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Abstract

We propose an effective stopping criterion for higher-order fast sweeping schemes for
static Hamilton-Jacobi equations based on ratios of three consecutive iterations. To design
the new stopping criterion we analyze the convergence of the first-order Lax-Friedrichs
sweeping scheme by using the theory of nonlinear iteration. In addition, we propose a
fifth-order Weighted PowerENO sweeping scheme for static Hamilton-Jacobi equations
with convex Hamiltonians and present numerical examples that validate the effectiveness
of the new stopping criterion.
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1. Introduction

Consider the following static Hamilton-Jacobi (H-J) equation:

{H(w(az),x) =flz), =€Q\T, (1.1)

o(x) = g(x), rel CQ,

where g(x) is a positive, Lipschitz continuous function, € is an open, bounded polygonal domain
in RY, and T is a subset of Q. H(p, ) is Lipschitz continuous in both arguments, and it is convex
and homogeneous of degree one in the first argument.

This class of first-order nonlinear PDEs arise in many applications such as optimal control,
differential games, computer vision, geometric optics, and geophysical applications. Thus it is
essential to develop efficient high-order accurate numerical methods for such equations. Based
on [22,27] we propose a fifth-order sweeping scheme for the equation. To design an effective
stopping criterion for the sweeping scheme, we analyze convergence of the first-order Lax-
Friedrichs scheme in terms of theory of nonlinear iterative methods.

Fast sweeping methods are a family of efficient methods for solving static Hamilton-Jacobi
equations [3,7-9, 11, 18,19, 25, 28, 29], and some essential ideas of these methods may trace
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back to [2,20]. In [28] the fast sweeping method was systematically analyzed for eikonal equa-
tions. Since then the fast sweeping methods have undergone intensive development for general
static Hamilton-Jacobi equations in [3,8,9,11, 18,19, 25,28, 29] and have found many differ-
ent applications; see [10] for example. On the other hand, the fast marching method and
its relatives consist of another family of numerical methods for solving static Hamilton-Jacobi
equations [5, 23,24, 26].

A fast sweeping method consists of the following three essential ingredients: 1) an efficient
local solver for a Hamilton-Jacobi equation on a given Cartesian mesh or triangulation, 2)
systematic orderings of solution nodes according to some pre-determined information-flowing
directions, and 3) Gauss-Seidel type iterations based on a given order of solution nodes. How-
ever, among all the above cited works most of the methods are of first-order accuracy, and
only [11,27] consider higher-order sweeping schemes for such equations. In [27] a third-order
WENO scheme [6] is incorporated into Godunov and Lax-Friedrichs numerical Hamiltonians.
In [11] a second-order discontinuous-Galerkin discretization is used to design a fast sweeping
method for eikonal equations. Here we propose a fifth-order accurate sweeping method in terms
of the Weighted PowerENO reconstruction procedure for H-J equations [22] in the same way
as proposed in [27] for third-order accurate sweeping methods. The fifth-order fast sweep-
ing method is able to approximate up to high accuracy the solution of multidimensional H-J
equations.

Since Gauss-Seidel iteration requires of a criterion to stop the iterative procedure, an abso-
lute stopping criterion to determine the convergence was proposed in [28] such that the algo-
rithm stops when the L'-norm of the difference between two consecutive iterates is smaller than
a given small number. This stopping criterion behaves consistently for first-order fast sweeping
methods based on monotone Godunov and Lax-Friedrichs Hamiltonians [8,28]. However, high-
order versions of these methods do not inherit monotonicity and therefore the convergence may
be oscillatory. In this case, an absolute stopping criterion is not robust enough to determine
the optimal iterate to which the scheme converges.

To design an effective stopping criterion we analyze the convergence of first-order Lax-
Friedrichs sweeping methods based on classical results of nonlinear functional analysis [4, 13].
The convergence of the nonlinear Jacobi or Gauss-Seidel iteration resulting from the Lax-
Friedrichs sweeping can be proved by using the Banach fixed-point theorem through the ex-
plicit expression of the Jacobian matrix. Based on this convergence analysis, we then propose a
consistent relative stopping criterion to determine the converged solution of the iterative proce-
dure. We present a series of numerical experiments to validate the proposed new higher order
sweeping scheme.

The paper is organized as follows. In Section 2 we review fast sweeping methods and
propose a high-order sweeping scheme based on the fifth-order weighted PowerENO scheme. In
Section 3 we analyze the convergence of Lax-Friedrichs fast sweeping methods and propose a
stopping criterion consistent with the convergence analysis. In Section 4 we present numerical
experiments to demonstrate higher order accuracy of the proposed scheme.

