects of the finite element approximation on the Reduced

Basis error. We propose an adaptive algorithm, based on the a posteriori Reduced Basis

error estimate, for the selection of the sample sets upon which the basis are built; the

idea leading this algorithm is the minimization of the computational costs associated with

the solution of the Reduced Basis problem. Numerical tests demonstrate the efficiency, in

terms of computational costs, of the “primal–dual” Reduced Basis approach with respect

to an “only primal” one.
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1. Introduction

The Reduced Basis (RB) method is a computational approach which allows rapid and reli-
able predictions of functional outputs associated with the solution of Partial Differential Equa-
tions (PDEs) with parametric dependence [1,6,13–18]. Indeed, the RB method has a wide range
of relevant applications in the characterization of engineering components or systems which re-
quire the prediction of certain “quantities of interest”, e.g., fluid dynamics, heat and mass
transfer problems, (see, e.g., [11,13,20,25,27,30]), as well as linear elasticity applications (see,
e.g., [7, 12, 13, 26]) and many other physical problems (see, e.g., [3, 16, 18, 28]). Environmental
problems represent a promising field of application for the RB method. Preliminary investiga-
tions have been made in [19, 21] for pollution problems in air, for which the RB method has
been adopted to evaluate the concentration of pollutants emitted by industrial sites in certain
zones of observation, such as cities [5], and to speed up the solution of the associated optimal
control problems. Parametrized steady advection–diffusion PDEs have been used in this con-
text with both geometrical and physical parameters, such as the location of industrial plants,
the intensity or direction of the wind field and the diffusion coefficient.
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In this work we investigate the RB method for the evaluation of outputs, dependent on the
solution of parametrized advection–reaction PDEs, in view of environmental applications, for
which diffusion phenomena are negligible w.r.t. the transport and reaction ones.

The RB method is based on the decoupling of the generation and the projection stages of the
approximation procedures, which leads to a decoupled offline–online computational approach.
The complexity of the offline step, in which the basis are generated, depends on the dimension
of the “truth” space, let say Nt, to which belongs the “truth” solution for a given parameter.
The complexity of the online stage depends on the dimension of the RB space, let say N , with
N ¿ Nt, and on the parametric dependence.

For the definition of the “truth” space, we use the Finite Element (FE) method [23]. In order
to get rid of the numerical instabilities due to the transport term of the hyperbolic advection–
reaction PDE, we use the Streamline Diffusion Finite Element (SDFE) stabilized method [23,
31]. This leads to the transformation of the original hyperbolic PDE into a new one, with
elliptic nature. We define the RB method for this parametrized stabilized advection–reaction
problem, for which the affine decomposition property holds, and we consider the “primal–dual”
RB approach [13,16,28], which requires the definition of a dual problem. This approach is well–
suited both for the approximation and the error evaluation of the output and, as we highlight
in this work, also for the reduction of the computational costs associated with the RB online
step w.r.t. those of the “only primal” RB approach (without the dual problem). We provide a
priori RB error estimates for both the solution and the output, thus highlighting the role of the
FE approximation and stabilization in the RB method, being the total error composed by both
the FE and RB ones. In particular, we show that, for the problem under consideration, the
“complexity” of the RB approximation increases as the FE one improves by reducing the mesh
size. We also report for this problem the a posteriori RB error estimate for the output according
to [16,28]. We remark that the idea of using stabilized FE for the definition of the “truth” space
has been already introduced in [19] for the solution of optimal control problems, even if a priori
and a posteriori RB estimates and an error analysis for the FE and RB approximations have
not been discussed. We use an adaptive algorithm for the definition of the RB basis, which is
led by the a posteriori RB error estimate and based on a criterium of minimization of the online
computational costs. Two numerical tests, inspired by environmental problems, are discussed;
moreover, we experimentally show that the RB approximation is stable, if the FE one is stable.

This work is organized as follows. In Sec.2 we introduce the parametrized advection–reaction
PDEs in an abstract setting and two problems with physical and geometrical parameters. In
Sec.3 we provide the FE approximation of the parametrized problem, after having introduced
the stabilization by means of the SDFE method; an a priori error analysis is reported for a
particular case. Sec.4 deals with the RB method, for which the “primal–dual” RB approach is
considered. Both a priori and a posteriori RB estimates are provided and the proposed adaptive
algorithm for the choice of the sample sets is outlined. In Sec.5 we report some considerations
about the numerical solution of the parametrized advection–reaction PDEs by means of the FE
and RB methods. We discuss in Sec.6 two numerical tests. Concluding remarks follow.

2. Parametrized Advection–Reaction Equations

We introduce in an abstract setting the parametrized advection–reaction PDEs and we
specify two problems with physical and geometrical parameters.
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2.1. An abstract parametrized problem

Let us indicate with µ the parameter vector, µ ∈ D, with D ⊂ RP (P ∈ N) the parameter
set. We consider the following advection–reaction PDE:





b(µ) · ∇φ(µ) + σ(µ)φ(µ) = f(µ) in Ω,

φ(µ) = 0 on ΓD,
(2.1)

where Ω ⊂ R2 is a bi–dimensional domain with boundary ∂Ω. The parametrized advection field
b(µ) ∈ [L∞(Ω)]2 ∀µ ∈ D is chosen s.t.

∇ · b(µ) = 0,∀µ ∈ D,

the parametrized reaction term σ(µ) ∈ L∞(Ω) ∀µ ∈ D, s.t.

σ(µ) > 0, ∀µ ∈ D,

and the parametrized source term f(µ) ∈ L2(Ω) ∀µ ∈ D. For the sake of simplicity, we have
omitted to explicitly express the dependence of b(µ), σ(µ) and f(µ) on the spatial coordinate
x ∈ R2, which should be read as b(µ,x), σ(µ,x) and f(µ,x), respectively. Moreover, we
suppose that the parametrized data admit the affine decomposition property, e.g.:

b(µ) = b(µ,x) =




Mb1∑

i=1

Θb1
i (µ)gb1

i (x),
Mb2∑

j=1

Θb2
j (µ)gb2

j (x)


 ,

with Θb1
i (µ), Θb2

j (µ) ∈ C0(D), gb1
i (x), gb2

j (x) ∈ L∞(Ω), i = 1, . . . ,Mb1, j = 1, . . . , Mb2, for
some Mb1, Mb2 ∈ N. In the same manner,

σ(µ) = σ(µ,x) =
Mσ∑

i=1

Θσ
i (µ)gσ

i (x),

with Θσ
j (µ) ∈ C0(D) and gσ

i (x) ∈ L∞(Ω), i = 1, . . . , Mσ, for some Mσ ∈ N; finally,

f(µ) = f(µ,x) =
Mf∑

i=1

Θf
i (µ)gf

i (x),

with Θf
j (µ) ∈ C0(D) and gf

i (x) ∈ L2(Ω), i = 1, . . . , Mf , for some Mf ∈ N. We define the
inflow boundary as

ΓD(µ) := {x ∈ ∂Ω : b(µ) · n̂ < 0 ∀µ ∈ D},
where n̂ is the outward directed unit vector normal to ∂Ω: we assume that ΓD(µ) is “fixed”, in
the sense that ΓD(µ) = ΓD ∀µ ∈ D. Finally, we define the outflow boundary as ΓN := ∂Ω\ΓD.

The weak form of problem (2.1) reads:

given µ ∈ D, find φ(µ) ∈ V : A(φ(µ), v;µ) = F (v; µ) ∀v ∈ V, (2.2)

where V := H1
ΓD

(Ω) is the usual Hilbert space of functions with null trace on ΓD (see, e.g. [10]),
and:

A(w, v;µ) :=
∫

Ω

(b(µ) · ∇w v + σ(µ)w v) dΩ, F (v;µ) :=
∫

Ω

f(µ) v dΩ. (2.3)
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Due to the affine decomposition assumptions made for b(µ), σ(µ) and f(µ), the bilinear form
A(·, ·; µ) and the functional F (·;µ) can be re–written as:

A(w, v;µ) =
Q∑

q=1

ϑq(µ)Aq(w, v), F (v; µ) =
QF∑
q=1

ϑF
q (µ)Fq(v), (2.4)

for some Q ∈ N and QF ∈ N with the bilinear forms Aq(·, ·) and the linear functionals Fq(·)
not depending on µ.

Our goal consists in calculating an output s(µ) for some µ ∈ D:

s(µ) = L (φ(µ); µ) , (2.5)

where L(·; µ) is a linear and continuous functional acting from V to R, s.t.:

L(v; µ) :=
∫

Ω

γ(µ) v dΩ, (2.6)

where γ(µ) ∈ L2(Ω) ∀µ ∈ D and subject to affine decomposition, s.t.:

s(µ) =
QL∑
q=1

ϑL
q (µ)Lq (φ(µ)) , (2.7)

for some QL ∈ N and the linear functionals Lq(·) independent of µ.

2.2. Problem 1: physical parametrization

We consider a particular case, let say “Problem 1”, of the general advection–reaction problem
described in Sec. 2.1, with a physical parameter (see, e.g., also [19]).

