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Abstract

We compare in this paper two major implementations of large time-step schemes for

advection equations, i.e., Semi-Lagrangian and Lagrange–Galerkin techniques. We show

that SL schemes are equivalent to exact LG schemes via a suitable definition of the basis

functions. In this paper, this equivalence will be proved assuming some simplifying hy-

poteses, mainly constant advection speed, uniform space grid, symmetry and translation

invariance of the cardinal basis functions for interpolation. As a byproduct of this equiv-

alence, we obtain a simpler proof of stability for SL schemes in the constant-coefficient

case.

Mathematics subject classification: 65N12, 65M10, 49L25.
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1. Introduction

High-order, large time-step schemes for first order equation have gained an increasing popu-
larity in the last two decades. Schemes based on characteristics for hyperbolic PDEs have been
proposed by Courant–Isaacson–Rees in [3] and have prompted the development of a number of
specific techniques, including Semi-Lagrangian (SL) methods, which have first appeared in the
framework of Numerical Weather Prediction problems (see the pioneering paper [18] and the
review [15]). SL methods have another well estabilished field of application in plasma physics,
where their use has been suggested in [2] and widely studied since (see, e.g., [1,8,16]), and their
popularity is also growing in other fields such as general Computational Fluid Dynamics (CFD)
problems, Hamilton–Jacobi equations and level-set methods [7, 17], conservation laws [13]. On
the other hand, Lagrange–Galerkin (LG) methods have been proposed independently in [5,12],
and currently their main field of application is CFD (including Numerical Weather Prediction)
in a finite element setting.

The main ideas of this work will be sketched focusing on the model problem of the constant-
coefficient, evolutive advection equation

{
vt(x, t) + a · ∇v(x, t) = 0, in RN × R
v(x, 0) = v0(x) in RN ,

(1.1)

in which the transport velocity is given by the constant vector a = (a1 · · · aN )T ∈ RN .
The construction of large time-step schemes for (1.1) stems from the application of the

method of characteristics (see, e.g., [5, 6, 12]), which uses the property of the solution of (1.1)
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to be constant along the characteristics lines (x− aτ, t− τ) of the x− t space. This means that
the following time–discrete representation formula

v(x, t) = v(x− a∆t, t−∆t) (1.2)

holds for the solution v.
In large time-step schemes the discretization is performed on the representation formula

(1.2) rather than on the Eq. (1.1). The discretization of (1.2) is obtained by introducing a
numerical reconstruction to approximate the value v(x− a∆t, t−∆t), since in general the foot
of the characteristic xj − a∆t does not coincide with any grid point (we note that in the more
general setting of variable coefficient equations, characteristics are no longer straight lines, and
the position of the foot of characteristics needs itself to be approximated).

As we will recall in the next section, the space reconstruction is precisely what discriminates
between SL and LG schemes, and is also the crucial point in proving stability of the scheme,
which is not a trivial result when using high-order techniques. In this respect, LG schemes allow
for a cleaner and more general analysis, whereas high-order SL schemes have only be proved
to be stable in the Von Neumann sense. Therefore, the equivalence of the two formulations
(whenever provable) is also a way of obtaining a more general stability result for SL schemes.

In this paper, we will prove such an equivalence for the simplified case of (1.1), although
in fact L2 stability of SL schemes is a known fact for such a model – so, while expecting that
this technique may also work in greater generality, this paper only presents a simpler stability
proof, along with a deeper insight in the relationship between the two classes of schemes.

The paper is organized as follows. Section 2 reviews the construction and basic convergence
theory of SL and LG schemes for (1.1), and section 3 sets up a framework in which the equiv-
alence of SL and LG schemes can be proved. In section 4, we give some practical examples of
reconstruction bases falling in this theory.

2. A Comparison of Semi-Lagrangian and Lagrange–Galerkin

Schemes

This section presents the main ideas in the construction of SL and LG schemes. We point
out that this is presentation is focused on the basic form of the schemes. Recent years have
witnessed a number of developments, especially aimed at improving the performances of the
schemes in presence of discontinuous solutions. Among such advances, we mention the use
of nonlinear (non-oscillatory or monotone) reconstructions, the introduction of Discontinuous
Galerkin type techniques, the study of a posteriori error estimates and adaptive grids. It is
worth to emphasize that, at least at a technical level, the ideas of this paper do not allow for a
straightforward adaptation to such complex situations.