2. Fast Sweeping Methods

2.1. A generic formulation for sweeping

We consider a rectangular n x n mesh, Q,, where z; = ih, (i = 1,..,n), and y; = jh,
(j = 1,...,n) are the grid points. We discretize the nonlinear H-J equation (1.1) by a monotone
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numerical Hamiltonian H,

{ﬁ(%, 50,08 )i = (i, y5) = figs (zi,y;) € U\ T,

2.1)
bij = 9(xi,y5) = i, (xi,y;) € T C Qy,

where ¢, (¢)) are backward (forward) difference quotients in the z-direction at the current
point (7, j), and ¢, (gb;r) are defined similarly in the y-direction. Thus we obtain a system of
nonlinear equations with as many unknowns as grid points except for those belonging to I'.
Since the number of grid points determines the number of equations, it is very involved to solve
globally the system of nonlinear equations. Thus, iterative methods are desired to solve the
system.

Consider a general function G : D C R" x R" — R" x R"™ that has components G;;. The
goal consists of solving a discrete system of nonlinear equations that results from (2.1) that can
be written as

Gij(drik=1,...,nl=1,..,n)=0 for 1=1,.,n; j=1,...,n (2.2)

where the unknowns, ¢y ;, are determined using a nonlinear Gauss-Seidel iteration procedure.
Specifically, each equation relates locally the neighboring values to the standing mesh value,
¢i,5, as follows:

Gij =G j(Pipjs s Dio1> Pit1js s Pip,js Pigis Dij—qs s Pijm1s Pijg 15 - Pijtq)
o, (2.3)

where p and ¢ are integers > 1.
The standard Gauss-Seidel procedure corresponding to the increasing order of both indices
consists of solving the (¢, j)-th equation

(k+1) k+1) (k) . . (k+1) (k-‘rl k) (k)
G ,J(qsz —p,jo a¢z( 1,5 7¢7,+1’J7 ceey ¢i+p7j7 ¢i,j7 ¢1(',j—q 5. 7¢ — )a ng SRR 7¢ )]-t,-q) (24)

for the unknown ¢; ; and setting ¢(k+1) = ¢; ;. Then to obtain ¢* 1 from ¢(*) we solve

successively n x n nonlinear equations (2.4) in the increasing order of sub-indices, starting the

process at an initial guess d)EOJ)

The formulation of the local solver reads as the system of equations

Gij(Dizp,js s Bim1jy Dit 1> Pipjs Pijis Dij—qs s Pij—1s Pija1s oo Pijrq)
=¢ij — Fi j(Dizpjs s Pim1,js Bit 1,5y or Pidpjis Dij—qs s Pijm1s Pt 1s oo Pijtq)
=0. (255)

In practice, the Gauss-Seidel iterative procedure can be expressed as the unknown ¢; ; solved
explicitly from the above equation,

k+1 k+1 (k+1 (k+1) k+1) k
o) = B (ot e o el et e e e ), (2.6)

where

Gij = Fi j(Gizp,jsoor im1,js Pit1,5s s Pitpjs Pisimqs s Pii—1> Dijt1s o> Dijtq) (2.7)

is the explicit form obtained from the discretization of the numerical Hamiltonian,

g(¢;7¢I§¢;7¢;)ij = fij- (2.8)
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Then we cover the whole domain with four alternating direction sweepings such that a group
of characteristics is covered in each direction following the causality along characteristics in a
parallel way. The four sweeps are

(i=1:n,j=1:m 2)i=n:1,7=1:mn;
B)i=n:1,j=n:1,; bi=1:nj=n:1
The iterative procedure is finished when a stopping criterion over consecutive iterates is
satisfied.
Next we detail two different discretizations to illustrate that the fast sweeping method is
simple to implement.

2.2. Godunov fast sweeping schemes

We consider the two-dimensional eikonal equation

\ P2 A2 = flz,y),  (z,y) €QC R, (2.9)

d)(x,y)zg(x,y), (-77,2/) cl cQ.

Discretize the equation using the first-order Godunov difference scheme as proposed in [28]:

(15— 65NV + (605 — ™) 2 = f2,02, (2.10)
where
qb(”'””) min(gi—1,5, Pi+1,5), ¢(ymm) min(¢; j—1,¢ij+1) and (z)T = max(z,0).
We have
[( new ¢(1mm)) } + [( new ¢(ymm)) ] — i%th, (2.11)
The solution for equatlon (2.11) is:
. mln((b zmzn))¢ ymzn)) + fi7jh, if |¢($mzn ¢(ymzn I Z fi7jh7 ( )
¢/7':le ’ = 1 wmzn mzn zmzn mzn . 212
7 3 <¢ )+ ke (ymin) | \/szjhz — ((b ) (b(y )2 ), otherwise.