We set µ = µp ∈ D ⊂ R, with µp > 0 a physical parameter which can be regarded as the
magnitude of an advection field, whose direction is given by the unit vector V ∈ R2. By referring
to Eq. (2.1) we choose b(µp) = µpV, σ(µp) = 1, f(µp) = g ∈ L2(Ω) and γ(µp) = δ ∈ L2(Ω)
(independent of µp). The corresponding advection–reaction problem reads:





µpV · ∇φ(µp) + φ(µp) = g in Ω,

φ(µp) = 0 on ΓD,
(2.8)

for which the weak form (2.2) holds. In this case we have Q = 2, QF = 1 and QL = 1, with the
functionals F (v; µp) = F (v) and L(v; µp) = L(v) both independent of µp.

2.3. Problem 2: physical and geometrical parametrization

We consider now a problem, let say “Problem 2”, with both physical and geometrical para-
metric dependence, thus allowing to vary the shape of domain (see, e.g., [20, 24,25,27]).

Let us introduce a geometrical parameter µg, s.t. µ = (µp, µg) ∈ D ⊂ R2, where µp is the
physical parameter introduced in Sec. 2.2. We map the real domain into a reference domain,
which is “fixed” as the µg varies, and we transform the original problem into a new one set on
the reference domain.
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By indicating with the subscript 0 the quantities defined on the real domain Ω0 = Ω0(µg),
the parametrized advection–reaction PDE reads:





µpV0 · ∇0φ0(µ) + φ0(µ) = g0 in Ω0(µg),

φ0(µ) = 0 on Γ0D(µg),
(2.9)

with the same notation of Sec. 2.2. The problem on Ω0 in weak form would read:

given µ ∈ D, find φ0(µ) ∈ V0 : A0(φ0(µ), v; µ) = F0(v; µ) ∀v ∈ V0, (2.10)

where V0 := H1
Γ0D

(Ω0(µg)); moreover,

s0(µ) =
∫

Ω0(µg)

δ0 φ0(µ) dΩ0(µg).

Let us suppose that an affine map, acting from a reference domain Ω to the real domain Ω0(µg),
could be provided and expressed in the following form:

x0 = T (µg)x + t(µg), (2.11)

being the tensor T (µg) ∈ R2×2 and the vector t(µg) ∈ R2. In the case that the domains
Ω0 and Ω are partitioned into subdomains Ω0i, Ωi, s.t. ∪iΩ0i = Ω0 and ∪iΩi = Ω, it is
necessary to define an affine map for each subdomain; for the sake of simplicity, we consider
now non–partitioned domains, even if it is a straightforward matter to generalize to the case
with subdomains.

By using the affine map, the weak problem (2.10) can be re–cast in the weak form (2.2),
where V := H1

ΓD
(Ω) and A(·, ·; µ), F (·;µ) are defined in Eq. (2.3) and set on the reference

domain Ω. By referring to Eq. (2.1) and by inspection of the weak form (2.2), we obtain:

b(µ) = µp det(T (µg)) T (µg)−T V(µg), σ(µ) = det(T (µg)), (2.12a)

f(µ) = det(T (µg)) g(µg), γ(µ) = det(T (µg)) δ(µg), (2.12b)

where V(µg) = V0 (T (µg)x + t(µg)), g(µg) = g0 (T (µg)x + t(µg)), δ(µg) = δ0 (T (µg)x + t(µg)).
Let us remark that we choose the affine map (2.11) such that the regularity hypothesis made
in Sec. 2.1 hold for the coefficients in Eq. (2.12).

3. Finite Element Approximation: Stabilization

In this Section we consider the FE method for the numerical approximation of the hyperbolic
advection–reaction PDE introduced in Sec. 2; with this aim, the SDFE method is introduced
(see, e.g., [8, 9, 23, 31]). Moreover, we report an a priori FE error estimate and some estimates
which will be used in Sec. 4.2 in view of the a priori RB error estimate.

3.1. Stabilization: the SDFE method

We introduce now the SDFE method for the numerical approximation of the abstract prob-
lem of Sec. 2.1, as proposed in [8] and discussed in [31].

Let us indicate with {K} the triangular elements of a quasi–uniform unstructured mesh
Th of the domain Ω, s.t. ∪K∈Th

= Ω, and h := maxK∈Th
diam(K). For the FE approx-

imation we use piecewise linear basis functions ∀K ∈ Th and we define the space Xh :={
w ∈ C0(Ω) : w|K ∈ P1(K) ∀K ∈ Th

}
.
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The stabilized discrete weak form of the problem (2.1) reads:

given µ ∈ D, find φh(µ) ∈ Vh : Ah(φh(µ), vh; µ) = Fh(vh;µ) ∀vh ∈ Vh, (3.1)

where Vh ⊂ V is the FE space, being Vh := {w ∈ Xh : w(x) = 0 ∀x ∈ ΓD}, s.t. Nh :=
dim{Vh} ≡ Nt represents the dimension of the “truth” space, and, from Eq. (2.3):

Ah(w, v; µ) := A(w, v; µ) + εh(h, µ)
∫

Ω

∇w · ∇v dΩ

+ δh(h, µ)
∫

Ω

(b(µ) · ∇w) (b(µ) · ∇v) dΩ+ δh(h,µ)
∫

Ω

w b(µ) · ∇vdΩ, (3.2a)

Fh(v; µ) := F (v; µ) + δh(h,µ)
∫

Ω

f(µ) b(µ) · ∇v dΩ. (3.2b)

Let us remark that the stabilized advection–reaction problem (3.1) corresponds now to an
elliptic PDE.

The coefficients εh(h,µ) and δh(h,µ) are chosen as in [8, 31]:

εh(h, µ) := Cε(µ)h3/2, δh(h,µ) := Cδ(µ)h, (3.3)

and are considered “small”. For example, due to dimensional reasons, for the Problems 1 and 2
of Sec.s 2.2 and 2.3, we choose Cε(µ) = cεµp and Cδ(µ) = cδ/µp for some cε, cδ ∈ R+.

Let us observe that the continuous stabilized version of the problem (3.1) would read:

given µ ∈ D, find φc(µ) ∈ V : Ah(φc(µ), vc; µ) = Fh(vc; µ) ∀vc ∈ V, (3.4)

where the continuous solution φc(µ) ∈ V of the stabilized problem differs from the continuous
solution φ(µ) ∈ V of the original problem in weak form (2.2).

The output corresponding to the FE solution is:

sh(µ) := L(φh(µ); µ). (3.5)

Let us observe that, due to the affine decomposition assumptions made in Sec. 2.1 for b(µ),
σ(µ) and f(µ), even for the stabilized problem (see Eq. (2.4)), we have

Ah(w, v; µ) =
Qh∑
q=1

ϑhq(µ)Ahq(w, v), Fh(v;µ) :=
QF

h∑
q=1

ϑF
hq(µ)Fhq(v); (3.6)

for some Qh, QF
h ∈ N. By writing the FE solution as

φh(µ) =
Nh∑

j=1

φhj(µ)ϕj ,

where ϕj is the FE Lagrangian basis function associated with the FE space Vh, the FE solution
is obtained from the following linear system:

given µ ∈ D, find φh(µ) ∈ RNh : Ah(µ)φh(µ) = Fh(µ), (3.7)

where (φh(µ))i = φhi(µ); the matrix Ah(µ) ∈ RNh×Nh and the vector Fh(µ) ∈ RNh are defined
respectively as

Ah(µ) :=
Qh∑
q=1

ϑhq(µ)Ahq with (Ahq)i,j := Ahq(ϕi, ϕj)
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and

Fh(µ) :=
QF

h∑
q=1

ϑF
q (µ)Fhq with (Fhq)i := Fq(ϕi).

By recalling Eqs. (2.5), (2.7) and (3.5) and by defining the vector Lh(µ) ∈ RNh as

Lh(µ) :=
QL∑
q=1

ϑL
q (µ)Lhq with (Lhq)i := Lq(ϕi),

the output can finally be computed as

sh(µ) = φh(µ) · Lh(µ).

Let us now introduce the stabilized dual problem associated with the weak form (3.1) and
the output (2.5):

given µ ∈ D, find ψ(µ) ∈ V : Ah(v, ψ(µ); µ) = −L(v; µ) ∀v ∈ V (3.8)

and the corresponding discrete problem:

given µ ∈ D, find ψh(µ) ∈ Vh : Ah(vh, ψh(µ); µ) = −L(vh; µ) ∀vh ∈ Vh. (3.9)

For the sake of simplicity, we have avoided the subscript ’c’ for ψ(µ) ∈ V in Eq. (3.8); we
remark the fact that Eq. (3.8) does not represent the continuous dual problem, but only the
continuous version of the stabilized one.

In analogy with the FE primal problem, the FE dual solution is obtained from the following
linear system:

given µ ∈ D, find ψh(µ) ∈ RNh : Ah(µ)T ψh(µ) = −Lh(µ), (3.10)

where (ψh(µ))i = ψhi(µ), with ψh(µ) =
∑Nh

j=1 ψhj(µ)ϕj . In the same manner as the stabilized
primal problem (3.1), also the dual one admits an affine decomposition, due to the assumption
made for γ(µ) in Sec. 2.1.

