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Abstract. In this paper, we generalize well-known results for the L2-norm a

posteriori error estimation of finite element methods applied to linear elliptic

problems in convex polygonal domains to the case where the polygons are non-

convex. An important factor in our analysis is the investigation of a suitable

dual problem whose solution, due to the non-convexity of the domain, may

exhibit corner singularities. In order to describe this singular behavior of the

dual solution certain weighted Sobolev spaces are employed. Based on this

framework, upper and lower a posteriori error estimates in weighted L2-norms

are derived. Furthermore, the performance of the proposed error estimators is

illustrated with a series of numerical experiments.
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1. Introduction

Given a (possibly non-convex) bounded polygonal domain Ω ⊂ R2 with (Lips-
chitz) boundary Γ = ∂Ω, and a function f ∈ L2(Ω), we consider the elliptic model
problem

−∆u = f in Ω(1)

u = 0 on Γ.(2)

The standard weak formulation of (1)–(2) reads: Find u ∈ H1
0 (Ω) such that

(3)
∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx

for all v ∈ H1
0 (Ω). Here and it what follows, we use the following notation: For a

domain D ⊂ Rn (n = 1 or n = 2) and an integer k ∈ N0, we denote by Hk(D)
the usual Sobolev space of order k on D, with norm ‖ · ‖k,D and semi-norm | · |k,D.
The space H1

0 (Ω) is defined as the subspace of H1(Ω) with zero trace on ∂Ω.
Furthermore, H−1(D) denotes the dual space of H1

0 (D), and L2(D) = H0(D).
In order to discretize the variational formulation (3) by a finite element method,

we consider a regular subdivision TFE (finite element mesh) of Ω into disjoint open
triangles K (elements), i.e. TFE = {K}, ⋃

K∈TF E
K = Ω. By hK , we denote the

diameter of an element K ∈ TFE . We assume that the subdivision TFE is shape-
regular (see, e.g., [6]) and of local bounded variation. The latter assumption means
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that there exists a constant σ > 1 such that σ−1 < hK]
/hK[

< σ, for any two
neighboring elements K] and K[. Moreover, we introduce the finite element space

S1,1
0 (Ω, TFE) = {φ ∈ H1

0 (Ω) : φ|K ∈ P1(K),K ∈ TFE},
where, for k ∈ N0 and K ∈ TFE , Pk(K) is defined as the set of all polynomials of
total degree (at most) k on K.

A finite element approximation of the exact solution u ∈ H1
0 (Ω) of (1)–(2) can

now be obtained in the usual way by finding the unique solution uFE ∈ S1,1
0 (Ω, TFE)

of the discrete variational formulation

(4) a(uFE , v) = `(v) ∀v ∈ S1,1
0 (Ω, TFE),

where
a(w, v) =

∫

Ω

∇w · ∇v dx, `(v) =
∫

Ω

fv dx.

Clearly, there holds the Galerkin orthogonality

(5) a(eFE , v) = 0 ∀v ∈ S1,1
0 (Ω, TFE).

Here, eFE is the finite element error given by

(6) eFE = u− uFE ,

where u ∈ H1
0 (Ω) is again the exact solution of (1)–(2), and uFE ∈ S1,1

0 (Ω, TFE) is
its numerical approximation from (4).

Standard techniques for the a posteriori error estimation of the L2-norm of eFE ,
consist usually of the following two main steps (Aubin-Nitsche trick; see, e.g., [1, 5,
12], and the references therein): Firstly, a suitable dual problem is formulated; this
makes it possible to relate the L2-norm of eFE to the finite element method (4).
Secondly, using the Galerkin orthogonality (5), the L2-error ‖eFE‖L2(Ω) is bounded
in terms of some approximation errors between the solution of the dual problem and
an appropriate interpolant in the finite element space S1,1

0 (Ω, TFE). Here, standard
L2-norm a posteriori analyses are typically based on approximation results that
require the global H2-regularity of the dual problem, which is in fact available if
the polygonal domain Ω is convex; see [2, 7, 8], for example. In non-convex polygons,
however, this assumption does generally not hold; here, due to the presence of corner
singularities, the regularity of the dual problem is typically reduced to H1+ε, for
ε < 1. Consequently, standard H2-approximation results cannot be applied.