A first-order Godunov sweeping method consists of applying this formula in each sweep of
Gauss-Seidel iterations. To stop the iterative procedure one may use the following absolute
stopping criterion [28]

[lgme — ¢”| L <6, (2.13)

where § is a given convergence threshold value, such as § = 1076

In the first-order sweeping method, the correction @77 = min( g}f,&), where ¢ is the
solution of (2.10), is enforced so that the solution at each grid point is monotonically decreasing
from an initially assigned large value ([27,28]).

This monotone scheme based on the Godunov Hamiltonian is very efficient and easy to
implement for eikonal equations. The scheme behaves robustly and converges to the optimal
solution in a few iterations. However, for nonconvex Hamiltonians the Godunov numerical
Hamiltonian may be very involved. In those cases, other simpler monotone numerical Hamil-
tonians can be used to construct fast sweeping methods. Next we describe the one proposed

in [8] for general static HJ equations.
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2.3. Lax-Friedrichs sweeping schemes
To discretize a general Hamiltonian H(¢,,¢,), the Lax-Friedrichs monotone numerical

Hamiltonian [14] can be used [§]

_ + — + 1 1
um +ut v 4w >ax(u+u)2ay(v+v), (2.14)

HY (= w0 0h) = H(

2 ’ 2 2
where
o = max |H1(u,v)], o = max |Ha(u,v)]. (2.15)
c<v<iD Cc<v<D

Here H;(u,v) is the partial derivative of H with respect to the i-th argument, or the Lipschitz
constant of H with respect to the i-th argument. [A, B] is the value range for u*, and [C, D]
is the value range for v*. Then we have the following local solution formula,

1 iyt — Pi—1j Gijr1 — Pij—1
new __ _H B B ) >
P <% + 2) [f ( 2h, ’ 2h,

hy
Dit1,j + i1
2h

.
5J
+ ay

ta, Gi 1+ ¢i,j1] ‘ (2.16)

2hy
The iterative procedure stops when expression (2.13) is satisfied for a certain given 9.

The Lax-Friedrichs sweeping scheme takes more iterations to converge than the Godunov
sweeping. The main advantage of this method is that it is explicit and it is very simple to
implement. However, the above two schemes are first-order accurate only.

2.4. Third-order WENO fast sweeping methods

Zhang, Zhao and Qian proposed in [27] the extension of fast sweeping methods to third-
order accuracy. They approximate ¢*™" and ¢¥™" to third-order accuracy by incorporating
the third-order WENO approximations of partial derivatives of ¢ into the scheme.

The high-order Godunov fast sweeping scheme uses as ¢*™" and ¢¥"™" in (2.12) the fol-
lowing expressions

(zmin) _ . old - old +
{‘bm‘ = min( iy —h- (¢w)i7j7 oy T he ((bl’)i,j)’ (2.17)

¢§qumln) = min( gyl]d —h- (qu)i—’j’ ¢gﬁljd +h- ((by):j)v
where derivatives, (¢z);;, ((bz);-;-, (¢y);;» and ((by);-;-, are computed through the third-order
WENO scheme [27].

Following the same idea, the high-order Lax-Friedrichs sweeping scheme for static H-J equa-
tions is written as

pew _ (a i a) [f u <(¢I)m 0l @iyt (qby)?,j)
ha

2 2 2

+ ¢ (2.18)

4,3

‘o,

where derivatives (¢z);;, (qu);;, (¢y);; and (qﬁy); are computed by the third-order WENO
scheme [27].

High-order approximations for derivatives (¢z); ;. (qﬁx)ij, (¢y);,; and (qby)jj in (2.17) and
(2.18) are computed using the newest available values for ¢ in the interpolation stencils accord-
ing to the philosophy of Gauss-Seidel type iterations.
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2.5. Fifth-order weighted PowerENO schemes

To obtain a fifth-order accurate sweeping scheme we propose to incorporate the fifth-order
weighted PowerENO reconstruction into the sweeping framework based on the Godunov and
Lax-Friderichs numerical Hamiltonians. In order to obtain fifth-order accuracy we need to
approximate the derivatives (gbx);-"j, (b2)ij5 (¢y);; and (¢),;; in expressions (2.17) and (2.18),
respectively, by means of a fifth-order reconstruction method. We use the Weighted PowerENO
reconstruction procedure that was first proposed for hyperbolic conservation laws in [21] and
later for Hamilton-Jacobi equations in [22]. The Weighted PowerENO procedure for Hamilton-
Jacobi equations consists of a convex combination of three parabolas as explained in the fol-
lowing.

