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Abstract

In this paper, we consider the time dependent Maxwell’s equations when dispersive
media are involved. The Crank-Nicolson mixed finite element methods are developed for
three most popular dispersive medium models: the isotropic cold plasma, the one-pole
Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved
for all three models solved by the Raviart-Thomas-Nédélec spaces. Extensions to multiple
pole dispersive media are presented also.
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1. Introduction

The dispersive medium is characterized by a frequency-dependent susceptibility or permit-
tivity, so that monochromatic waves of different frequencies travel in the medium at different
velocities and undergo different attenuations. The most common dispersive media include bi-
ological tissue, ionosphere, water, soil, snow, ice, plasma, optical fibers and radar absorbing
materials. Hence the study of wave or pulse propagation in dispersive media is important in
many applications.

Starting early 1990’s, considerable attention has been devoted to numerical modeling of
wave propagation in dispersive media. Approaches such as the recursive convolution method
and auxiliary differential equation method have been developed under the framework of the
finite-difference time-domain (FDTD) method, details and early references can be found in
books [19, Ch.8] and [29, Ch.9]. However, due to its complexity, the time-domain finite element
method (TDFEM) for the dispersive media has not explored until 2001 by Jiao and Jin [18].
Their TDFEM is based on the second-order vector wave equation. Recently, the time-domain
discontinuous Galerkin method has been investigated by Lu et al. [24] by solving the first-order
Maxwell’s equations directly. The one dimensional TDFEM was studied for Debye and Lorentz
dispersive media by Bank et al. [4] recently.

Since 1980’s, there has been a growing interest in finite element analysis of Maxwell’s equa-
tions (e.g. [3,5-9,12-15,17,23,27,28,32]). However, almost all studies are restricted to the
simple medium case. Very recently, we initiated the error analysis of TDFEM for dispersive
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media [20-22]. In [22], we discussed the superconvergence results for some semi-discrete schemes
developed for dispersive medium models. While in [20], we analyzed the backward Euler mixed
finite element methods (FEMs) for three most popular dispersive medium models. In [21], we
studied the backward Euler scheme for the vector wave equation resulting from the isotropic
non-magnetized cold plasma model. In all our previous work, the FEMs are all built on the
integro-differential equations. In this paper, we propose some Crank-Nicolson mixed FEMs
directly on the governing equations without introducing integral terms. It turns out that this
algorithm is simpler and the error analysis can be beautifully carried through by skillful ma-
nipulations. Here we provide a unified optimal error analysis for all three popular dispersive
medium models.

We conclude the section with an outline of the remainder of the paper. In next section,
we consider the single pole Debye medium solved by the Crank-Nicolson mixed method using
the lowest Raviart-Thomas-Nédélec (RTN) space. Optimal error estimates are proved under
proper regularity assumptions. Then we extend the results to the multiple pole Debye medium.
In Section 3, we generalize the numerical scheme and error analysis to both the two-pole and
multiple pole Lorentz media. Section 4 is devoted to the isotropic cold plasma model. Similar
numerical scheme and results are presented. Finally, we conclude the paper in Section 5.

In this paper, C (sometimes with sub-index) denotes a generic constant, which is inde-
pendent of the finite element mesh size h and time step size 7. We also use some common
notation

H%(cwrl; Q) = {v € (H*(Q)3 Vxve (HQ(Q))B},
Hy(curl; Q) = {fv € H(cur;Q); nxv=0 on 89},

where a > 0 is a real number, and € is a bounded and convex Lipschitz polyhedral domain in
R3 with connected boundary 9 and unit outward normal n. When a = 0, we simply denote
HO(curl; Q) = H(curl; Q). Let (H*(Q2))? be the standard Sobolev space equipped with the norm
| - |l and semi-norm | - |,. In particular, || - ||o will mean the (L?(2))3-norm. Also H(curl; Q)
and H*(curl; Q) are equipped with the norm

1/2
ol et =( 013 + fewt 0l3)

1/2
loll, oot =<||v||i T leur v||i) .

Finally, we denote C™(0,T; X) the space of m times continuously differentiable functions from
[0, 7] into the Hilbert space X.