The goal of this paper is to generalize the above-mentioned approach for the
L2-norm a posteriori error estimation of the finite element error eFE to the case
where the domain Ω is a possibly non-convex polygon. To this end, we describe the
regularity of the dual problem in terms of weighted Sobolev spaces using the results
in [2], and apply some appropriate interpolation results (see, e.g., [11], and the refer-
ences therein) to approximate its solution in the finite element space S1,1

0 (Ω, TFE).
We will then be able to derive upper a posteriori bounds for some weighted L2-
norms of the error eFE ; see Theorem 3.1. More precisely, we will show that there
holds an estimate of the form

(7) ‖Φ−1eFE‖2L2(Ω) ≤ C
∑

K∈TF E

ηK(uFE , f)2,

where Φ is a certain weight function (associated to Ω), and ηK , K ∈ TFE , are
local error indicators depending on the mesh TFE , the finite element solution uFE

from (4) and the right-hand side f in (1). In addition, using suitable cut-off func-
tions (see [9]), we will also prove some (weighted) local lower bounds; see Theo-
rem 3.4.
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Throughout the paper, we shall use the following notation: By EI we denote the
set of all element edges in the finite element mesh TFE which do not belong to ∂Ω.
Note that, for E ∈ EI , there exist two neighboring elements K],K[ ∈ TFE such that
E = ∂K] ∩∂K[; we let ωE = {K],K[}, and define ΩE = (K] ∪K[)◦. Furthermore,
for E ∈ EI and a vector function v ∈ {φ ∈ L2(ΩE)2 : φ|K ∈ H1(K)2,K ∈ ωE},
we define the jump

(8) [[v]](x) = v(x)|K]
· nK]

+ v(x)|K[
· nK[

, x ∈ E.

Here, for an element K ∈ TFE , nK represents the outward normal unit vector to
∂K. Finally, for an edge E ∈ EI , we denote by hE the length of E; note that, due
to the shape regularity of TFE , there holds that

(9) µ−1hK ≤ hE ≤ µhK , ∀K ∈ ωE , ∀E ∈ EI ,
where the constant µ ≥ 1 is independent of the element diameters.

The remaining part of this article is organized as follows: In Section 2 we intro-
duce the dual problem, which the a posteriori error analysis in this paper is based
upon, and discuss its regularity. Section 3 contains the upper and lower a posteriori
error estimates and their proofs. In Section 4, we illustrate the performance of the
error estimators presented in Section 3 with some numerical experiments.

2. Dual Problem

In order to prove the a posteriori error estimate (7), we shall study a dual problem
of the form

−∆ψ = χ(eFE) in Ω(10)

ψ = 0 on Γ,(11)

with a (weak) solution ψ ∈ H1
0 (Ω). Here, the right-hand side χ(eFE) ∈ H−1(Ω)

depends on the finite element error (6) and will be specified later.
An important factor in our analysis will be the approximation of the dual solu-

tion ψ by functions in the finite element space S1,1
0 (Ω, TFE). Here, the regularity

of ψ plays an essential role. We note that, since the polygonal domain Ω is possibly
non-convex, the solution ψ of (10)–(11) does not necessarily belong to H2(Ω) (even
if the right-hand side χ(eFE) was smooth) due to the presence of corner singular-
ities. A possible way to describe this low regularity of ψ is given by the use of
weighted Sobolev spaces; cf. [2, 3], for example.

2.1. Weighted Sobolev Spaces. Let A = {Ai}M
i=1 be the set of all corners of

the polygonal domain Ω. To each of these points Ai, i = 1, 2, . . . , M , we associate
a weight

(12) βi ∈ [0, 1).

These numbers are stored in a weight vector

(13) β = (β1, β2, . . . , βM ).

Next, we introduce the following weight function on Ω:

Φβ(x) =
M∏

i=1

ri(x)βi , ri(x) = |x−Ai| .
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Then, for any integers m ≥ l ≥ 0, the weighted Sobolev spaces Hm,l
β (Ω) are defined

as the completion of the space C∞(Ω) with respect to the weighted Sobolev norms

‖u‖2
Hm,l

β (Ω)
= ‖u‖2l−1,Ω +

m∑

k=l

∑

|α|=k

‖Φβ+k−l|Dαu|‖20,Ω, l ≥ 1,

‖u‖2
Hm,0

β (Ω)
=

m∑

k=0

∑

|α|=k

‖Φβ+k−l|Dαu|‖20,Ω.

Here,

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2

= ux
α1
1 ,x

α2
2

,

with α = (α1, α2) ∈ N2 and |α| = α1 + α2.
Before discussing the regularity of the dual problem (10)–(11), we prove the

following auxiliary result:

Lemma 2.1. Let β be a weight vector as in (12)–(13). Then, for a function
v ∈ H1(Ω), there holds that Φ−2

β v ∈ H0,0
β (Ω).