To obtain the optimal accuracy for (¢x);; at the left interface, i.e. when the wind “blows”
from the right to the left the convex combination consists of

(¢x):; = w[J)rpi,j + U/fpwé,j + w;piﬂ,j,
where the weights w and the parabolas p; s are computed as follows. Define

L o Badig iy — iy
i+5,] ha: hz :

Then the Weighted PowerENO parabolas [22] are expressed as

1 1
Pis(s) = 52~ g Rha gl
4 5
Py (Ts) = 12540 T 3%i+45 ~ [g%i+3.0
3 1 1

P — . . .
pi+1,j(33j) = §zi+%,j - §Zi+g,j - §Pz+1,]7

where P; ; is the result of applying a power-limiter over two neighboring second-order differences
of z values as

P, j :=powermod,,(D;_1 ;, D11 ;). (2.19)
Here Dl,s = zlJrLS — QZl’S + Zlfl,s and

sign(z) + sign(y)

powermod,,(z,y) = 5 power,,( |z, |y)- (2.20)
The power—p mean is defined as [21]
-
= 1-— . 2.21
power, (z,y) = —5 oy (2.21)

In our calculations we will use p = 3 as the optimal p to achieve fifth-order accuracy [22].
The expressions for the weights wlj are

+ +

Ok + Cy

+
w, = —8—— where of = —F——
k k (e+ IS,;r)2

) for k=0,1,2.
ag +ai +ay

The optimal weights for this case are Cf = 0.6, C{” = 0.2 and Cy = 0.2. The smoothness
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indicators are defined as

13 1

ISO:E( 1])2+4(2zz+%,j_2zz %J+Pi7j)27
13 1

18 = ﬁ(zi—%,j =221 2ipg) 4(%—%4 Ziyg )
13 1

18 = E(PM,J')Q + 75— 25015 — Pit1)°

On the other hand, the approximation for (¢.);; is obtained from

(¢2)i; = wo Pi—1,j + Wi Pi_1 j + Wy Piy,
where the parabolas are

1 3 1

Pl (Ti1s) = =524 5735+ 3P1a
1 5 1
Pi-33(®) = —griog i T grioat g%t
1 1
P
pij(x;) = 5%i-%. + 9%itg.d gpi,j;
and
o C
wy = ——t—— = —F 0 for k=012
ag +aj +a; (e+1I5,)?

The optimal weights for this case are Cj = 0.2, C{ = 0.2 and Cy = 0.6. The smoothness
indicators are defined as

13 1

ISO = E(Piflyj)2 + 1(2217%&7 - 221'7%’.]' + Pi*l,j)27
13 L

IS1= 1523, = 221+ 51" + (g — 5 g)
13 2 1 2

1Sy = 5 (Pig)" + (2215 = 223 5 — Piy)”

We proceed in a similar way in the y-direction varying index j instead of i to compute
fifth-order approximations of (¢,); ; and (¢y):J

3. Convergence and a Consistent Stopping Criterion

3.1. Convergence of first-order Lax-Friedrichs sweeping schemes

In this section we analyze the convergence of the first-order Lax-Friedrichs fast sweeping
method in terms of nonlinear iteration theory.

Let (@ = qﬁg?j) represent a discrete function which is an initial guess for solving the nonlinear
system of discrete equations (2.5) by using the associated nonlinear Jacobi iteration. We can
write this iterative algorithm as

¢ = F(p®), (3.1)

where ¢(F) = ¢£? represents the k-th iterate function computed through the resulting explicit
expression denoted by F'.
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The convergence of the nonlinear Jacobi iterative procedure is driven by the spectral radius
p(04F) of the Jacobian of F' with respect to ¢, Jy,F. Indeed, a sufficient condition for the
convergence of this iterative procedure is that

sup p(0gF) < 1,

since for any matrix norm || - ||, p(04F) < ||04F|| holds and the mean value theorem ensures
that

[+ — @ < [0, F || [|o®) — ¢!+~ V]]. (32)

A suitable matrix norm can be chosen such that the norm of the Jacobian of F' is as close
to its spectral radius as desired [13].

An analogous estimate can be derived for the Jacobian of the nonlinear Gauss-Seidel iterative
method since it can be proved that under suitable conditions on the Jacobian matrices the
convergence of the Jacobi iteration implies the convergence of the Gauss-Seidel iteration ( [1],
Corollary 5.22, page 188).

As an illustration we first examine the case of a one-dimensional Hamilton-Jacobi equation
of the form

Proposition. Consider the boundary value problem (3.3)—(3.4). Let F' be the nonlinear Jacobi
iterative function associated to the system of nonlinear discrete equations in one dimension based
on the Lax-Friedrichs numerical Hamiltonian. Then, the spectral radius of the Jacobian of F,
p(a(st) < 1.