In the SL scheme, (1.2) is discretized as

vn+1
i = I[V n](xi − a∆t), (2.1)

where vn+1
i is an approximation of v(xi, t

n+1) and the interpolation I[V n](x) is computed as

I[V n](x) =
∑

j

vn
j ψj(x) (2.2)
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with ψj(xi) = δij . In particular, this form holds for Lagrange interpolation, as we will show in
the examples. Using (2.2) in (2.1), we obtain at last

vn+1
i =

∑

j

vn
j ψj(xi − a∆t), (2.3)

or in matrix form,
V n+1 = ΨV n, (2.4)

where the matrix Ψ has elements ψij defined by

ψij = ψj(xi − a∆t). (2.5)

Typically, in a uniform structured space grid the basis functions are affine transformations
of the same reference function, and multiple space dimensions are treated by separation of
variables. Such a structure of the basis functions will be discussed in detail in the next section.

However, despite the straightforwardness of the construction (and the numerical evidence of
unconditional stability), analysis of high-order SL schemes is quite technical and stability has
actually been proved only in the Von Neumann setting (see [1,6]). In particular, no theoretical
result exists about stability of SL schemes under variable advection speed.

In the LG scheme, once written the approximate solution at time tk as
∑

j vk
j φj(x), (1.2) is

discretized instead by integrating the product of both sides of (1.2) with a basis of test functions
(in particular, the basis {φi}) so that the equality

∫

RN

∑

j

vn+1
j φj(ξ)φi(ξ)dξ =

∫

RN

∑

j

vn
j φj(ξ − a∆t)φi(ξ)dξ (2.6)

must hold for all i. More explicitly, condition (2.6) is actually enforced as

∑

j

vn+1
j

∫

RN

φj(ξ)φi(ξ)dξ =
∑

j

vn
j

∫

RN

φj(ξ − a∆t)φi(ξ)dξ, (2.7)

which can be written in matrix form as

MV n+1 = ΦV n, (2.8)

where M is the mass matrix and the matrix Φ has elements φij defined by

φij =
∫

RN

φj(ξ − a∆t)φi(ξ)dξ. (2.9)

Stability analysis is considerably easier in the case of LG schemes, since reconstruction is actu-
ally performed by means of an L2 projection. However, it should be noted that in the variable
coefficient case, the evaluation of the integrals (2.9) cannot in general be performed exactly,
and a rigorous analysis becomes more complex (see [10]).

3. Interpreting SL as LG Schemes

In this section we look for conditions under which the SL scheme is equivalent to the LG
scheme for the model problem (1.1). We restrict therefore to the easier case of structured
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grids, so that the basis functions for both the SL and the LG scheme can be obtained by affine
transformations of a reference function, corresponding to the case ∆x = 1 and xj = 0, multiple
space dimensions being treated by tensor product of a one-dimensional basis. We will use
j = (j1, . . . , jN )T as a multiindex and set xj = (j1∆x1, . . . , jN∆xN )T . Moreover, in the sequel
x and ξ will be used as variables in the physical space, y and η as variables in the reference
space.

3.1. Preliminary material and basic assumptions

• The space grid is supposed to be infinite, orthogonal and uniform, that is, for j ∈ ZN :

xj = (j1∆x1, . . . , jN∆xN )T , (3.1)

• The basis functions ψj for the SL case are defined by:

ψj(ξ) = ψ

(
ξ1

∆x1
− j1

)
· · · ψ

(
ξN

∆xN
− jN

)
=

N∏

k=1

ψ

(
ξk

∆xk
− jk

)
, (3.2)

where we have denoted by ψ the (one-dimensional) reference function and by ∆xk the
space step along the k–th direction. The LG basis will be assumed to have (unless for a
normalizing factor whose role will be clear in the sequel) a structure which parallels (3.2),
that is