Proof. For each corner Ai ∈ A, 1 ≤ i ≤ M , of the polygon Ω, we define a sector
Si = Ω ∩ Uε(Ai), where Uε(Ai) = {x : |x − Ai| < ε}. Here, we assume that
ε > 0 is chosen sufficiently small, so that the sectors Si, 1 ≤ i ≤ M , are disjoint.
Furthermore, we let Ωε = Ω \ (

⋃M
i=1 Si).

Recalling the definition of the weighted Sobolev norm ‖ · ‖H0,0
β (Ω), we have

‖Φ−2
β v‖2

H0,0
β (Ω)

=
∫

Ω

Φ−2
β v2 dx.

Hence, we obtain

‖Φ−2
β v‖2

H0,0
β (Ω)

=
M∑

i=1

∫

Si

Φ−2
β v2 dx +

∫

Ωε

Φ−2
β v2 dx

≤
M∑

i=1

sup
x∈Si

( M∏
j=1
j 6=i

rj(x)−2βj

) ∫

Si

r−2βi

i v2 dx

+ sup
x∈Ωε

Φβ(x)−2

∫

Ωε

v2 dx

≤ C

M∑

i=1

∫

Si

r−2βi

i v2 dx + C

∫

Ωε

v2 dx.

Furthermore, there holds (cf. the proof of [4, Lemma 4.3], see also the proof of [10,
Proposition 25]) that

∫

Si

r−2βi

i v2 dx ≤ C‖v‖2
H1,1

1−βi
(Si)

≤ C‖v‖21,Si

for all 1 ≤ i ≤ M . Thus, it follows that

‖Φ−2
β v‖2

H0,0
β (Ω)

≤ C‖v‖21,Ω,

which completes the proof. ¤
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2.2. Regularity of the Dual Problem. Let β be a weight vector as in Sec-
tion 2.1. Then, we define χ(eFE) in (10) by

(14) χ(eFE) = Φ−2
β eFE .

By the definition of the finite element space S1,1
0 (Ω, TFE), there holds eFE ∈ H1

0 (Ω),
and thus, the previous Lemma 2.1 implies that χ(eFE) ∈ H0,0

β (Ω). Therefore,
applying [2, Theorem 2.1 and Remark 3], we obtain the following regularity result
for the dual problem (10)–(11):

Proposition 2.2. Let β = (β1, β2, . . . , βM ) be a weight vector on Ω with

(15) 1 > βi > 1− π

ωi
,

where ωi denotes the interior angle of Ω at the corner Ai, i = 1, 2, . . . , M . Then,
the weak solution ψ ∈ H1

0 (Ω) of the dual problem (10)–(11) exists (and is unique)
and belongs to H2,2

β (Ω). Furthermore, the bound

(16) ‖ψ‖H2,2
β (Ω) ≤ C‖Φ−1

β eFE‖0,Ω

holds true.

2.3. Approximation of H2,2
β (Ω) in S1,1

0 (Ω, TFE). In order to approximate the
solution ψ of the dual problem (10)–(11) by functions in the finite element space
S1,1

0 (Ω, TFE), an interpolation estimate for the space H2,2
β (Ω) (when approximated

by the finite element space S1,1
0 (Ω, TFE)) is required.

Here and it what follows, we define for an element K ∈ TFE the local quantity

(17) Hβ,K = sup
x∈K

Φβ(x).

Furthermore, by KA we denote the set of all elements in TFE that contain a corner
of the polygon Ω on their boundary, i.e.

KA =
{
K ∈ TFE : A ∈ K for a certain A ∈ A}

.

For simplicity, we assume that the mesh TFE is sufficiently refined, so that each
K ∈ KA contains exactly one corner of Ω. Moreover, for K ∈ KA, we let βK = βi,
where βi is the weight associated with the corner of Ω that is contained in K.

Due to our assumptions on the mesh TFE , there holds:

Lemma 2.3. There exists a constant C > 0 independent of the element sizes such
that

(18) Hβ,K ≤ C inf
x∈K

Φβ(x)

for all K ∈ TFE \ KA.

Proof. Let K ∈ TFE \ KA. Then,

Hβ,K = sup
x∈K

Φβ(x) ≤
M∏

i=1

sup
x∈K

ri(x)βi =
M∏

i=1

inf
x∈K

ri(x)βi

M∏

i=1

supx∈K ri(x)βi

infx∈K ri(x)βi

≤ inf
x∈K

(
M∏

i=1

ri(x)βi

)
M∏

i=1

supx∈K ri(x)βi

infx∈K ri(x)βi
= inf

x∈K
Φβ(x)

M∏

i=1

supx∈K ri(x)βi

infx∈K ri(x)βi
.