Proof. Let x; = ih where h = % and ¢ = 1,2,--- ,n. We denote by ¢; the approximate
solution of ¢(x;). The Lax-Friedrichs numerical Hamiltonian applied to discretize (3.3) yields
the nonlinear system of equations

0= 2w -

(3.5)

o 2h 2

Git1 — Pi—1 )> + Giv1+ i1

for ¢;, i = 1,2,---,n—1, ¢g = 0, and ¢, = 0. Here « represents the artificial viscosity
satisfying

a> (88—];. (3.6)

The nonlinear Jacobi iteration can be written as

(k) (k) (k) (k)
o = 2 (- m( PRSPy ) 4 B O (37)

¢ « 2h 2

for ¢ = 1,2,"- ,n—l’ ¢O:O7 and ¢n =0.
We rewrite (3.7) as a fixed-point iteration procedure of the form

¢(k+1) _ F(¢(k)), (38)
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where F(¢(*)) represents the right hand side of (3.7). We can write explicitly the Jacobian d,F
as

[0 by 0 e o 0 ]
Co 0 bz 0 0
0 C3 0 b3 0
0 Cn—3 0 bn—3 0
0 Cp—2 0 bn—2
L 0 0 Cp—1 0 |
where
1 10H ¢ 1 OH  ¢n_1
b 2 <1 o Ou (2h)>’ en—1 ( + 6u< 2h )) (3:9)
1 10H i1 — di1 . .
b; 2(1 E%(T) 1=2,---n—2; (3.10)
1 10H ¢it1— di1 .
Ci2<1+a8u(2h) , 1=2,---n—2. (3.11)

It follows that
(). bi+e=1fori=2,--- ,n—2
(ii). 0<bi<landO<¢ <1lforalli,i=1,---,n—1,

since b; and ¢; can be written as b, = (1 — 5;)/2 and ¢; = (1 + ;)/2, where f; = é(%—?)z
Condition (3.6) ensures that |8;] < 1. Consequently, (i) and (ii) above follow immediately.
In addition, the matrix 04F with the properties (i) and (ii) is irreducible since its associated
graph is strongly connected [13]. Therefore, the matrix 04 F satisfies the conditions of Theorem

6.1.10, p. 224 in [13] so that p(04F) < 1. O

Remark. It can be proved that the spectral radius of the Jacobian of Gauss-Seidel iterative
procedure is smaller than the spectral radius of the corresponding Jacobi iteration if the latter
is smaller than one [13]. Thus Gauss-Seidel procedure enjoys better convergence than its Jacobi
counterpart.

For the two-dimensional Lax-Friedrichs fast sweeping method, we present a more general
result.

Theorem. 3.1 The nonlinear Jacobi iteration defined from the two-dimensional Lax-Friedrichs
monotone Hamiltonian can be written as

(k) (k) (k) (k)
SEFD ( 1 ) fooH <¢i+1,j *¢i_1,3 Pijr1 — Pij— 1)
1,7 Qg _|_ (ly )

2h, 2h,
¢z+1 \J + ¢z l,j +a (Z) ,J+1 + QSZ J—1
s y 2h, ’

+ag

(3.12)

where ag and o, are the artificial viscosities satisfying (2.15). This iteration is a global con-
traction for a suitable matriz norm || - || for any discretization of the form (2.1). In addition,
this iterative procedure converges to the unique solution ¢* of the nonlinear system of discrete
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equations for any initial data ¢°) (different from the exact solution), and the following estimate

holds
ARG
ot |

provided v < 1, where v is an upper bound of the spectral radius of the Jacobian of the iteration

lo®) — ™| <

function.
Proof. We denote by F;; the (¢,7) component of the iteration function of the nonlinear
Jacobi procedure (3.12) with hy = hy = h,

h i1
Fij=——" l:fij - H <¢ am™
Qg + Qy

Piv1,5 + Pi-1,
2h

—Gi1; Pijr1— Pij-1
2h ’ 2h

a Gij+1+ ¢i,j1:|

tag +

2h

which is a function that depends only on four arguments ¢;_1 ;, ¢it1,5, @i, j—1, and @; j11.
To calculate the Jacobian matrix of F', %’ we order the components of F’ and the arguments

in row vector form like

F:(F117F127"' 7F1’I’L7F217F223"' ,an,"' 7Fn13F’rL2)"' aF’rLTL)a
(b: (¢11»¢127"' 7¢1n7¢217¢227"' a¢2nv"' a¢n17¢n27"' 7¢nn)

The Jacobian matrix can be written as an n? x n? matrix where the row corresponding to the
index (i, j) is the partial derivatives of F;; with respect to the variables ¢11, @12, -+ , P1n, P21, P22,

: 7¢2n7"' 7¢n17¢n2;"' 7¢nn'

All the entries of the row are zero except four of them that correspond to the partial
derivatives of Fi; = Fij(¢i—1,5, Pit1,5, Pij—1, Pij+1)s

OF;; —/\a(l—i—ﬂ), a OF;; )\a<1_H1)

a; = _a = = — >
! O0pi—1, 2 O Obit1,; 2 Az
by = j :717(1_,_72)’ b, = J J:(l—i)a
Opij-—1 2 Qy 0%ij+1 2 Yy
where A, = %=, Ay = aﬁﬂ;w and

Hy = H1(¢i+1,j - ¢i71,j’ i1 — ¢i,j71)7 Hy = H2(¢i+1,j - (bifl,j’ Gi 41 — ¢i7j71).