Remark 3.1. Problem 3. Let us now introduce an advection–diffusion–reaction problem with
a diffusion coefficient ε “small”, s.t. the solution of this elliptic problem assumes a hyperbolic
behavior. Moreover, let us assume an homogeneous Dirichlet condition on the whole boundary
∂Ω. The FE problem should be stabilized in order to avoid numerical instabilities. If we
consider the SDFE method, the stabilized problem assumes the form (3.1), where the diffusion
term ε has been neglected, being ε ¿ εh due to the hypothesis ε “small”. Moreover, let us
observe that in this case we have Vh := {w ∈ Xh : w(x) = 0 ∀x ∈ ∂Ω}. We will refer to this
problem as Problem 3.

3.2. A priori FE error estimate

In this Section we consider the a priori FE error estimates associated with the solution of the
stabilized problem (3.1) according to the SDFE method and the output. We provide the a priori
FE error estimate for the Problem 3 of Remark 3.1; this allow us to make some considerations
in Sec. 5 regarding the solution of stabilized advection–reaction problems by means of the FE
and RB methods. Moreover, we report some estimates for the general stabilized problem of
Sec. 3.1 in view of the a priori RB error estimate proposed in Sec. 4.2.
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3.2.1. Problem 3

By referring to Problem 3 of Remark 3.1, we recall the a priori error estimates associated with
the solution of the problem (3.1) and the corresponding output (3.5) (see [4, 31]).

Let us define the following norm, which depends on the parameter vector µ:

|||v|||2 := εh(h, µ)||∇v||2 + δh(h, µ)||b(µ) · ∇v||2 + ||v||2, (3.11)

where || · || indicates the usual L2(Ω) norm ( [10]). The stabilized Problem 3 admits an unique
solution, being the form Ah(·, ·; µ) bilinear, continuous and coercive and the functional Fh(·; µ)
linear and continuous. The continuity of the form Ah(·, ·; µ) follows from:

|Ah(wh, vh; µ)| ≤
[
max{1, ||σ(µ)||∞}+ (δh(h,µ))−1/2

]
|||wh||| |||vh|||

∀wh, vh ∈ Vh, ∀µ ∈ D, (3.12)

while the coercivity from:

Ah(vh, vh; µ) ≥ α(µ) |||vh|||2 ∀vh ∈ Vh, ∀µ ∈ D, (3.13)

where α(µ) is the coercivity constant:

α(µ) := min{1, ||σ(µ)||∞}. (3.14)

For the sake of simplicity, ||σ(µ)||∞ stands for ||σ(µ)||L∞(Ω). The same considerations hold
also for the corresponding stabilized dual problem, which admits an unique solution.

The following a priori FE error estimates can be provided; see [4] and also [31] for the proof.

Proposition 3.1. For Problem 3, by introducing the FE primal error epr
h (µ) := φ(µ)−φh(µ) ∈

Vh associated with the FE primal solution φh(µ) ∈ Vh of Problem (3.1) and by assuming that
the solution of problem (2.2) φ(µ) ∈ H2(Ω)∩V ∀µ ∈ D, the following a priori FE primal error
estimate holds:

|||epr
h (µ)||| ≤ Cpr(µ)h3/2|φ(µ)|H2(Ω) ∀µ ∈ D, (3.15)

with Cpr(µ) ∈ R+ (see [4]) depending on µ, ||b(µ)|| and ||σ(µ)||∞ and the seminorm | · |H2(Ω)

defined as

|w|H2(Ω) :=

(∫

Ω

[(
∂2w

∂x2

)2

+
(

∂2w

∂x∂y

)2

+
(

∂2w

∂y2

)2
]

dΩ

)1/2

for some w ∈ H2(Ω).

We notice that the estimate (3.15) shows the convergence rate 3/2 in h. If in particular
we consider the Problem 1 endowed with the properties of Problem 3, then the estimate (3.15)
reads ([4]):

|||epr
h (µp)||| ≤ cpr µ1/2

p h3/2|φ(µp)|H2(Ω) ∀µp ∈ D, (3.16)

for some cpr ∈ R+ which does not depend on µp.

Proposition 3.2. For Problem 3, if the dual solution of problem (3.8) ψ(µ) ∈ H2(Ω) ∩ V
∀µ ∈ D and by introducing the FE dual error edu

h (µ) := ψ(µ)−ψh(µ) ∈ Vh, where ψh(µ) ∈ Vh

is the FE dual solution of problem (3.9), the following a priori FE dual error estimate holds:

|||edu
h (µ)||| ≤ Cdu(µ)h3/2|ψ(µ)|H2(Ω) ∀µ ∈ D, (3.17)

with Cdu(µ) ∈ R+ (see [4]) depending on µ and the data of the problem.
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In view of the a priori FE error estimate for the output s(µ), we introduce the corrected
(deflated) output:

s̃h(µ) := sh(µ)− δsh(µ) with δsh(µ) := −εh(h, µ)
∫

Ω

∇φh(µ) · ∇ψh dΩ. (3.18)

Proposition 3.3. For the corrected output (3.18) associated with Problem 3, if φ(µ), ψ(µ) ∈
H2(Ω) ∩ V ∀µ ∈ D, the following a priori FE error estimate holds:

|s(µ)− s̃h(µ)| ≤ Cs(h,µ)h5/2|φ(µ)|H2(Ω)|ψ(µ)|H2(Ω) ∀µ ∈ D, (3.19)

where the constant Cs(h,µ) ∈ R+ does not affect the convergence order in h, being

Cs(h, µ) := Cs
1(µ)

{
1 + Cs

2(µ)h1/2
}

,

with the constants Cs
1(µ) and Cs

1(µ) not dependent on h (see [4]).

In particular, for Problem 1 endowed with the properties of Problem 3 and for h → 0, the
estimate (3.19) reads ( [4]):

|s(µp)− s̃h(µp)| ≤ csµ
3/2
p h5/2|φ(µp)|H2(Ω)|ψ(µp)|H2(Ω) ∀µp ∈ D, (3.20)

for some cs ∈ R+ which does not depend neither on h nor on µp.

3.2.2. The general case

We return now to the general stabilized problem of Sec. 3.1; we observe that in this case it is
not straightforward to provide a priori FE error estimates as for Problem 3, being ΓD 6= ∂Ω.

However, we highlight some estimates in view of the analysis of the RB problem. We
introduce the following norm:

|||v|||2 :=εh(h, µ)||∇v||2 + δh(h, µ)||b(µ) · ∇v||2 + ||v||2

+
1 + δh(h,µ)

2
||(b(µ) · n̂)1/2v||2ΓN

, (3.21)

where || · ||ΓN
:= || · ||L2(ΓN ); the norm (3.11) is a particular case of the norm (3.21) for ΓN ≡ ∅.

In analogy with Problem 3, it is simple to prove the existence and uniqueness of the solution
of the problem (3.1); in fact, the form (3.2) is coercive and continuous also with the new norm
(see [4]), being:

|Ah(wh, vh; µ)| ≤
[
2max{1, ||σ(µ)||∞}+ (δh(h, µ))−1/2

]
|||wh||| |||vh||| ∀µ ∈ D. (3.22)

Similarly, existence and uniqueness of the FE dual solution are ensured.

4. Reduced Basis Method

In this Section we consider the RB method for the solution of the stabilized parametrized
advection–reaction problem of Sec. 3 according to the “primal–dual” RB approach. We provide
both the a priori and a posteriori RB error estimates and an adaptive algorithm for the choice
of the sample sets.
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4.1. The RB method for the stabilized problem

We recall the RB method based on the “truth” stabilized problem of Sec. 3.1; in particular,
we consider the “primal–dual” RB approach. For more details about the RB method and its
applications, see, e.g., [6, 13,16,18,20,27,30].

Let us introduce the following set of parameters Spr
N := {µpr

1 , . . . , µpr
Npr}, with µpr

i ∈ D,
i = 1, . . . , Npr, Npr ∈ N; the superscript “pr” is used to refer to the primal problem. The set of
parameters µpr

i and their number Npr will be chosen in D according to the adaptive algorithm
(see, Sec. 4.4). For each µpr

i ∈ Spr
N , we solve, by means of the FE element method, the

stabilized primal problem (3.1), thus obtaining the corresponding discretized primal solutions
φh(µpr

i ) ∈ Vh. Then, we define the RB primal space:

Vpr
N := span {ξi := φh(µpr

i ) i = 1, . . . , Npr} (4.1)

and the RB primal problem:

given µ ∈ D, find φN (µ) ∈ Vpr
N : Ah(φN (µ), vN ;µ) = Fh(vN ;µ) ∀vN ∈ Vpr

N , (4.2)

where Ah(·, ·;µ) and Fh(·; µ) are defined in Eq.(3.2) and φN (µ) =
∑Npr

j=1 φNj(µ)ξj . For the
sake of simplicity, we have used the notation φN (µ) to indicate the RB solution φhN (µ) of the
RB primal problem (4.2).