(19)
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It remains to show that the expression

M∏

i=1

supx∈K ri(x)βi

infx∈K ri(x)βi

is bounded independently of the element sizes. To this end, we notice that

M∏

i=1

supx∈K ri(x)βi

infx∈K ri(x)βi
=

M∏

i=1

(
supx∈K ri(x)
infx∈K ri(x)

)βi

≤ C

M∏

i=1

(
infx∈K ri(x) + hK

infx∈K ri(x)

)βi

≤ C

M∏

i=1

(
1 +

hK

infx∈K ri(x)

)βi

.

Now, the bounded variation property of TFE implies that hK(infx∈K ri(x))−1 is
bounded independently of hK and of ri, for any i ∈ {1, . . . , M}. ¤

There holds the following approximation result:

Proposition 2.4. Let TFE be a given finite element mesh and ϕ a function in
H2,2

β (Ω), where β is a weight vector as in Section 2.1. Then, there exists an inter-
polant ϕ̂ ∈ S1,1

0 (Ω, TFE) such that

∑

K∈TF E

H2
β,K

(
h−4

K ‖ϕ− ϕ̂‖20,K +h−2
K ‖∇(ϕ− ϕ̂)‖20,K +h−3

K ‖ϕ− ϕ̂‖20,∂K

)
≤ C|ϕ|2

H2,2
β (Ω)

.

Here, the constant C > 0 is independent of ϕ and of the element sizes.

Proof. Due to the standard trace inequality

‖v‖0,∂K ≤ C
(
h
− 1

2
K ‖v‖0,K + h

1
2
K‖∇v‖0,K

)
∀K ∈ TFE ,

it is sufficient to prove that

(20)
∑

K∈TF E

H2
β,K

(
h−4

K ‖ϕ− ϕ̂‖20,K + h−2
K ‖∇(ϕ− ϕ̂)‖20,K

)
≤ C|ϕ|2

H2,2
β (Ω)

.

We choose ϕ̂ ∈ S1,1
0 (Ω, TFE) to be the elementwise linear interpolant of ϕ in the

vertices of each element K ∈ TFE . Then, by standard approximation results, there
holds

(21) h−4
K ‖ϕ− ϕ̂‖20,K + h−2

K ‖∇(ϕ− ϕ̂)‖20,K ≤ C|ϕ|2,K

for all K ∈ TFE \ KA. Here, we have used, by the definition of the space H2,2
β (Ω),

that ϕ is H2-regular away from the corners of Ω.
Furthermore, for K ∈ KA, we have

(22) h−4
K ‖ϕ− ϕ̂‖20,K + h−2

K ‖∇(ϕ− ϕ̂)‖20,K ≤ Ch−2βK

K |ϕ|2
H2,2

βK
(K)

;
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see [11], for example. Combining (21) and (22), recalling the definition of Hβ,K ,
K ∈ TFE , and applying (18), yields

∑

K∈TF E

H2
β,K

(
h−4

K ‖ϕ− ϕ̂‖20,K + h−2
K ‖∇(ϕ− ϕ̂)‖20,K

)

≤ C

( ∑

K∈KA
h−2βK

K H2
β,K |ϕ|2

H2,2
βK

(K)
+

∑

K∈TF E\KA
H2

β,K |ϕ|22,K

)

≤ C

( ∑

K∈KA
h−2βK

K sup
x∈K

Φ2
β(x) |ϕ|2

H2,2
βK

(K)
+

∑

K∈TF E\KA
inf

x∈K
Φ2

β(x)
∫

K

|D2ϕ|2 dx

)

≤ C

( ∑

K∈KA
|ϕ|2

H2,2
βK

(K)
+

∑

K∈TF E\KA

∫

K

Φ2
β|D2ϕ|2 dx

)

≤ C|ϕ|2
H2,2

β (Ω)
.

This shows (20) and thereby completes the proof. ¤

3. A Posteriori Error Analysis

The aim of this section is to establish an a posteriori error analysis for the
(weighted) L2-norm of the finite element error eFE . The upper bound (7) shall
be proved first; see the following Theorem 3.1. The local lower bounds will be
presented in Theorem 3.4 later on in this section.