2h 2h 2h 2h

Here Hy(u,v) = 0H (u,v)/0u and Ha(u,v) = 0H (u,v)/0v. The choice of the viscosities o, and
o, ensures that a;, a,, b; and b, are positive and a; + a, + b; + b, = 1. For a non-empty set of
rows some of these values might be zero due to the presence of either homogeneous Neumann
or Dirichlet boundary condition on the internal boundary I'. Therefore, the sums of the row
entries in those cases are strictly smaller than one. On the other hand, it is easy to see that
the Jacobian matrix is irreducible since every row has at least a nonzero entry. Thus, applying
Theorem 6.1.10, p. 224, from [13] we have that the spectral radius of the Jacobian matrix is
strictly smaller than one, i.e. p(94(F)) < 1. This shows that any fixed point of F' is a point of
attraction.

Since the spectral radius p(0y(F')) is uniformly bounded by a number v < 1 (this bound
depends on the number n and the boundary condition on the curve I'), the Banach Fixed Point
Theorem ([4], page 39) applies. Consequently there exists a unique solution of the system of
the discrete equations and the stated estimate holds. O
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3.2. A consistent stopping criterion for fast sweeping methods

When using a higher-order sweeping method we need a stopping criterion that behaves
consistently with the iterative process. Next we propose a stopping criterion based on the
above convergence analysis.

Consider the vector mean value theorem [13] that for any smooth iteration function F reads
as

1F(¢*) = F(o" Il < S 106 F(¢" + (¢ — ¢")I| - [0~ — ] (3.13)

Considering as iteration function F' the one determined by the system of discrete equations
using a monotone numerical Hamiltonian we have

P = ().
Then, since
1F(¢*) = F(@" DIl = |o" = ¢"]],

we obtain the following expression
9"+ — ¢ < S 105 F(&" +t(¢* " = )| - [[0" — "] (3.14)

This expression links the distance between two consecutive iterates and the distance between
the two previous ones.

As proved in the convergence Theorem the spectral radius of the Jacobian of the iteration
function, p(0sF), is strictly smaller than one. Then if there exists an upper global bound to
this spectral radius, then the iteration function is a global contraction and an appropriate norm
can be chosen such that ||04F|| is uniformly bounded by a number strictly smaller than one.

We consider the ratio
_[l¢tt = gk

|loF — gh ="

In view of our convergence analysis a consistent stopping criterion for fast sweeping methods

QK (3.15)

can be formulated as follows: the iteration stops at the first k for which ¢ > 1. As soon as
ge > 1 the iteration saturates since the subsequent iterates ¢*+0 (I > 1) do not change too
much due to the grid resolution and rounding errors.

This stopping criterion works properly for a suitable matrix norm that is able to estimate
the norm of the Jacobian close enough to the spectral radius. To set the stopping criterion,
we will use the L' norm as the standard for computing numerical errors in the approximation
of Hamilton-Jacobi equations ([12]), though this norm might not be the optimal one to satisfy
the conditions of our Theorem mentioned above.

This analysis is valid for a first-order iterative procedure. In practice, to stop the itera-
tive procedure while using a fifth-order accurate fast sweeping method we will use a minor
modification of the stopping criterion proposed above. We compute

I R
BT 6™ — gD

starting from an initial guess ¢(©), where p is the order of accuracy of the method. We perform
iterations until g > 1. In our case we will use p = 5.

The modification based on including the term AP allows the algorithm to stop when the
distance between two consecutive iterates is much smaller than the truncation error of the
method.

for k>1 (3.16)




A Stopping Criterion for Higher-Order Sweeping Schemes 563
4. Numerical Experiments

In this section we present numerical results obtained by the proposed fifth-order accurate
Godunov and Lax-Friedrichs fast sweeping schemes. In these examples we compute numerical
errors, convergence orders, and the number of iterations needed to converge using the stopping
criterion proposed in Section 3.2. One iteration count includes four alternating sweepings. We
compute the numerical errors using the L' and L>-norms.

As proposed in [27] for the implementation of the high-order Godunov fast sweeping scheme
we use the first-order Godunov fast sweeping method to provide a good initial guess for the
fast convergence of the Gauss-Seidel iterations. On the other hand, to ensure that the solution
at each grid point is monotonically decreasing from an initially assigned large value, ¢}'5" =
min(¢¢, ¢) is enforced for the first order fast sweeping method [28].

As pointed out in [27] since the solution of the nonlinear HJ equations are in general not
smooth, the high-order accuracy may not be achieved at singularities. Thus to observe the high-
order convergence of the numerical scheme we assign exact solutions to a fixed local domain
around singularities on the boundary I' when we refine the mesh in the same way as proposed
in [16,17,27].