Remark 4.1. In order to avoid ill–conditioning troubles with the solution of problem (4.2), we
adopt an orthonormal basis for the generation of the RB space Vpr

N ; in particular we consider
the Gram–Schmidt orthonormalization w.r.t. the inner product (·, ·) induced by the norm || · ||
(see, e.g., [16]). Let us indicate the new orthonormal basis for the RB space Vpr

N as {%i}Npr

i=1 ,
which we compute according to the following procedure:

%1 = ξ1/||ξ1||; zi = ξi −
i−1∑

j=1

(%j , ξi)%j , %i = zi/||zi||, i = 2, . . . , Npr. (4.3)

We obtain that Vpr
N = span{ξi, i = 1, . . . , Npr} = span{%i, i = 1, . . . , Npr}. Let us notice that,

for the sake of simplicity, we will identify the basis {ξi}Npr

i=1 used in Eq.s (4.1) and (4.2) as the
orthonormal basis {%i}Npr

i=1 .

Owing to the affine decomposition hypothesis for Ah(·, ·; µ) and Fh(·; µ) (see Eq.(3.6)), Eq.(4.2)
reads: 




Given µ ∈ D, find φNj(µ) j = 1, . . . , Npr :
Qh∑
q=1

ϑhq(µ)Ahq(ξj , ξi)φNj(µ) =
QF

h∑
q=1

ϑF
hq(µ)Fhq(ξi), i = 1, . . . , Npr.

(4.4)

which can be finally re–written in matricial notation as:

given µ ∈ D, find φN (µ) ∈ RNpr

: Apr
N (µ)φN (µ) = Fpr

N (µ), (4.5)

where the matrix Apr
N (µ) ∈ RNpr×Npr

and the vector Fpr
N (µ) ∈ RNpr

are defined respectively
as

Apr
N (µ) :=

Qh∑
q=1

ϑhq(µ)Apr
Nq with

(
Apr

Nq

)
i,j

:= Ahq(ξj , ξi)
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and

Fpr
N (µ) :=

QF
h∑

q=1

ϑF
hq(µ)FNq with

(
Fpr

Nq

)
i
:= Fhq(ξi).

By recalling Eqs. (2.5) and (2.8), it follows that for some µ ∈ D:

sN (µ) := L(φN (µ); µ) = φN (µ) · Lpr
N (µ), (4.6)

where Lpr
N (µ) ∈ RNpr

is defined as

Lpr
N (µ) :=

QL∑
q=1

ϑL
q (µ)Lpr

Nq with
(
Lpr

Nq

)
i
:= Lq(ξi).

By considering the RB dual problem, we select a set of parameters Sdu
N := {µdu

1 , . . . , µdu
Ndu},

with µdu
i ∈ D, i = 1, . . . , Ndu, Ndu ∈ N; the superscript ’du’ refers to the dual problem.

Remark 4.2. Let us observe that we consider the non–integrated primal and dual RB approach
[16], for which, not only Npr 6= Ndu, but also the sets Spr

N and Sdu
N are composed by different

parameters; this issue will be re–called and discussed in Sec.4.4.3.

By defining the RB dual space as:

Vdu
N := span

{
ζi := ψh(µdu

i ) i = 1, . . . , Ndu
}

, (4.7)

where ψh(µdu
i ) is the solution of the FE dual problem (3.9) for µ = µdu

i and {ζi}Ndu

i=1 is an
orthonormal basis (see Remark 4.1), then the RB dual problem reads:

given µ ∈ D, find ψN (µ) ∈ Vdu
N : Ah(vN , ψN (µ); µ) = −L(vN ; µ) ∀vN ∈ Vdu

N , (4.8)

being RB dual solution

ψN (µ) =
Ndu∑

j=1

ψNj(µ)ζj .

According to Eqs. (2.7), (3.6) and (3.9), Eq. (4.8) can be expressed in matricial notation as:

given µ ∈ D, find ψN (µ) ∈ RNdu

: Adu
N (µ)ψN (µ) = −Ldu

N (µ), (4.9)

where the matrix Adu
N (µ) ∈ RNdu×Ndu

and the vector Ldu
N (µ) ∈ RNdu

are defined as

Adu
N (µ) :=

Qh∑
q=1

ϑhq(µ)Adu
Nq with

(
Adu

Nq

)
i,j

:= Ahq(ζi, ζj)

and

Ldu
N (µ) :=

QL∑
q=1

ϑL
q (µ)LNq with

(
Ldu

Nq

)
i
:= Lq(ζi).
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4.2. A priori RB error estimate

We provide in the following Propositions the a priori RB error estimates both for the RB
primal and dual solutions and the output.

Proposition 4.1. By introducing the RB primal error epr
N (µ) := φh(µ) − φN (µ) ∈ Vh, being

φh(µ) ∈ Vh and φN (µ) ∈ Vpr
N ⊂ Vh the FE and RB primal solutions of problems (3.1) and

(4.2), respectively, the following a priori RB primal error estimate holds:

|||epr
N (µ)||| ≤ Ξ(µ) inf

vN∈Vpr
N

|||φh(µ)− vN ||| ∀µ ∈ D, (4.10)

where

Ξ(µ) :=
2max{1, ||σ(µ)||∞}+ (Cδ(µ)h)−1/2

min{1, ||σ(µ)||∞} , (4.11)

Cδ(µ) is defined in Eq. (3.3) and the same notation of Sec. 3.2 is used.

Proof. From the coercivity property (3.13) of Ah(·, ·;µ) w.r.t. the norm ||| · ||| of Eq. (3.21)
(or Eq. (3.11) for Problem 3), it follows:

|||epr
N (µ)|||2 ≤ 1

min{1, ||σ(µ)||∞}Ah(epr
N (µ), epr

N (µ); µ) ∀µ ∈ D. (4.12)

By observing from Eqs. (3.1) and (4.2) that, for the RB primal problem, the Galerkin orthogo-
nality property holds Ah(epr

N (µ), vN ; µ) = 0 ∀vN ∈ Vpr
N , the bilinear form Ah(epr

N (µ), epr
N (µ); µ)

can be written as:

Ah(epr
N (µ), epr

N (µ); µ) = Ah(epr
N (µ), φh(µ)− vN ; µ) ∀vN ∈ Vpr

N , (4.13)

being φh(µ)− vN ∈ Vpr
N . By applying the inequality (3.22) to Eq. (4.13), recalling Eq. (4.12)

and simplifying the term |||epr
N (µ)||| both on the l.h.s and r.h.s of the inequality, we have:

|||epr
N (µ)||| ≤2max{1, ||σ(µ)||∞}+ (δh(h,µ))−1/2

min{1, ||σ(µ)||∞} |||φh(µ)− vN |||,

∀vN ∈ Vpr
N , ∀µ ∈ D. (4.14)

Then, from Eqs. (4.14) and (3.3) the result (4.10) follows. ¤

Let us observe that for Problem 1, the estimate (4.10) holds with the constant (4.11):

Ξ(µp) = 2 +
(

µp

cδh

)1/2

. (4.15)

Proposition 4.2. By defining the RB dual error edu
N (µ) := ψh(µ)−ψN (µ) ∈ Vh, with ψh(µ) ∈

Vh and ψN (µ) ∈ Vdu
N ⊂ Vh the FE and RB dual solutions of problems (3.9) and (4.8), respec-

tively, the following a priori RB dual error estimate holds:

|||edu
N (µ)||| ≤ Ξ(µ) inf

vN∈Vdu
N

|||ψh(µ)− vN ||| ∀µ ∈ D, (4.16)

where Ξ(µ) is defined in Eq. (4.11).

Proof. The desired result (4.16) is obtained mimicking the proof of Proposition 4.1 for the
dual problem. ¤
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Proposition 4.3. For the RB output sN (µ) (4.6), the following a priori RB output error
estimate holds w.r.t. the FE output sh(µ) (3.5):

|sh(µ)− sN (µ)|

≤Ξ(µ)3
(

inf
vN∈Vpr

N

|||φh(µ)− vN |||
) (

inf
wN∈Vdu

N

|||ψh(µ)− wN |||
)

, ∀µ ∈ D, (4.17)

where Ξ(µ) is defined in Eq. (4.11).

Proof. From Eq.s (2.5), (3.5), (3.9) and (4.6) and the Galerkin orthogonality property, we
have:

sh(µ)− sN (µ) = L(epr
N (µ); µ) = −Ah(epr

N (µ), edu
N (µ); µ), (4.18)

which, according to the inequality (3.22), leads to the desired result (4.17). ¤

4.3. A posteriori RB error estimate

In this section we discuss the a posteriori RB error estimate for the output; for further
details and the proof of Proposition 4.4 we refer the reader to [28] and also to [13,16].