We shall need some additional notation: For an element K ∈ TFE and a function
v ∈ L2(K), we denote by vK the L2-projection of v onto the space of all constant
functions on K, i.e.

vK =
1
|K|

∫

K

v dx,

where |K| is the area of K. Furthermore, we define the following data oscillation
term:

(23) OK(v) = h2
K‖v − vK‖0,K .

Theorem 3.1 (Upper Bound). Let β be a weight vector as in Proposition 2.2.
Then, the finite element error eFE from (6) satisfies the a posteriori error estimate

(24) ‖Φ−1
β eFE‖0,Ω ≤ C

( ∑

K∈TF E

η2
β,K

) 1
2

,

where the constant C > 0 is independent of the finite element solution uFE, of the
right-hand side f , and of the element sizes. The local error indicators ηβ,K are
given by

(25) η2
β,K = H−2

β,K

(
h4

K‖fK‖20,K + h3
K‖[[∇uFE ]]‖20,∂K\∂Ω +OK(f)2

)
,

where Hβ,K is the elementwise constant from (17), and the jump [[·]] is defined in (8).

Remark 3.2. In convex polygonal domains, the opening angles at the corners satisfy
ωi < π. Hence, according to (15), the weight vector β can be chosen to be the zero
vector; in particular, we note that, by Proposition 2.2 (see also [2, 7, 8]), the
solution of the dual problem (10)–(11) belongs to H2(Ω) in this case. Furthermore,
for β = (0, 0, . . . , 0), the bound (24) is the well-known a posteriori error estimate
for the L2-norm of the finite element error eFE in convex polygons; cf. [1, 5, 12],
for example.
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Remark 3.3. In order to evaluate the quantity Hβ,K , K ∈ TFE , arising in the local
error estimators (25) in practice, we compute the set Hβ,K = {Hβ,K(Ci)}3i=1, where
C1, C2, C3 denote the corners of K, and set Hβ,K = maxHβ,K .

Proof of Theorem 3.1. We start by multiplying the equation (10) by eFE and in-
tegrating both sides over Ω, and by noting that χ(eFE) = Φ−2

β eFE (cf. (14)). This
leads to the following identities:

‖Φ−1
β eFE‖20,Ω =

∫

Ω

Φ−2
β e2

FE dx = −
∫

Ω

eFE∆ψ dx.

Moreover, integration by parts yields

‖Φ−1
β eFE‖20,Ω =

∫

Ω

∇eFE · ∇ψ dx = a(eFE , ψ).

In addition, recalling the Galerkin orthogonality (5), we have that

‖Φ−1
β eFE‖20,Ω = a(eFE , ψ − ψ̂),

where ψ̂ ∈ S1,1
0 (Ω, TFE) is the interpolant from Proposition 2.4. Hence, it follows

‖Φ−1
β eFE‖20,Ω =

∫

Ω

∇eFE · ∇(ψ − ψ̂) dx

=
∫

Ω

∇u · ∇(ψ − ψ̂) dx−
∫

Ω

∇uFE · ∇(ψ − ψ̂) dx

=
∫

Ω

f(ψ − ψ̂) dx−
∫

Ω

∇uFE · ∇(ψ − ψ̂) dx.

(26)

The second term can be manipulated by an elementwise integration by parts and
by using the fact, since uFE is elementwise linear, that ∆uFE ≡ 0:

−
∫

Ω

∇uFE · ∇(ψ − ψ̂) dx = −
∑

K∈TF E

∫

K

∇uFE · ∇(ψ − ψ̂) dx

= −
∑

K∈TF E

∫

∂K

(∇uFE · nK)(ψ − ψ̂) ds

= −
∫

EI
[[∇uFE ]](ψ − ψ̂) ds.

(27)

Then, combining (26) and (27), results in

‖Φ−1
β eFE‖20,Ω

=
∫

Ω

fK(ψ − ψ̂) dx−
∫

EI
[[∇uFE ]](ψ − ψ̂) ds +

∫

Ω

(f − fK)(ψ − ψ̂) dx

≤
∑

K∈TF E

‖fK‖0,K‖ψ − ψ̂‖0,K +
∑

E∈EI
‖[[∇uFE ]]‖0,E‖ψ − ψ̂‖0,E

+
∑

K∈TF E

‖f − fK‖0,K‖ψ − ψ̂‖0,K

≤
∑

K∈TF E

‖fK‖0,K‖ψ − ψ̂‖0,K +
∑

K∈TF E

‖[[∇uFE ]]‖0,∂K\∂Ω‖ψ − ψ̂‖0,∂K\∂Ω

+
∑

K∈TF E

h−2
K OK(f)‖ψ − ψ̂‖0,K .
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Therefore, applying a weighted Cauchy-Schwarz inequality and recalling the ap-
proximation properties from Proposition 2.4, we obtain

‖Φ−1
β eFE‖20,Ω

≤
( ∑

K∈TF E

H2
β,K

(
h−4

K ‖ψ − ψ̂‖20,K + h−3
K ‖ψ − ψ̂‖20,∂K\∂Ω

)) 1
2
( ∑

K∈TF E

η2
β,K

) 1
2

≤ C|ϕ|H2,2
β (Ω)

( ∑

K∈TF E

η2
β,K

) 1
2

.