φj(ξ) =
1√

∆x1 · · ·∆xN

φ

(
ξ1

∆x1
− j1

)
· · · φ

(
ξN

∆xN
− jN

)

=
N∏

k=1

1√
∆xk

φ

(
ξk

∆xk
− jk

)
. (3.3)

• The function ψ is assumed to satisfy the conditions:

ψ ∈ W 1,∞(R) ∩ L1(R), (3.4)

ψ(y) = ψ(−y), (3.5)

ψ(i) =

{
1 if i = 0,

0 if i ∈ Z, i 6= 0.
(3.6)

Let us also give a definition which will be useful to characterize the solution.

Definition 3.1. A complex-valued function g : Rd → R is said to be positive semi-definite if

n∑

k=1

n∑

j=1

αkg(xk − xj)ᾱj ≥ 0 (3.7)

for any xk ∈ Rd, αk ∈ C (k = 1, . . . , n) and for all n ∈ N.

As we said before, the arguments used for the proof (and the basic assumptions (3.1)–(3.6))
rule out some situation of practical interest. In particular, this theory cannot handle the case
of unstructured grids, and more in general, reconstructions performed by finite elements, which
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violate the assumptions of symmetry and translation invariance. Also, the theory cannot be
applied to nonlinear reconstructions, since linearity of the numerical scheme is widely exploited
in the proof. On the other hand, the technique of proof seems to be also suitable for the case of
variable coefficient equations (this latter extension will be the object of a forthcoming study).

3.2. The main result

Our purpose is to prove that it is possible to find a basis for the LG scheme such that (2.4)
and (2.8) coincide, that is, left multiplying both sides of (2.4) by M and comparing with (2.8),
such that

Φ = MΨ. (3.8)

Although this formulation could lend itself to a more general theory, in the present setting it
will suffice to satisfy the more restrictive conditions

{
M = I,

Φ = Ψ.
(3.9)

Since we have assumed the structure (3.3), the problem essentially comes down to define a
suitable reference function φ. This is contained in the following theorem.

Theorem 3.1. Let the basic assumptions (3.1)–(3.6) hold. Then, there exists a real function φ

for which (2.7) is equivalent to (2.3) (in the sense of (3.9)) if and only if either of the conditions
i) The function ψ(y) has a real nonnegative Fourier transform: ψ̂(ω) ≥ 0,
ii) The function ψ(y) is positive semi-definite is satisfied.

Proof. First, we note that conditions i) and ii) are equivalent due to a theorem of Bochner
(see [14]). Comparing (2.3) and (2.7), we obtain the set of conditions to be satisfied:

∫

RN

φj(ξ)φi(ξ)dξ =

{
1 if i = j

0 if i 6= j
(3.10)

∫

RN

φj(ξ − a∆t)φi(ξ)dξ = ψj(xi − a∆t). (3.11)

The proof is split in two steps. In the first the problem is reduced to a single space dimension,
whereas in the second we prove the claim.

Step 1. Note that, by assumption (3.6), condition (3.10) is in fact included in (3.11), as it can
be seen setting ∆t = 0. Using the definitions (3.2), (3.3) for ψj and φj , (3.11) can be rewritten
as

∫

RN

N∏

k=1

1√
∆xk

φ

(
ξk − ak∆t

∆xk
− jk

) N∏

k=1

1√
∆xk

φ

(
ξk

∆xk
− ik

)
dξ

=
N∏

k=1

ψ

(
xi,k − ak∆t

∆xk
− jk

)
, (3.12)
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and working by separation of variables,

N∏

k=1

1
∆xk

∫

R
φ

(
ξk − ak∆t

∆xk
− jk

)
φ

(
ξk

∆xk
− ik

)
dξk =

N∏

k=1

ψ

(
xi,k − ak∆t

∆xk
− jk

)
. (3.13)

Therefore, matching corresponding terms of the products above, we obtain that (3.11) is satis-
fied if, for k = 1, . . . , N :