Let us define the RB residuals associated with the RB primal and dual problems by recalling
respectively Eqs. (3.1) and (3.9):

Rpr
N (vh; µ) := Fh(vh; µ)−Ah(φN (µ), vh; µ) = Ah(epr

N (µ), vh; µ), (4.19)

Rdu
N (vh; µ) := −L(vh;µ)−Ah(vh, ψN (µ); µ) = Ah(vh, edu

N (µ); µ), (4.20)

with vh ∈ Vh. Moreover, we define the corrected RB output (deflated) [28]:

s̃N (µ) := sN (µ)−Rpr
N (ψN (µ); µ) (4.21)

and we express the error w.r.t. the corrected RB output as:

sh(µ)− s̃N (µ) = −Rpr
N (edu

N (µ); µ). (4.22)

Then, we introduce the dual norm of ||| · ||| (see, e.g., [10]), indicated as ||| · |||∗, from which we
have:

|||Rpr
N (·;µ)|||∗ := sup

vh∈Vh\{0}

Rpr
N (vh;µ)
|||vh||| ∀µ ∈ D (4.23)

and similarly for the dual residual Rdu
N (·; µ). Finally, we introduce the parametrized Babŭska

inf–sup stability constant (see [2]) β(µ):

β(µ) := inf
wh∈Vh\{0}

sup
vh∈Vh\{0}

Ah(wh, vh;µ)
|||wh||| |||vh||| ∀µ ∈ D. (4.24)

We notice that, being the bilinear form Ah(·, ·;µ) (3.2) coercive (Eq. (3.13)), the parametrized
inf–sup constant (4.24) is positive β(µ) > 0 ∀µ ∈ D.

Proposition 4.4. For the RB corrected output s̃N (µ) (4.21) the following a posteriori RB
output error estimate holds:

|sh(µ)− s̃N (µ)| ≤ ∆s
N (µ) ∀µ ∈ D, (4.25)
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where ∆s
N (µ) := ∆pr

N (µ) ∆du
N (µ), with:

∆pr
N (µ) :=

1√
β(µ)

|||Rpr
N (·; µ)|||∗, ∆du

N (µ) :=
1√
β(µ)

|||Rdu
N (·;µ)|||∗, (4.26)

being the RB primal and dual residuals defined in Eqs. (4.19) and (4.20) and β(µ) in Eq.
(4.24).

4.4. Offline–online computational procedure and adaptive algorithm

In this Section we discuss the details of the RB numerical solution. We highlight the
importance of the offline–online decomposition of the computational procedure for the RB
problem and we provide the adaptive algorithm for the choice of the primal and dual sample
sets. See also [13,16,26].

4.4.1. Numerical issues

The norm ||| · ||| of Eqs. (3.11) or (3.21) depends on the parameter µ ∈ D; however, for
computational reasons, it is convenient to fix a sample µ ∈ D for which the norm is evaluated,
s.t. the norms (3.11) and (3.21) become respectively:

|||v|||2µ :=εh(h,µ)||∇v||2 + δh(h,µ)||b(µ) · ∇v||2 + ||v||2, (4.27a)

|||v|||2µ :=εh(h,µ)||∇v||2 + δh(h,µ)||b(µ) · ∇v||2 + ||v||2

+
1 + δh(h,µ)

2
||(b(µ) · n̂)1/2v||2ΓN

. (4.27b)

This does not affect the a priori FE and RB error estimates (see, sections 3.2.1, 3.2.2 and 4.2) and
the a posteriori RB estimate (see Sec. 4.3): simply, the quantities related to the parametrical
“fixed” norm should be recomputed according to ||| · |||µ. For example, the inf–sup constant
β(µ) (4.24), defined w.r.t the “fixed” norm reads:

β(µ) := inf
wh∈Vh\{0}

sup
vh∈Vh\{0}

Ah(wh, vh;µ)
|||wh|||µ |||vh|||µ ∀µ ∈ D. (4.28)

For the evaluation of the a posteriori RB error estimate (4.25), we need the expression of β(µ)
or its lower bound. With this aim, we use a composite linear polynomial interpolator ([22])
defined on the parameter space D:

β̃(µ) :=
K∑

m=1

β(µm)Πm(µ), (4.29)

where {Πm(µ)}K
m=1 is the basis functions associated with the linear interpolant and {µm}K

m=1

the samples, chosen in D, with K the number of samples. The choice of the samples {µm}K
m=1

and K is made by means of inspection of the function β(µ) for µ ∈ D. We refer the reader
to [28] for other possibilities.

From this it follows that the a posteriori RB estimate (4.25) reads now:

|sh(µ)− s̃N (µ)| ≤ ∆
s

N (µ) ∀µ ∈ D. (4.30)
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where ∆
s

N (µ) := ∆
pr

N (µ) ∆
du

N (µ), with:

∆
pr

N (µ) :=
1√
β̃(µ)

|||Rpr
N (·; µ)|||µ∗, ∆

du

N (µ) :=
1√
β̃(µ)

|||Rdu
N (·;µ)|||µ∗, (4.31)

being ||| · |||µ∗ the dual norm associated with ||| · |||µ.
The RB problems make use of the parameter µ chosen in the space D. However, for

computational reasons, the research of the RB sample sets Spr
N , Sdu

N must be restricted to a
discrete subset D ⊂ D with a number of samples N “sufficiently large”. In order to evaluate
the RB error, it is convenient to define the following indicators for the maximum and mean
output errors for any given Npr and Ndu:

Emax
N := max

µ∈D
|sh(µ)− s̃N (µ)|, Emean

N :=
1
N


∑

µ∈D
|sh(µ)− s̃N (µ)|


 . (4.32)

Similarly, in order to evaluate the sharpness of the estimator ∆
s

N (µ), we introduce (see [16])
the effectivity index :

ηs
N :=

max
µ∈D

∆s
N (µ)

max
µ∈D

|sh(µ)− s̃N (µ)| , (4.33)

which should be greater than (or equal to) one (ηs
N ≥ 1).

4.4.2. Offline–online computational procedure

The rapid answer of the RB method in a many query input–output context is highlighted if an
appropriate offline–online decomposition procedure, led by the affine decomposition hypothesis,
is used.

At the offline step we define the RB spaces given the sets Spr
N , Sdu

N ; this choice is performed
according to the adaptive algorithm (see Sec. 4.4.3). Then we build the RB orthonormal basis
{ξi}Npr

i=1 , {ζi}Ndu

i=1 by solving the FE primal and dual problems and we assemble the parameter
independent RB matrices Apr

Nq, Adu
Nq and vectors Fpr

Nq, Lpr
Nq, Ldu

Nq. Finally, we assemble the
matrices and vectors for the evaluation of the a posteriori RB error estimate. These operations
highlight, in general, relevant computational costs being dependent on the dimension of the FE
problems Nh, which is typically “high”.

At the online step, for any given µ ∈ D, we assemble the parameter dependent RB matrices
Apr

N (µ), Adu
N (µ) and vectors Fpr

N (µ), Lpr
N (µ), Ldu

N (µ), we solve the primal and dual RB prob-
lems (4.5) and (4.9), we compute the corrected output s̃N (µ) and, if requested, its error bound
by means of the a posteriori RB error estimate (4.25). The online RB computational costs can
be accounted by taking into account for the number of operations in the following manner (for
more details, see, e.g., [13, 16,18]):

• assembling of the RB matrices and vectors: O (
Qh

(
Npr 2 + Ndu 2

))
;

• solving the primal and dual RB linear systems: O (
Npr 3 + Ndu 3

)
;

• computing the corrected output: O (
QhNprNdu

)
;

• evaluating the a posteriori RB estimate (if requested): O (
Q2

h

(
Npr 2 + Ndu 2

))
.
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In the second step above, the RB matrices are in general full [16, 18]; for this reason, the
linear RB systems (4.5) and (4.9) can be conveniently solved by means of direct methods (see,
e.g., [22]) which highlight a computational cost of order O(N 3), being N the dimension of the
system.

Let us observe that we have indicated only the orders of the dominating costs for each online
step. We refer to the total online computational costs by means of the following indicator (which
takes into account for the estimated number of operations):

ΛN = ΛN (Npr, Ndu; Qh) := Npr 3 + Ndu 3 + Qh

(
Npr 2 + Ndu 2

)
+ QhNprNdu, (4.34)

which depends on Npr, Ndu and Qh; let us observe that Qh depends only on the problem under
consideration; this implies that, for any given parametrized problem, the online computational
cost depends only on the dimension of the RB problem. We choose to not take into account
in the indicator ΛN for the costs associated with the evaluation of the a posteriori RB error
estimate; this in view of the adaptive algorithm proposed in the following section.

4.4.3. Adaptive algorithm

We propose an adaptive algorithm for the choice of the primal and dual sample sets Spr
N , Sdu

N (see
also [13, 16, 26]). This strategy is based on the minimization of the computational costs (4.34)
associated with the online step and on the a posteriori RB error estimate (4.30).