Furthermore, making use of the regularity estimate (16), implies

‖Φ−1
β eFE‖20,Ω ≤ C‖Φ−1

β eFE‖0,Ω

( ∑

K∈TF E

η2
β,K

) 1
2

.

Dividing both sides of the above inequality by ‖Φ−1
β eFE‖0,Ω completes the proof.

¤
The following result implies the efficiency of the a posteriori error bound (24).

Theorem 3.4 (Local Lower Bounds). Let the assumptions of the previous The-
orem 3.1 be satisfied. Furthermore, consider an element K ∈ TFE and an edge
E ∈ EI . Then, the two estimates

(28) ‖fK‖0,K ≤ Ch−2
K

(
Hβ,K‖Φ−1

β eFE‖0,K +OK(f)
)
,

and

(29) ‖[[∇uFE ]]‖0,E ≤ C
∑

K∈ωE

h
− 3

2
K

(
Hβ,K‖Φ−1

β eFE‖0,K +OK(f)
)
,

hold true, where the constant C > 0 is independent of uFE, f , and of the element
sizes.

Proof. We prove (28) and (29) separately.
Proof of (28): For K ∈ TFE , [9, Lemma 2 and Lemma 3] imply the existence of

a polynomial cut-off function BK ∈ P6(K) satisfying

(30) BK |∂K = 0, ∇BK |∂K = 0,

and

(31) ‖BK‖0,K ≤ ChK , h2
K ≤ C

∫

K

BK dx,

with a constant C > 0 independent of hK .
Then, since fK is constant on K, we have that

|fK | =
∣∣∣∣

1∫
K

BK dx

∫

K

BKfK dx

∣∣∣∣ ≤ Ch−2
K

∣∣∣∣
∫

K

BKf dx +
∫

K

BK(fK − f) dx

∣∣∣∣.

Noticing that ∆uFE ≡ 0 and integrating by parts twice, results in∫

K

BKf dx = −
∫

K

BK∆eFE dx =
∫

K

∇BK · ∇eFE dx = −
∫

K

∆BK eFE dx,

where we have used the properties from (30). Therefore, it holds that

|fK | ≤ Ch−2
K

∣∣∣∣−
∫

K

∆BK eFE dx +
∫

K

BK(fK − f) dx

∣∣∣∣
≤ Ch−2

K

(‖Φβ∆BK‖0,K‖Φ−1
β eFE‖0,K + ‖BK‖0,K‖f − fK‖0,K

)
.
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Recalling the definition of Hβ,K and applying a standard inverse estimate for poly-
nomials (cf. [11], for example), it follows that

(32) ‖Φβ∆BK‖0,K ≤ sup
x∈K

Φβ(x)‖∆BK‖0,K ≤ Ch−2
K Hβ,K‖BK‖0,K .

Therefore, using the first inequality from (31), gives

|fK | ≤ Ch−2
K ‖BK‖0,K

(
h−2

K Hβ,K‖Φ−1
β eFE‖0,K + ‖f − fK‖0,K

)

≤ Ch−1
K

(
h−2

K Hβ,K‖Φ−1
β eFE‖0,K + ‖f − fK‖0,K

)

≤ Ch−3
K

(
Hβ,K‖Φ−1

β eFE‖0,K +OK(f)
)
,

which leads to

‖fK‖0,K ≤ ChK

∣∣fK

∣∣ ≤ Ch−2
K

(
Hβ,K‖Φ−1

β eFE‖0,K +OK(f)
)
.