2. Debye Medium

For the single pole Debye medium model, we have the governing equations [20, 30]

oF (65 - 600)60 1
— = H-—F+ —P 2.1
€0€00 5 V x o + o (2.1)
OH
— =-VXxFE 2.2
Ho ot X ) ( )
L op ! P = lE, (2.3)

(s — €x0)€0 ot (s — €x0) €0t to
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where FE is the electric field, H is the magnetic field, ¢ is the permittivity of free space, ug is
the permeability of free space, P is the polarization vector, €., is the permittivity at infinite
frequency, €; (> € ) is the permittivity at zero frequency, to is the relaxation time.

We assume a perfect conducting boundary condition

nxE=0 on 9Qx(0,7T), (2.4)
and the initial conditions
E(xz,0) = E¢(z), H(x,0)=Hy(x), P(x,0)=Pyox) e, (2.5)

where Eq, Hy and Py are given functions.

To obtain a finite element scheme, we multiply (2.1)-(2.3) by test functions and integrate
over . Then using the boundary condition (2.4) and integration by parts for the curl term in
(2.1) with the identity

/QVXH~¢:/QH~V><¢— 80H-nxqb,

we obtain the weak formulation for (2.1)-(2.3): Find E € C(0,T; Ho(curl; Q)) N C*(0,T;
(L2(2))%), H € CY(0,T; (L2(2))3) and P € C1(0,T; (L2(2))3) such that

60600(88—?,@ ~ (H,V x ) + W(E@) - %(P,@ =0, Y¢e Hy(eml; ), (2.6)
o O )+ (¥ x B,) =0, Ve L@, @
; aip it ; 7 7& R I 3

(65 _ 600)60( ot ’ ) + (65 _ EOO)EOtO (Pv(b) tO (E7¢) - Oa v (,b S (LQ(Q)) . (28)

Lemma 2.1. Let (E(t), H(t), P(t)) be the solution of (2.6)-(2.8). Then for 0 < ¢t < T, we
have
1

(€s — €x)€0

1
mHPoHa

cocoo| | B[S + pol [H (1) + Gl

<eo€osl|Eol [ + 1ol Holl§ +

Proof. Choosing ¢ = FE in (2.6), v = H in (2.7), ¢=Pin (2.8), and adding the resultants
together, we obtain

1d

—— 1
2dt

(Es _ 600)60 ||P(t)||0]

coec| | E(t)[[5 + ol [H ()13 +

1 (s — €x0)€0 2
+m|ﬂ°(ﬂl\% + T‘”HE@)II% — 5 (B E) =0,
which, along with the identity
1 (es — €x0)€0 2
———||PO|}+ ————EQ®)|; - —(P,E
(Gsfeoo)EOtOH ()HO+ t() H ()||0 to( ’ )
2
E(@)| , (2.9)

0

_ 1 P(t) (s — €x0)€0

(es — €xo )€t to

completes the proof. O
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Remark 2.1. The Debye model (2.1)-(2.3) can be written as

P €0€c B0 0 Vx 0 E E
p poH = -Vx 0 0 H |-A|l H |, (2.10)
= 0 0 0 P P
(es—¢€o0)€0
where the matrix
(es—€oo)€0 0 1
to to
A= 0 0 0
1 1
T to 0 (es—€so)eoto

is symmetric positive semi-definite. The stability can be obtained by multiplying (2.10) by a
row vector (E, H, P).

To design our mixed finite element method, we partition €2 by a family of regular tetrahedral
meshes T" with maximum mesh size h. Considering the usual low regularity of Maxwell’s
equations [2,10], we only employ the lowest order Raviart-Thomas-Nédélec’s mixed spaces [26]:

VhZ{’UhEH(diV;Q) : 'Uh|K:CK+dK$ VKETh}, (2.11)
Uh:{uheH(curl;Q): up|lk =ax +bx x @ VKETh}, (2.12)
UY = {uh eUp,nxup,=0 on 3(2}, (2.13)

where ax, by, cx are constant vectors in R3, and dg is a real constant.