The proposed adaptive algorithm reads:

1. choose a tolerance tol for the absolute error on the RB deflated output s̃N (µ) (4.21);

2. choose randomly in D a sample, µpr
1 , for the FE primal problem and another one, µdu

1 ,
for the FE dual one; set Npr = 1, Ndu = 1, initialize the sets Spr

N , Sdu
N and build the

RB spaces Vpr
N , Vdu

N ;

3. evaluate the RB primal and dual error bounds ∆
pr

N (µ) and ∆
du

N (µ) (see Eq. (4.31)),
∀µ ∈ D, which requires the solution of the RB primal and dual problems;

4. if maxµ∈D ∆
pr

N (µ) <
√

tol or maxµ∈D ∆
du

N (µ) <
√

tol, jump to step 6, otherwise go to
step 5 (in general Npr 6= Ndu and the ”stopping” criterium can be fulfilled separately
for the primal and dual problems);

5. set Npr = Npr + 1 and Ndu = Ndu + 1, choose the primal and dual samples as:

µpr
Npr = argmax

µ∈D
∆

pr

Npr−1(µ), µdu
Ndu = argmax

µ∈D
∆

du

Ndu−1(µ), (4.35)

update the sets Spr
N , Sdu

N and the RB spaces Vpr
N , Vdu

N and return to step 3;

6. set Npr
max = Npr and Ndu

max = Ndu and build a matrix (table), let say DN ∈
RNpr

max×Ndu
max , whose entries are:

(DN )i,j := max
µ∈D

(
∆

pr

i (µ) ∆
du

j (µ)
)

i = 1, . . . , Npr
max, j = 1, . . . , Ndu

max; (4.36)
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7. set a vector of prescribed “error levels”, let say Elev ∈ RZ , s.t. Elev = {tol1, . . . , tolZ},
for some Z ∈ N and tol1 > . . . > tolZ , with tolZ ≤ tol;

8. for each error level {tolm}Z
m=1 identify the entries im, jm of the matrix DN s.t.

(DN )im,jm
< Elev; among these, select the coordinates Npr

m and Ndu
m s.t.:

(
Npr

m , Ndu
m

)
= argmin

im,jm

ΛN (im, jm;Qh) m = 1, . . . , Z, (4.37)

where ΛN is the indicator of the online computational cost (4.34);

9. build a matrix (table), say EN , with Z rows and 4 columns in order to summarize the
results of the whole procedure; in the first column we report the vector of the error
levels Elev, while in the following ones the corresponding number of primal and dual
RB basis Npr

m , Ndu
m and the online computational costs indicator ΛN (Npr

m , Ndu
m ; Qh),

respectively.

Remark 4.3. The proposed adaptive algorithm allows to avoid the computation of the a pos-
teriori RB error estimate (4.30) at the online step: in fact, once we have decided an error level,
it is immediate to provide the corresponding maximum error bound and the number of basis
for primal and dual RB, simply by accessing the matrix (table) EN . Moreover, at the offline
step, we assemble the RB matrices and vectors Apr

Nq, Adu
Nq, Fpr

N , Lpr
N and Ldu

N for Npr
max and

Ndu
max, which, at the online step for given Npr < Npr

max and Ndu < Ndu
max, are obtained simply

by eliminating the exceeding rows and columns from the “complete” RB matrices and vectors
(the associated online computational costs are negligible w.r.t. other dominating costs).

Remark 4.4. As anticipated in Remark 4.2, we have used the non integrated approach for
the choice of the sets Spr

N and Sdu
N . This is the consequence of the adaptive algorithm used:

the crucial point is at step 5, where the samples are chosen according to the RB primal and
dual error indicators ∆

pr

N (µ) and ∆
du

N (µ). In fact, even if the primal and dual problems assume
the same behavior, they can show very different solutions depending also on the functionals
Fh(·;µ) and L(·; µ). Hence, the proposed adaptive algorithm allows to fit the samples as best
as possible, both for the primal and dual problems, in view of the computation of the output
functional.

5. Combining the Finite Element and Reduced Basis Approximations

In Sections 3 and 4 we have discussed the FE and RB methods for the numerical solution
of the parametrized problem of Sec. 2.1. These approaches should not be seen as separate for
the solution of our problem, but rather as complementary.

Let us recall that our continuous problem is hyperbolic as shown in Sec. 2.1. For the
numerical approximation of this problem we have considered the FE method with stabilization;
with this aim, we have provided the stabilized problem in Sec. 3.1 by introducing the stabilized
bilinear form Ah(·, ·; µ) and functional Fh(·; µ). Let us observe that at this step, we have the
following error on the output:

|s(µ)− sh(µ)| ∀µ ∈ D, (5.1)
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where s(µ) and sh(µ) are defined in Eqs. (2.5) and (3.5) (i.e., ∀µ ∈ D we solve a computa-
tionally expensive FE problem). As shown by the a priori error estimate (3.20), the error

|s(µ)− sh(µ)| → 0 as h → 0, ∀µ ∈ D.

The RB method is based on the FE approximation (the “truth” one); with this aim, the
stabilized Galerkin problem is used in order to define the RB method in Sec. 4. For this reason
the RB error on the output is evaluated w.r.t. the FE output for a given parameter µ ∈ D, i.e.:

|sh(µ)− sN (µ)| ∀µ ∈ D, (5.2)

where sN (µ) is defined in Eq. (4.6). The a priori RB error estimate (4.17) shows that the error
|sh(µ) − sN (µ)| → 0, as N increases (N → ∞), where N indicates generically the size of the
primal and dual RB problems.

Fig. 5.1. Scheme for numerical solution of the parameterized problem: total, FE and RB errors.

The total error on the output is composed by two terms, given from Eq.s (5.1) and (5.2):

|s(µ)− sN (µ)| ≤ |s(µ)− sh(µ)|+ |sh(µ)− sN (µ)| ∀µ ∈ D. (5.3)

In Fig. 5.1 the previous issues are outlined by means of a block diagram. However, even if
N → ∞ the total error reduces, due to the reduction of the RB part of the error, this is not
the case for h → 0. In fact, by referring e.g. to Problem 1 endowed with the properties of
Problem 3, if h → 0 the FE error reduces according to the a priori FE error estimate (3.20),
but the RB error increases for any given N ; this is due to the term Ξ(µ) (4.11) of the a priori
RB estimate (4.17), which is of order h−1/2. This shows that, for a given µ ∈ D and a fixed
N , the RB error could increase as h → 0; in other words, if the stabilized problem tends to
assume an hyperbolic nature (for h → 0), the “complexity” of the RB problem enhances, i.e.
the number of RB basis N should be increased in order to fulfil a prescribed accuracy on the
RB error.

For further examples about the RB method for hyperbolic problems, see [15,29].

6. Numerical Tests

We discuss two numerical tests, referring to the problems outlined in Sections 2.2 and 2.3.
Both the tests are inspired by environmental applications concerning with air pollution, for
which the goal consists in evaluating the mean concentration of a pollutant in an area of
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interest (e.g. a city) emitted by a source (e.g., an industrial chimney) (see, [5, 19, 21]). Such a
pollutant is transported by a wind field and can react in air; diffusion processes are considered
negligible. Adimensional values are considered for the data and results of the numerical tests.

6.1. Problem 1 (PB1): physical parametrization

Let us consider the Problem 1 of Sec. 2.2. By referring to Eq. (2.8), we consider the domain
Ω reported in Fig. 6.1, where we have defined two internal subdomains Ωemis and Ωmeas. We
assume µp ∈ D = [1, 103], V = x̂, g = χemis(x) and δ = 1/|Ωmeas| χmeas(x), being the unit
vector x̂ := (1, 0) ∈ R2 and x = (x, y) ∈ R2; χemis(x) and χmeas(x) are the characteristic
functions of the subdomains Ωemis and Ωmeas, respectively, with |Ωmeas| the area of Ωmeas.
Then,

ΓD = {x = (x, y) ∈ ∂Ω : x = 0}
as reported in Fig. 6.1. This problem admits an affine decomposition on the bilinear form and
functionals: by referring to Sec. 3.1, we have Qh = 2, QF

h = 1 and QL = 1 (see Eqs. (3.6)
and (2.7)). In order to evaluate the norm ||| · |||, which depends on µp as described in Sec. 4.4.1,
we choose µp = 1; for the sake of simplicity, we indicate ||| · |||µp

simply by ||| · |||.
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Fig. 6.1. PB1. Domain, subdomains and Dirichlet boundary.

A quasi–uniform mesh with 7, 556 triangles (h = 0.0265) is used to solve the FE problem.
Moreover, we choose (see Eq. (3.3)) εh = cεµph

3/2 and δh = cδh/µp, where, in order to limit the
under and over–shooting of the FE solution ∀µp ∈ D, we assume cε = 5 ·10−2 and cδ = 5 ·10−2.
In Fig. 6.2 we report the solutions of the FE primal problem (concentrations of the pollutant)
for the choices µp = 1 (left) and µp = 103 (right); the corresponding FE dual solutions show
similar behaviors even if the solutions arise from Ωmeas and the flow direction is opposite to
that of the primal one. The computed output sh(µp) corresponds to the FE approximation of
the mean concentration in the area Ωmeas for some intensity µp ∈ D of the wind field.

We solve now the parametrized problem by means of the RB method outlined in Sec.4 and
we provide some results concerning with the a priori and a posteriori RB error estimates.