Proof of (29): For E ∈ EI , there is a cut-off function BE ∈ C1(ΩE) with the
following properties (cf. [9, Lemma 2 and Lemma 3] and (9)):

(33) BE |∂ΩE
= 0, ∇BE |∂ΩE

= 0, BE |K ∈ P8(K), K ∈ ωE ,

and

(34) ‖BE‖0,ΩE
≤ ChE , hE ≤ C

∫

E

BE ds,

with a constant C > 0 independent of hE .
Since ∆u ∈ L2(Ω), we have that [[∇u]]|E = 0. Therefore, and due to the fact

that ∇uFE is constant along E, there holds

|[[∇uFE ]]|E | =
∣∣∣∣

1∫
E

BE ds

∫

E

−BE [[∇eFE ]] ds

∣∣∣∣ ≤ Ch−1
E

∣∣∣∣
∫

E

−BE [[∇eFE ]] ds

∣∣∣∣.

Twofold integration by parts and making use of the properties (33), yields
∫

E

−BE [[∇eFE ]] ds = −
∑

K∈ωE

∫

∂K

BE(∇eFE · nK) ds

=
∑

K∈ωE

∫

K

(eFE∆BE −BE∆eFE) dx.

Therefore, recalling that −∆eFE = −∆u = f , results in

|[[∇uFE ]]|E |

≤ Ch−1
E

∣∣∣∣
∑

K∈ωE

∫

K

(eFE∆BE + BEf) dx

∣∣∣∣

≤ Ch−1
E

∑

K∈ωE

( ∫

K

|Φ−1
β eFE ||Φβ∆BE | dx +

∫

K

|BE |(|fK |+ |f − fK |) dx

)

≤ Ch−1
E

∑

K∈ωE

‖Φ−1
β eFE‖0,K‖Φβ∆BE‖0,K

+ Ch−1
E

∑

K∈ωE

‖BE‖0,K

(‖fK‖0,K + ‖f − fK‖0,K

)
.

Proceeding as in (32), we obtain

‖Φβ∆BE‖0,K ≤ Ch−2
K Hβ,K‖BE‖0,K , K ∈ ωE .
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Hence, we have

|[[∇uFE ]]|E |
≤ Ch−1

E

∑

K∈ωE

‖BE‖0,K

(
h−2

K Hβ,K‖Φ−1
β eFE‖0,K + ‖fK‖0,K + ‖f − fK‖0,K

)

≤ Ch−1
E ‖BE‖0,ΩE

∑

K∈ωE

(
h−2

K Hβ,K‖Φ−1
β eFE‖0,K + ‖fK‖0,K + h−2

K OK(f)
)
,

which, by applying (34), leads to

|[[∇uFE ]]|E | ≤ C
∑

K∈ωE

(
h−2

K Hβ,K‖Φ−1
β eFE‖0,K + ‖fK‖0,K + h−2

K OK(f)
)
.

Thus, it follows that

‖[[∇uFE ]]|E‖0,E ≤ Ch
1
2
E

∑

K∈ωE

(
h−2

K Hβ,K‖Φ−1
β eFE‖0,K + ‖fK‖0,K + h−2

K OK(f)
)
.

Finally, using (9) and inserting the estimate (28), completes the proof.
¤

4. Numerical Experiments

In this section we shall illustrate the practical performance of the local error
estimators ηβ,K , K ∈ TFE , from (25) with a series of numerical experiments. All of
our computations are based on the following widely-used adaptive mesh refinement
algorithm (see, e.g., [12]):

(1) Set k = 0, and consider an initial mesh T (0)
FE on Ω.

(2) Compute the numerical solution u
(k)
FE from (4) on T (k)

FE .
(3) Compute the local error indicators ηβ,K from (25).
(4) If

∑
K∈TF E

η2
β,K is sufficiently small then stop. Otherwise, find ηmax =

max
K∈T (k)

F E

ηβ,K , and refine those elements K ∈ TFE for which ηβ,K >

τηmax. Set k = k + 1 and go to (2).
Here, 0 < τ < 1 is a fixed threshold which, in our numerical experiments, is set to
be 0.5.

4.1. Example 1: Smooth Solution in Convex Polygon. On the unit square

Ω = (0, 1)2,

with corners

A1 = (0, 0), A2 = (1, 0), A3 = (1, 1), A4 = (0, 1),

we consider the model problem

−∆u = 2(−x2 + x− y2 + y) in Ω
u = 0 on ∂Ω.

The exact solution is given by u(x, y) = xy(x−1)(y−1) and is analytic in Ω. We note
that, since Ω is convex, the weights βi associated to the corners Ai, i = 1, 2, 3, 4, can
be chosen arbitrarily in [0, 1); cf. Proposition 2.2 and Remark 3.2. In our numerical
experiments we focus on two particular cases. For simplicity, the data oscillation
terms shall be neglected.