When there are no other prescribed boundary conditions, we use linear extrapolation at
boundary points if the information is flowing out of the boundary. In other cases we use
high-order extrapolation at boundary points.

As remarked in [27] the main advantage of high order sweeping methods with respect to the
first-order ones is that the computational cost to achieve the same accuracy is reduced for the
high-order case.

Table 4.1 Example 1: First order approximation. Smooth solution. Godunov numerical Hamiltonian

Mesh L' error  Order L% error Order Iter
40 x 40 1.46 E-1 6.33 E-2 2
80 x 80 8.64 E-2 0.75 3.54 E-2 0.83 2

160 x 160 4.66 E-2 0.89 1.86 E-2 0.92 2
320 x 320 241 E-2  0.95 9.58 E-3 0.95 2

Table 4.2 Example 1: Smooth solution. Godunov numerical Hamiltonian

Mesh L' error  Order L* error Order Iter
40 x 40 3.51 E-7 2.65 E-7 34
80 x 80 1.33 E-8 4.71 9.49 E-9 4.81 41

160 x 160 4.91 E-10 4.77  5.26 E-10 4.17 63
320 x 320 1.48 E-11 5.06 4.12 E-12 5.98 98
640 x 640 4.67 E-13 4.98 1.85 E-13 5.49 162

Example 1. We consider the eikonal equation (2.9) with

fz,y) = g\/51112(7r+ gx) + sin?(7 + gy), (4.1)
where T is the point (0, 0), and the computational domain is [—1, 1] x [—1, 1]. The exact solution
for this problem is

o(z,y) = cos(m + gw) + cos(m + gy) (4.2)
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Table 4.3 Example 2: Smooth region away from the singularity. Godunov numerical Hamiltonian

Mesh L' error  Order L™ error Order Iter
80 x 80 4.41 E-8 8.48 E-7 32
160 x 160 1.95 E-9 4.49 3.85 E-8 4.45 49
320 x 320 6.86 E-11 4.83 1.48 E-9 4.69 74
640 x 640 2.14 E-12 4.99 490 E-11 4.92 105

Table 4.4 Example 2: Whole domain. Godunov numerical Hamiltonian

Mesh L' error  Order L% error Order Iter
80 x 80 5.81 E-6 4.09 E-3 32
160 x 160 7.27 E-7 2.99 2.04 E-3 1.00 49
320 x 320 9.09 E-8 2.99 1.02 E-3 1.00 74
640 x 640 1.13 E-8 3.00 5.11 E-4 1.00 105

We use the Godunov numerical Hamiltonian to solve this problem. As a validation of the
proposed stopping criterion we solve this example using the first-order Godunov Hamiltonian.
The results are displayed in Table 4.1 where we observe good behavior of the algorithm. Table
4.2 shows results for the fifth-order Godunov fast sweeping method, where we see that fifth-order
accuracy is achieved.

Example 2. In this problem we consider the eikonal equation (2.9) with f(z,y) = 1. The
computational domain is = [—1,1] x [-1,1], and T is a circle of center (0,0) and radius 0.5.
The exact solution is the distance function to the circle I'' We compute the solution using
the fifth-order version of the Godunov Hamiltonian. Since the solution has a singularity at
the center of the circle we show the numerical errors and orders of convergence in the smooth
region (0.15 distance away from the center) and in the whole domain in two Tables 4.3 and
4.4, respectively. We observe that the fifth-order accuracy is achieved in the smooth regions of
the domain and it drops to third-order accuracy in the L'-norm when considering the whole
domain.

Example 3. The eikonal equation (2.9) with f(z,y) = 1. In this case the computational
domain is 2 = [—3, 3] x [-3,3]; T consists of two circles of equal radius 0.5 with centers located
at (—1,0) and (1/1.5,0), respectively. The exact solution is the distance function to I'. The
singular set for the solution is composed of the center of each circle and the line that is equally
distant to the two circles.

We use the fifth-order fast sweeping method based on the Godunov Hamiltonian. We
compute errors in the smooth region excluding a small region of 0.15 distance away from the
singular set. The results for the smooth region are shown in Table 4.5, where we observe that
the fifth-order accuracy is reached. Table 4.6 shows numerical errors computed in the whole
domain where the scheme achieves only first-order accuracy.