In Fig. 6.3 (left) we compare the a priori RB primal error estimate (4.10) with the true RB
error on the primal solution |||epr

N (µp)||| for different values of µp ∈ D, being Npr = 4 and Spr
N =

{1.00, 1.52, 3.06, 93.29}. In similar way, in Fig. 6.3 (right) the a priori RB error estimate for
the output (4.17) is compared with the RB output error |sh(µp)−sN (µp)| for µp ∈ D; in this case
Npr = Ndu = 4, with Spr

N chosen as previously mentioned and Sdu
N = {1.00, 1.42, 2.48, 9.33}.

In order to highlight the effect of the FE mesh on Ξ(µp) (4.15), we compare three quasi–
uniform meshes with 2, 680, 7, 556 and 17, 016 triangles, thus observing that e.g. for µp = 102,
we obtain Ξ(µp) ' 205, 280 and 325 respectively. In general, as h decreases (i.e., the FE solution
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Fig. 6.2. PB1. FE primal solutions (concentration of the pollutant, adimensional values) for µp =

1 (left) and µp = 103 (right).
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Fig. 6.3. PB1. A priori RB error estimates (continuous) and true RB errors (dashed) vs µp ∈ D: RB

primal error for Npr = 4 (left) and RB output error for Npr = Ndu = 4 (right); logarithmic scales on

both axis.

“improves”), then the parametrized constant Ξ(µp) increases for any fixed values of µp ∈ D,
thus affecting the sharpness property of the a priori RB estimates (4.10), (4.18) and (4.17).

We deal now with the a posteriori RB error estimate (4.25) (and (4.30)) used in the adap-
tive algorithm of Sec.4.4.3 for the choice of the RB samples and basis. Firstly, we need to
evaluate the parametrized inf–sup stability constant β(µp) (4.24); with this aim, we use the
numerical procedure outlined in Sec. 4.4.1 (Eqs. (4.28) and (4.29)). Being D ⊂ R, we choose
for {Πm(µp)}K

m=1 a polynomial approximation in the least–squares sense of degree 3 obtained
by means of the logarithmic–equally spaced pairs (µp,m, β̄(µp,m)), m = 1, . . . , K with K = 9.
In Fig. 6.4 we compare the a posteriori RB error estimator for the output (4.30) and the RB
error for Npr = Ndu = 4; the sample sets Spr

N and Sdu
N are the same chosen for the results of

Fig. 6.3 (left) and (right).
The a posteriori RB error estimator (4.30) is used in the adaptive algorithm proposed in

Sec. 4.4.3 for the choice of Spr
N and Sdu

N . The results of the adaptive algorithm are summarized
in Table 6.1 by means of the matrix (table) EN defined at point 9 of Sec. 4.4.3; in order
to show the effectivity of the “primal–dual” RB approach we compare the results with those
of an “only primal” RB approach, highlighting the savings of computational costs allowed by
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and RB error (dashed) vs µp ∈ D; logarithmic scales on both axis.

0 200 400 600 800 1000 1200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Comput. Cost.

E
rr

or
 [l

og
 s

ca
le

]

Error vs Online Computational Cost (norm with µ=1)

 

 

Max
Mean
Max Ndu=0

Mean Ndu=0

Fig. 6.5. PB1. Emax
N (empty circle) and Emean

N (empty square) for the “primal–dual” RB approach vs

online computational costs Λpr,du
N , Λpr

N (estimated number of operations); full circles and squares refer

to the indicators Emax
N , Emean

N for the “only primal” RB approach. Error axis in logarithmic scale.

the former one. In Table 6.1 we report, for some error levels Elev on the output, the selected
number of basis Npr, Ndu and the online computational costs (estimated number of operations)
associated with the “primal–dual” (Λpr,du

N = ΛN , see Eq. (4.34)) and the “only primal” (Λpr
N )

RB approaches respectively; moreover, we report the ratio Λpr
N /Λpr,du

N for each error level. Let
us notice that in the case for which Npr > 0 and Ndu = 0, the “primal–dual” RB approach is
equivalent to the “only primal” one. As we can also observe from Table 6.1, we always have
Λpr

N ≥ Λpr,du
N ∀Elev; this shows the effectiveness of the “primal–dual” RB approach w.r.t. the

“only primal” one, which is more expensive already for this simple test problem with a single
parameter µp. For example, if we require an error level Elev = 10−8 (which for this problem
yields a relative error on s(µp) inferior than 0.1% ∀µp ∈ D) the “primal–dual” RB approach
selects Npr = Ndu = 5 w.r.t. Npr = 8 requested by the “only primal” RB approach and
it allows a saving of the online computational costs of 1.6 times. We notice that even larger
computational costs savings can be obtained; e.g. for Elev = 1.778 ·10−10, the saving is about of
2.3 times. Let us observe that the adaptive algorithm does not tend to select the case Ndu = 0
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Table 6.1: PB1. Adaptive algorithm: results and comparison between the ‘primal–dual” and the “only

primal” RB approach for some error levels Elev.

“primal–dual” RB “only primal” RB

Elev Npr Ndu Λpr,du
N Npr Λpr

N Λpr
N /Λpr,du

N

1.000e− 01 1 0 3.000e + 00 1 3.000e + 00 1.000

5.623e− 02 1 1 8.000e + 00 2 1.600e + 01 2.000

3.162e− 02 2 0 1.600e + 01 2 1.600e + 01 1.000

1.778e− 02 1 2 2.300e + 01 3 4.500e + 01 1.957

1.000e− 02 2 2 4.000e + 01 3 4.500e + 01 1.125

3.162e− 03 3 0 4.500e + 01 3 4.500e + 01 1.000

1.778e− 03 1 3 5.400e + 01 4 9.600e + 01 1.778

5.623e− 04 2 3 7.300e + 01 4 9.600e + 01 1.315

3.162e− 04 4 0 9.600e + 01 4 9.600e + 01 1.000

1.000e− 04 4 1 1.070e + 02 5 1.750e + 02 1.636

5.623e− 05 4 2 1.280e + 02 5 1.750e + 02 1.367

3.162e− 05 4 3 1.650e + 02 5 1.750e + 02 1.061

5.623e− 06 4 3 1.650e + 02 6 2.880e + 02 1.745

3.162e− 06 5 2 2.110e + 02 6 2.880e + 02 1.365

1.000e− 06 4 4 2.240e + 02 6 2.880e + 02 1.286

5.623e− 07 3 5 2.500e + 02 7 4.410e + 02 1.764

5.623e− 08 5 4 3.110e + 02 7 4.410e + 02 1.418

1.778e− 08 5 4 3.110e + 02 8 6.400e + 02 2.058

1.000e− 08 5 5 4.000e + 02 8 6.400e + 02 1.600

5.623e− 09 5 5 4.000e + 02 9 8.910e + 02 2.228

3.162e− 09 6 4 4.320e + 02 9 8.910e + 02 2.062

5.623e− 10 6 5 5.230e + 02 9 8.910e + 02 1.704

1.778e− 10 6 5 5.230e + 02 10 1.200e + 03 2.294

1.000e− 10 6 6 6.480e + 02 10 1.200e + 03 1.852

as Elev decreases.
Finally, we compare the RB output errors obtained by means of the adaptive algorithm for

the “primal–dual” RB approach with those of the “only primal” one; with this aim, we use the
RB error indicators Emax

N and Emean
N (see Eq. (4.32)). In Fig. 6.5 we report Emax

N and Emean
N

vs the online computational cost Λpr,du
N and Λpr

N for both the “primal–dual” and “only primal”
RB approaches. The plot shows that the “primal–dual” RB approach allows to minimize the
online computational costs for any given error tolerance on the output; for example, if we fix the
tolerance error at 10−12 we see that Λpr,du

N is about the half of Λpr
N . This confirms, a posteriori,

the validity of the adaptive algorithm and the criterium of the “minimum online computational
costs”. Finally, we observe that the effectivity index indicators ηs

N ∈ [20, 700] (see Eq. (4.33))
for both the RB approaches, with no particular differences.

6.2. Problem 2 (PB2): physical and geometrical parametrization

By considering now the Problem 2 of Sec. 2.3, we introduce the geometrical parameter, µg

s.t. the real domain Ω0 could be affinely mapped into a reference one Ω. In Fig. 6.6 (left) we
report the real domain Ω0, which is partitioned into 5 subdomains Ω0i, s.t. ∪5

i=1Ω0i = Ω0. The
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geometrical parameter µg (with signum) measures the distance between the mid abscissa of
the subdomain Ω03 and the line x0 = 0; the subdomains Ω01 and Ω05 are fixed, while Ω02 and
Ω04 deform in affine manner according to the moving of Ω03. All the subdomains Ω0i can be
mapped in Ω by means of affine maps in the form (2.11); the reference domain Ω = ∪5

i=1Ωi is
reported in Fig. 6.6 (right). The subdomains Ωemis and Ωmeas are fixed w.r.t. the subdomains
Ω03 and Ω05, respectively; the Dirichlet boundary corresponds to the upper boundary of Ω.
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Fig. 6.6. PB2. Real Ω0 (left) and reference Ω (right) domains; geometrical parameter and Dirichlet

boundary.