1
∆xk

∫

R
φ

(
ξk − ak∆t

∆xk
− jk

)
φ

(
ξk

∆xk
− ik

)
dξk = ψ

(
xi,k − ak∆t

∆xk
− jk

)
(3.14)

that is, after setting η = ξk/∆xk − ik:
∫

R
φ

(
η − ak∆t

∆xk
+ ik − jk

)
φ(η)dη = ψ

(
−ak∆t

∆xk
+ ik − jk

)
. (3.15)

This ultimately amounts to find a function φ such that
∫

R
φ(η + y)φ(η)dη = ψ(y) (3.16)

Step 2. The left-hand side of (3.16) is the autocorrelation integral (see [11]) of the unknown
function φ. Working in the Fourier domain and transforming both sides of (3.16) we have:

|φ̂(ω)|2 = ψ̂(ω). (3.17)

Now, since ψ is a real and even function of y, its Fourier transform ψ̂ is also a real and even
function of ω (see [11]). Moreover, the assumption ψ ∈ L1(R) implies that ψ̂(ω) is bounded,
whereas ψ ∈ W 1,∞(R) implies that it decays like O(ω−2) for ω → ±∞. Therefore, ψ̂ being
also nonnegative by assumption i), its square root ψ̂(ω)1/2 is real, even and nonnegative. In
addition, ψ̂1/2 is also bounded and decays like O(ω−1), and this implies that ψ̂1/2 ∈ L2(R).

Finally, looking at the inverse Fourier transform F−1 as an operator mapping L2(R) into
L2(R), we obtain that the solution φ defined by

φ(y) = F−1
{

ψ̂(ω)1/2
}

(3.18)

is a well-defined even real function of L2(R) solving (3.16). ¤

Remark. We explicitly note that both symmetry condition (3.5) and positive definiteness
(which actually implies (3.5) for real functions) are required to ensure that ψ may be regarded
as an autocorrelation. In fact, any autocorrelation integral of a real function must be even and
have a positive Fourier transform. On the other hand, once these conditions are satisfied, (3.18)
needs not have a unique solution. Equating ψ̂ and |φ̂|2, we neglect any information about the
phase diagram of φ, and this in turn makes it possible to have multiple solutions, as it will be
shown in the examples.

4. Some Practical Examples

We apply in this section the general theory to some situation of practical interest, in par-
ticular Lagrange interpolations of odd order, interpolatory wavelets and (although with some
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caution) spline interpolation. Note that the reference LG basis function obtained in the various
cases is not even supposed to be (and in fact, unless for splines, is not) continuous. This is not
a major problem here, since the construction of a LG scheme for (1.1) just requires a basis of
functions in L2(R).

4.1. P1 interpolation

We first show the simple case of P1 interpolation, for which explicit computation can be
performed. This will allow to illustrate some remarkable point, in particular the lack of unique-
ness for the solution. We recall that in this case all the base functions for interpolation in the
SL scheme are affine transformations of the function

ψ[1](y) =





1 + y if − 1 ≤ y ≤ 0,

1− y if 0 ≤ y ≤ 1,

0 elsewhere,

(4.1)

(here and in the sequel, we will use the notation ψ[k] or φ[k] to distinguish among different
interpolation orders). The Fourier transform of (4.1) is in turn

ψ̂[1](ω) =
2− 2 cos ω

ω2
=

sin
(

ω
2

)2

(
ω
2

)2 . (4.2)

Now, taking the square root of this transform we get

φ̂[1](ω) =
∣∣∣sin ω

2

∣∣∣/
∣∣∣ω
2

∣∣∣ (4.3)

and accordingly,

φ[1](y) = F−1
{∣∣∣sin ω

2

∣∣∣/
∣∣∣ω
2

∣∣∣
}

. (4.4)

However, a different (and possibly more natural) solution can be picked up by noting that
ψ̂[1](ω) is also the squared magnitude of