Example 4. The problem consists of the eikonal equation (2.9) with

fz,y) = 277\/[005(27rx) sin(27y)]? + [sin(27x) cos(2my)]?. (4.3)

and I' = {(§,7),(3.2),(5,2),(3,7),(3,3)}, five isolated points. The computational domain
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Table 4.5 Example 3: Smooth region away from the singularities. Godunov numerical Hamiltonian

Mesh L' error  Order L error Order Tter
80 x 80 6.04 E-4 1.49 E-3 51
160 x 160 1.24 E-5 5.59 1.24 E-5 6.90 72
320 x 320 573 E-7 444 3.39 E-6 1.87 88
640 x 640 6.06 E-9  6.56 3.66 E-8 6.53 125

Table 4.6 Example 3: Whole region. Godunov numerical Hamiltonian

Mesh L' error  Order L* error  Order Iter
80 x 80 9.61 E-4 3.44 E-2 51
160 x 160 3.12 E-4 1.62 1.47 E-2 1.22 72
320 x 320 763 E-5  2.03 7.34 E-3 1.00 88
640 x 640 1.87 E-5 2.02 3.65 E-3 1.00 125

Q=10,1] x [0,1]. ¢(x,y) = 0 is prescribed at the boundary of the unit square, and

TN (33 1 (23 (2 2 (L) —o
g 4’4 _g 474 - g 4a4 _g 474 - I g 252 - Y-

The exact solution is
o(x,y) = sin(2nzx) sin(27y),

a smooth function.

In this example we compare results for both Godunov and Lax-Friedrichs fast sweeping
methods. The initial guess for the Godunov case is generated by the first-order Godunov
sweeping method. For the Lax-Friedrichs case the initial guess is a big constant value.

We apply both high-order Godunov and Lax-Friedrichs fast sweeping schemes. Table 4.7
and Table 4.8 show results for Godunov and Lax-Friedrichs fast sweeping methods, respec-
tively. Both methods achieve fifth-order accuracy. We observe that the Godunov fast-sweeping
method needs fewer iterations than the high-order Lax-Friedrichs fast sweeping method. Such
phenomenon was already observed for third-order sweeping in [27].

Example 5. (Travel-time problem in elastic wave propagation). The quasi-P slowness
surface is defined by the quadratic equation [15],

1y + 20207 + 3y + cadt + csdn +1 =0, (4.4)
where

2 2
€1 = 11044, C2 = a11a33 + ayy — (a13 + a44)”, €3 = a33044,

cs = —(a11 + aas), c5 = —(a33 + aaq)

and a;js are given elastic parameters.
The corresponding quasi-P wave eikonal equation is

\/ st 4ot +\[ Hesdd + est)? — (c10h + 2B b st =1, (15)



566 S. SERNA AND J. QIAN

Table 4.7 Example 4. Godunov numerical Hamiltonian

Mesh L' error  Order ITter
80 x 80 1.27 E-5 20
160 x 160 5.24 E-7 4.60 25
320 x 320 1.28 E-8 5.36 44
640 x 640 3.45 E-10  5.20 90

Table 4.8 Example 4. Lax-Friedrichs numerical Hamiltonian

Mesh L' error  Order Iter
80 x 80 1.06 E-5 34
160 x 160 3.06 E-7 5.11 42
320 x 320 9.27 E-9 5.04 96
640 x 640 1.09 E-10 6.40 100

Table 4.9 Example 5. Lax-Friedrichs numerical Hamiltonian, a, = ay, =5

Mesh L' error  Order L error Order Iter
40 x 40 9.70 E-6 - 3.28 E-4 - 33
80 x 80 6.31 E-7 3.94 2.62 E-5 3.65 53

160 x 160  2.62 E-8 4.59 1.89 E-6 3.79 91
320 x 320 2.20 E-9 3.58 1.77 E-7 3.42 162
640 x 640 1.01 E-10 4.45 1.53 E-8 3.53 223

which is a convex Hamilton-Jacobi equation. The elastic parameters are taken to be
ail = 1506387 aszs = 108373, ais = 16381, g4 — 3.1258

The computational domain is [-1,1] x [-1,1], and T = {(0,0)}. The quasi-P wave travel-
time problem is smooth in the whole domain except at the source point. Initial values are
assigned in a box with length 0.3 which includes the source point. To initialize a fixed box
around the source point, we use a shooting method by solving a two-point boundary value
problem; see [16] for details. We apply the fifth-order Lax-Friedrichs fast sweeping method to
this problem. Table 4.9 shows errors and convergence rates for this problem. We observe that
the convergence is not uniform when refining the grid and the proposed algorithm does not
achieve ideal fifth-order accuracy; this might be due to the strong anisotropy present in the
model.

5. Concluding Remarks

We propose a fifth-order weighted PowerENO sweeping scheme for static Hamilton-Jacobi
equations with convex Hamiltonians. To design an effective stopping criterion for the higher
order sweeping scheme, we analyze the convergence of the first-order Lax-Friedrichs sweeping
scheme by using the theory of nonlinear iteration. The resulting stopping criterion is based on
ratios of three consecutive iterations. Numerical examples validate the fifth-order accuracy of
the new high-order sweeping scheme and the effectiveness of the new stopping criterion.
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