The parameter vector is µ = (µg, µp) ∈ D = [µmin
g , µmax

g ]× [µmin
p , µmax

p ], where, in order to
avoid the degeneration of the subdomains Ω02 and Ω04, we choose µmin

g = −3/8, µmax
g = 3/8;

then, µmin
p = 1 and µmax

p = 103. Moreover, by recalling the notation of Sections 2.3 and 6.1,
we choose

V0 = x0x̂− y0ŷ, g0 = χmeas(x0) and δ0 = 1/|Ωmeas| χmeas(x0),

where x0 = (x0, y0) ∈ R2. By considering the data reported on the reference domain (see Eq.
(2.12)), we obtain the problem in the general weak form (2.2). It is simple to show that, for
the problem under consideration, the hypothesis on the data requested in Sec. 2.1 are satisfied;
in particular, the property ∇ · b(µ) = 0 ∀µ ∈ D holds. The weak problem admits an affine
decomposition for which we have Qh = 16, QF

h = 2 and QL = 1 (see Eqs. (3.3) and (2.7)). As
reported in Sec.4.4.1, for the evaluation of the norm ||| · ||| we choose µ = (µg, µp) = (0, 1).

For the FE solution of the problem we choose a quasi–uniform mesh for the reference domain
Ω with 7, 504 triangles and the constants (3.3) as εh(h, µp) = cεµph

3/2 and δh = cδh/µp with
cε = 2 · 10−1 and cδ = 2 · 10−1. In Fig. 6.7 we report the primal FE solutions (concentrations
of the pollutant), mapped from Ω into Ω0, for different choices of µ ∈ D. As shown, the primal
solution strongly depends on the values assumed by the geometrical parameter µg and not only
by the physical one µp. On the contrary, for this particular problem, the behavior of the dual
solution in the real domain Ω0 is not influenced by the geometrical parameter, being the “dual
source” subdomain Ωmeas fixed. However, this is not true in the reference domain Ω, being the
weak form of the stabilized dual problem (3.9) depending on µg.

We solve the parametrized problem by means of the RB method and we discuss the results
about the adaptive algorithm and the a posteriori RB estimate; we remark that the output
sN (µ) assumes its maximum values for about µ = (0.28, 3.0) as it can be seen e.g. by solving
the problem by means the “primal–dual” RB approach with Npr = 26 and Ndu = 45 and also
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with the “only primal” RB one with Npr = 120.
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Fig. 6.7. PB2. Primal FE solutions (concentration of the pollutant, adimensional values) in the real

domain Ω0 for µ = (−3/8, 1) (top–left), µ = (−3/8, 103) (top–right), µ = (3/8, 1) (bottom–left) and

µ = (3/8, 103) (bottom–right).

Numerical tests reveal the validity of the a priori RB error estimates (4.10) and (4.17) also
for the problem currently under consideration.

We deal now with the a posteriori RB error estimate for the output (4.25) (and (4.30))
and the adaptive algorithm for the samples selection (see Sec. 4.4.3). In order to use the
estimate (4.30), we need to evaluate the inf–sup constant; with this aim, we adopt the procedure
of Sec. 4.4.1 obtaining the parametrized constant β̃(µ) (4.29), with K = 195.

The a posteriori RB error estimate (4.30) is used in the adaptive algorithm in order to define
the sets Spr

N and Sdu
N . The results are reported in Table 6.2 for some error levels Elev by using

the matrix EN (see point 9 of Sec. 4.4.3); the same notation of Table 6.1 is used for Table 6.2.
Once again, we observe that Λpr

N ≥ Λpr,du
N ∀Elev. For example, if we fix Elev = 10−5, we see

from Table 6.2 that the “primal–dual” RB approach selects Npr = 27 and Ndu = 41 w.r.t.
Npr = 113 chosen by the “only primal” one; more over, the saving of online computational
cost is considerable, being of about 11 times inferior. Even larger savings are allowed for the
problem under consideration: for example, if Elev = 5.623 · 10−4 we have Λpr

N /Λpr,du
N = 15.687.

We compare the RB errors on the output obtained on the basis of the adaptive algorithm
for the “primal–dual” and the “only primal” RB approaches. In Fig. 6.8 we report the error
indicators Emax

N and Emean
N (see Eq. (4.32)) vs the online computational costs Λpr,du

N and Λpr
N

(estimated number of operations) for both the “primal–dual” and “only primal” RB approaches.
The plot clearly shows that the “primal–dual” RB approach allows great savings of online
computational costs for any given error tolerance on the output; for example, if we fix the
tolerance error at 10−8 we see that Λpr,du

N is about 8 times inferior than Λpr
N . This confirms the

validity of the adaptive algorithm and the indications given in Table 6.2. Finally, the effectivity
index indicator ηs

N ∈ [10, 100] (see Eq. (4.33)) for both the approaches.
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Table 6.2: PB2. Adaptive algorithm: results of samples selection procedure and comparison between

the ‘primal–dual” and the “only primal” RB approach for some error levels Elev.

“primal–dual” RB “only primal” RB

Elev Npr Ndu Λpr,du
N Npr Λpr

N Λpr
N /Λpr,du

N

5.623e− 01 1 0 1.700e + 01 1 1.700e + 01 1.000

3.162e− 01 2 2 2.080e + 02 4 3.200e + 02 1.538

1.778e− 01 4 0 3.200e + 02 4 3.200e + 02 1.000

1.000e− 01 1 5 6.220e + 02 11 3.267e + 03 5.252

5.623e− 02 1 6 9.050e + 02 15 6.975e + 03 7.707

3.162e− 02 7 5 2.212e + 03 22 1.839e + 04 8.315

1.778e− 02 7 7 3.038e + 03 25 2.562e + 04 8.435

1.000e− 02 5 11 4.672e + 03 33 5.336e + 04 11.421

5.623e− 03 7 12 6.503e + 03 39 8.366e + 04 12.864

3.162e− 03 5 17 1.142e + 04 46 1.312e + 05 11.486

1.778e− 03 10 17 1.486e + 04 52 1.839e + 05 12.376

1.000e− 03 14 17 1.922e + 04 55 2.148e + 05 11.172

5.623e− 04 14 20 2.476e + 04 68 3.884e + 05 15.687

3.162e− 04 20 21 3.744e + 04 72 4.562e + 05 12.186

1.778e− 04 14 29 5.022e + 04 79 5.929e + 05 11.806

1.000e− 04 21 28 6.022e + 04 86 7.544e + 05 12.527

5.623e− 05 20 33 7.832e + 04 92 9.141e + 05 11.671

3.162e− 05 26 33 9.548e + 04 94 9.720e + 05 10.180

1.778e− 05 29 34 1.114e + 05 107 1.408e + 06 12.639

1.000e− 05 27 41 1.449e + 05 113 1.647e + 06 11.370

5.623e− 06 26 45 1.706e + 05 120 1.958e + 06 11.477
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Fig. 6.8. PB2. Emax
N (empty circle) and Emean

N (empty square) for the “primal–dual” RB approach vs

online computational costs Λpr,du
N , Λpr

N (estimated number of operations); full circles and squares refer

to the indicators Emax
N , Emean

N for the “only primal” RB approach. Error axis in logarithmic scale.

7. Conclusions

In this work we have considered the RB method for the approximation of parametrized
advection–reaction PDEs. We have generated the basis by means of the FE method applied
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to the stabilized version of the weak problem. For the RB method in the “primal–dual” for-
mulation, we have provided and discussed a priori RB error estimates. We have shown that
the RB “complexity” increases as the FE mesh size reduces, thus requiring a larger number
of basis in order to satisfy a prescribed tolerance on the error. An adaptive algorithm for the
selection of the sample sets, led by the a posteriori RB error estimate and based on a criterium
of minimization of the online computational costs, has been elaborated. We have proved, by
means of numerical tests, the effectiveness of this algorithm and the savings of computational
costs allowed at the online step by the “primal–dual” RB approach w.r.t. those of the “only
primal” one. The numerical tests also show that if the FE approximation is stable, then so
it is the RB one. In fact, no numerical instabilities incur in the RB solutions once the FE
formulation is properly stabilized (in this case by means of the Streamline Diffusion method).

Acknowledgments. The author acknowledges the support provided thorough the “Progetto
Rocca”, MIT–Politecnico di Milano collaboration. Many thanks to Prof. A.T. Patera for having
introduced me to the world of the Reduced Basis method and welcomed in his group at MIT.
Special thanks to Dr. G. Rozza for the suggestions and ideas and to Dr. G.S.H. Pau, Dr. S. Sen
and D. Blanchard for the helpful discussions. Many thanks to Prof. A. Quarteroni for the
interest, research guidelines and for having encouraged this initiative. Acknowledgements to
Dr. S. Sferza and Prof. F. Gazzola for the kind help.

References

[1] B.O. Almroth, P. Stern, F.A. Brogan, Automatic choice of global shape functions in structural

analysis, AIAA J., 16 (1978), 525-528.
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