φ̂[1](ω) =
sin ω

2
ω
2

(4.5)

whose inverse Fourier transform is explicitly computable as

φ[1](y) =

{
1 if − 1

2 ≤ y ≤ 1
2 ,

0 elsewhere,
(4.6)

that is, the base function for piecewise constant (P0) reconstruction. This example shows more
precisely the effect of losing uniqueness by neglecting the phase information – in fact, we can
obtain an infinity of solutions to (3.16) which differ in the phase term. This is not a major
problem, however, since we only need existence of a solution in this setting. Conventionally,
we will refer in the sequel to the particular solution of (3.16) for which the phase is identically
zero. This corresponds to the solution obtained by (3.18).
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4.2. Lagrange interpolation of higher (odd) order

This kind of interpolation is performed using an equal number of nodes on both sides of the
point x, this stencil of nodes depending on the interval where x is placed. Although at a first
glance it could seem that this interpolation does not use the same basis on each interval, yet
being a linear operator with respect to the values to be interpolated, such a basis can still be
suitably defined. In fact, the interpolation operator I[·] is a linear map from the space l∞ of
bounded sequences into the space of continuous functions on R:

I[·] : l∞ → C0(R) (4.7)

so that, by elementary linear algebra arguments, any basis function ψj is nothing but the image
of the base element ej (that is, the interpolation of a sequence such that vj = 1, vi = 0 for
i 6= j).

For example, cubic reconstruction performs an interpolation using the four nearest nodes
(two on the left and two on the right of the interval containing x). The value at a node xj

affects the reconstruction only in the interval (xj−2, xj+2). More precisely, using the notation
Lk,k+3

j to denote the Lagrange basis function associated to the node xj and built on the nodes
ranging from xk to xk+3, we have

ψ
[3]
j (x) =





Lj−1,j+2
j (x) if xj ≤ x ≤ xj+1,

Lj,j+3
j (x) if xj+1 ≤ x ≤ xj+2,

Lj−2,j+1
j (x) if xj−1 ≤ x ≤ xj ,

Lj−3,j
j (x) if xj−2 ≤ x ≤ xj−1,

0 elsewhere,

(4.8)

(note that all the local definitions are weighting functions associated to xj , but that they are
built on different sets of nodes depending on the interval considered). Referring again to the
case in which xj = 0 and ∆x = 1, the explicit form of the reference base function ψ[3] is

ψ[3](y) =





1
2 (y + 1)(y − 1)(y − 2) if 0 ≤ y ≤ 1,

− 1
6 (y − 1)(y − 2)(y − 3) if 1 ≤ y ≤ 2,

0 if y > 2,

(4.9)

and extended by symmetry for y < 0. The Fourier transform of this function has the form

ψ̂[3](ω) =
8(6 + ω2)sin

(
ω
2

)4

3ω4
. (4.10)

The transform (4.10) (along with all the transforms for the higher order cases) has been obtained
by symbolic integration with Mathematica. The positivity of ψ̂[3](ω) immediately follows from
its structure.

More in general, we can give the form of the basis functions for an arbitrary order of
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interpolation. For n odd, the form of ψ[n] is

ψ[n](y) =





[n/2]+1∏

k 6=0,k=−[n/2]

y − k

−k
if 0 ≤ y ≤ 1

...
n∏

k=1

y − k

−k
if [n/2] ≤ y ≤ [n/2] + 1

0 if y > [n/2] + 1

(4.11)

and extended by symmetry for y < 0. The study of the Fourier transforms gives, for n = 5, 7, 9:

ψ̂[5](ω) =
16(60 + 15ω2 + 2ω4)sin

(
ω
2

)6

15ω6
, (4.12)

ψ̂[7](ω) =
32(840 + 280ω2 + 49ω4 + 6ω6)sin

(
ω
2

)8

105ω8
, (4.13)

ψ̂[9](ω) =
64(15120 + 6300ω2 + 1365ω4 + 205ω6 + 24ω8)sin

(
ω
2

)10

945ω10
. (4.14)

Although we have no general result stating the positivity of the transforms ψ̂[n](ω), for all odd
numbers n ≤ 13 they have the structure

ψ̂[n](ω) = p(ω2)
sin

(
ω
2

)n+1

(
ω
2

)n+1 (4.15)

with p(ω2) a polynomial of degree [n/2] with positive coefficients. A natural conjecture would
be that this structure holds for any odd value of n, however rather than proving such a property,
we simply note here that it holds for any order of practical interest.