Firstly, we consider weight vectors of the form β = (β1, 0, 0, 0), with β1 ∈ [0, 1).
The corresponding weighted L2-norms are then given by ‖|x|−β1 · ‖0,Ω. In Figure 1,
we present the weighted L2-errors for β ∈ {0.00, 0.25, 0.50, 0.75, 0.90, 0.99}, as well
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Figure 1. Example 1: β2 = β3 = β4 = 0.0. Left: True (weighted)
L2-errors vs. global error estimators ηglobal. Right: Efficiency
indices ieff .

as the corresponding (global) error estimators (neglecting the data oscillation term)
given by

ηglobal =
( ∑

K∈TF E

η2
β,K

) 1
2

.

We observe that the (global) error estimators over-estimate the true (weighted) L2-
error by an approximately consistent factor. More precisely, the efficiency index,
given by

ieff =

(∑
K∈TF E

η2
β,K

) 1
2

‖Φ−1
β eFE‖0,Ω

,

is around 10. This number results from the presence of the (unknown) constants
in the lower and upper a posteriori error bounds from Theorems 3.1 and 3.4, re-
spectively. Furthermore, we note that the decay of the global error estimators and
of the true errors is of order 1 with respect to the number of degrees of freedom,
and therefore optimal. Figure 3 shows the adaptively refined meshes for β1 = 0.50
and β1 = 0.99; as expected, they are strongly refined near the corner A1, thereby
resolving the singularity of the weight Φ−1

β (x) at the origin.
Secondly, we consider weight vectors of the form β = (β1, β2, β3, β4), with β1 =

β2 = β3 = β4 ∈ {0.00, 0.25, 0.50, 0.75, 0.90, 0.99}. The results are very similar to
the previous case. In particular, the decay of the global error indicators ηglobal

and of the weighted L2-errors is again of optimal order, and the efficiency indices
ieff have an approximately constant value of 10; cf. Figure 2. Furthermore, from
Figure 4, we see that the adaptive meshes are now refined at all of the four corners
of Ω, thereby again resolving the singularities of the weight Φ−1

β .

4.2. Example 2: Singular Solution in Non-Convex Polygon. The second
series of our numerical experiments is based on a polygon with a re-entrant corner
at the origin. More precisely, on the L-shaped domain

Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]),
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Figure 2. Example 1: Left: True (weighted) L2-errors vs. global
error estimators ηglobal. Right: Efficiency indices ieff .
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Figure 3. Example 1: Adaptively refined meshes. Left: β1 = 0.5,
β2 = β3 = β4 = 0.0 (12 refinement steps, 11768 elements). Right:
β1 = 0.99, β2 = β3 = β4 = 0.0 (13 refinement steps, 16362 ele-
ments).

with corners A1 = (0, 0), A2 = (1, 0), . . . , A6 = (0,−1), we consider the problem

−∆u = 0 in Ω
u = g on ∂Ω.

The exact solution is given by u(r, θ) = r
2
3 sin( 2

3θ), where (r, θ) denote polar coor-
dinates in R2. The Dirichlet boundary data g is suitably chosen, and incorporated
in the finite element method in the usual way. We remark that the function u rep-
resents the typical solution behavior of linear elliptic problems near the re-entrant
corner A1 of Ω; in particular, we note that u 6∈ H2(Ω).

In accordance with Proposition 2.2, the non-convexity of the polygon Ω at the
corner A1 implies a restriction on the range of the associated weight β1 ∈ [0, 1):
β1 > 1

3 . Consequently, in our numerical experiments, we consider weight vectors
β = (β1, 0, . . . , 0) with β1 ∈ {0.34, 0.4, 0.5, 0.75, 0.9, 0.99}. From Figure 5, we see
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Figure 4. Example 1: Adaptively refined meshes. Left: β1 =
β2 = β3 = β4 = 0.5 (10 refinement steps, 17760 elements). Right:
β1 = β2 = β3 = β4 = 0.99 (10 refinement steps, 19744 elements).
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Figure 5. Example 2: β2 = β3 = β4 = β5 = β6 = 0.0. Left: True
(weighted) L2-errors vs. global error estimators ηglobal. Right:
Efficiency indices ieff .

that the numerical results resemble those obtained in Example 1, and that the rates
of decay (for the global error estimators and for the weighted L2-errors) are again
optimal. In addition, the adaptively refined meshes in Figures 6–7 show a strong
refinement at A1; the method hereby resolves both, the low regularity of the exact
solution u at this point as well as the singularity of the weight occurring in the
weighted L2-norm of the error.
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