Lastly, we show in Figure 4.2 the reference basis functions for interpolation, ψ[n](y), and
their counterparts for LG scheme, the solutions φ[n](y) = F−1{ψ̂[n](ω)1/2} for n = 1, 3, 5. The
computations have been carried out by FFT.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

Fig. 4.1. The basis function for symmetric quadratic interpolation
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Remark. Note that a similar construction can also be performed for an even degree of inter-
polation, but this requires to use an odd number of nodes for the reconstruction and results in
disregarding some of the basic assumptions. In fact, a first choice would be to use an asymmetric
stencil of points, and this would violate (3.5). A second choice (see [1]) preserves symmetry by
defining around a generic node xj a “cell” [xj −∆x/2, xj −∆x/2), in which the reconstruction
is performed using the values on a symmetric set of nodes around xj (for example, a quadratic

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

linear

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

cubic

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0.0

0.5

1.0

1.5

2.0

quintic

Fig. 4.2. The basis functions for linear, cubic, quintic interpolation (left) and the corresponding zero-

phase LG basis (right)
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reconstruction would use the nodes xj−1, xj and xj+1). But, when applying this reconstruction
to the sequence ej in order to construct ψj , it turns out that this basis function is discontinuous
at the interface between two cells (see the quadratic case in Figure 4.1), and by a theorem of
Riesz (see [14]) such a function cannot be positive definite.

4.3. Cardinal splines

A second framework in which this theory seems to be applicable is spline interpolation.
Restricting to Hermite cubic splines with continuous second derivative, the cardinal basis may
be obtained as before by interpolating the sequence e0 with space step ∆x = 1 (in order to
mimic the behaviour of such cardinal functions on the whole real axis, periodic conditions have
been imposed at the boundary of a sufficiently large interval). The author is unaware of results
stating that this basis function is positive definite; nevertheless, the numerical solution by Fast
Fourier Transform apparently shows that this is the case, and a corresponding LG basis could
be suitably defined. The first row of figure 4.3 shows both the reference basis function for cubic
spline interpolation, and the corresponding LG basis. Note that the reference LG basis function
is smoother then in the Lagrange case. This is implied by the increased smoothness of the SL
basis function, which causes a faster decay of its Fourier transform.

4.4. Interpolatory wavelets

Interpolatory wavelets are another situation which can be treated within this theory, since
they are usually defined to be positive definite functions. The simplest case is the Shannon (or
sinc) wavelet which is defined, in the reference case, by

ψ(y) =
sin(πy)

πy
(4.16)

whose Fourier transform is given by

ψ̂(ω) =

{
1 if − π ≤ ω ≤ π

0 elsewhere.
(4.17)

Since ψ̂(ω)1/2 = ψ̂(ω), we also have φ(y) = ψ(y) which implies that the basis for interpolation
in the SL scheme coincides with the equivalent basis of LG scheme (note that, strictly speaking,
ψ 6∈ L1(R), but in this special case ψ̂ is bounded and therefore the main theorem applies).

Another example of positive definite interpolatory wavelet has been proposed by Deslauriers
and Dubuc in [4], to which the reader is referred for its detailed definition. Second and third
row of figure 4.3 show the basis functions for interpolation, along with the corresponding LG
basis functions, for both the sinc and the (cubic) Deslauriers–Dubuc wavelets. Note that in the
latter case, the numerical computation shows some instability due to the occurrence of small
negative values in the Fast Fourier Transform.

We finally note that, as for the case of symmetric Lagrange interpolation of §4.2, L2 stability
of the SL scheme with wavelet interpolation has already been proved with Von Neumann analysis
arguments, with similar conclusions. The result is contained in an unpublished work (see [9]).
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who first suggested to me the idea of studying the equivalence of SL and LG schemes. The
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Fig. 4.3. Cubic cardinal splines, interpolatory wavelets (left) and the corresponding zero-phase LG

basis (right)
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[15] A.N. Staniforth, J. Côtè, Semi–Lagrangian integration schemes for atmospheric models – A review,

Mon. Weather. Rev., 119 (1991), 2206-2223.
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