For any u € H*(curl;Q), 1 < o < 1, it is well known [26] that its interpolant II,u € Uy,
can be defined on each tetrahedron K € T" by the degrees of freedom fe u - 7 on each edge e of
K, where 7 is the unit vector along the edge e. Furthermore, we have (see [8] and [25, (5.42)]):

[lw —Ipullo + ||V % (u — pu)|lo < Che||ul| 1 Yu € H*(curl; Q). (2.14)

a,cur

Denoting by Qv € V), the standard (L?(92))3-projection, we have
[lv — Qrollo < Ch|v||la Vv € H*(Q). (2.15)

To construct a fully discrete scheme, we divide the time interval (0,7) into M uniform
subintervals using points 0 = t% < t! < ... < tM = T, where t* = k7, and denote subinterval
I* = [thF=1 t*]. Moreover, we define u* = u(-,k7) for 0 < k < M, and introduce the following
finite difference operators:

k _ . k—1 1
(STuk:u7 "= —(uf +ufY), 1<k< M
T 2
Now we can formulate the Crank-Nicolson mixed finite element scheme for (2.6)-(2.8) as

follows: for k = 1,---, M, find (E}, H}, P}) € UY x V), x Uy, such that

eoem((STEﬁa(b) - (F:,V X (b) + (es_ti)eo(Efw(b) - %(F:,¢) = 07 v ¢ € U?u (216)

0
no(6,HY, 0) + (V x By, 0) =0, Y€V, (2.17)
1 k 7 —k = 1 —k ~ N ~
(68_EW)EO(éfPh’@JFm(Ph,@—%(Eh,@ =0, VoeUy, (2.18)
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subject to the initial conditions
E) =1,Ey(z), HY)=QuHo(z), Pj=1,Py(z). (2.19)

Lemma 2.2. Let (E}, H}, P}) be the solution of (2.16)-(2.18). Then we have

k k k
cocsell BEIE + moll AR + 113
S o0
<coenol[BRI3 + ol HES 3 + P23

(€5 — €c0)€0

Proof. Choosing ¢ = E: in (2.16), ¢ = ﬁ: in (2.17), b= ﬁ],i in (2.18), then adding the
resultants together, we obtain

1 _ _ 1 _
= [oo (118~ 1B5 1) + o (1IERNE — 1B HE) + (.- (PRI~ 11 1|3)}
(€s — €50)€0 | 1=k 12 1 —ko 2 =k —k
s T Co0)O0) 7 PR -Z(PLE)=0
+ o 1B + e 7600)60750” nllo to( n Er) =0,
which, along with the inequality (2.9), concludes the proof. O

Notice that E} and P} are chosen from the same finite element space, hence (2.18) is
equivalent to

pF_ ptl 1 B €s — €0 )€ _
—h—h 4 — (P} + P} (& —cx)a )°<E£+Ei‘i H=o,

T 2t0 2t0
or )
1 1 1 (es —€xo)€n _ 1 1\
Pi=|(-- P '+ =2 E+E Y| -+ . 2.20
h [(T 2750) hot 9%, (B, +E, ) T+2t0 (2.20)
Substituting (2.20) into (2.16), we can rewrite (2.16) as follows:
S Gl TR W S )
T 200+ T ho 2 T
€0€oc (€5 — €x)€0 k-1
= - E
( T 2t + 71 ) By 9)
2 k—1 | 0
P —(H . 2.21
+2t0+7'( h a¢)+2( h ,VXQb), v¢€Uh ( )
On the other hand, we can rewrite (2.17) as follows:
Ho (yrk 1 k _ HOprk—1 . 1 k—1
T(Hha¢)+2(vXEhvw)_ T(Hh 7’1/}) Q(VXE}L 71/))7 V¢€Vh- (222)

Hence, the Crank-Nicolson mixed finite element scheme (2.16)-(2.18) can be realized in
practice as follows: at each time step, we first solve a system of (2.21)-(2.22) for Ef and HY,
then update P by (2.20).

Finally, notice that the coefficient matrix for the system of (2.21)-(2.22) can be written as

A -B
B D )’

R
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where matrices

€0€so (€5 — €xc)€n
A= U,, U
( . + 2t0+7‘ > ( hs h)a

1
B=3(Va,Vx Uy, D=2V, Vy),
and B’ denotes the transpose of matrix B. Hence, the determinant of R can be obtained as
det(R) = det(A)det(D + B'A™'B),

which is guaranteed to be non-zero. Hence the system of (2.21)-(2.22) is guaranteed to have a
unique solution (EF, HY) at each time step.

Lemma 2.3. (i) ([8,21]) For any uw € H(0,T; (L2(Q2))3), we have

k k-1 12 t*
— 1
Sub|2 = || 22— <7/ #)||2dt.
ot = == | <5 [ ptol
(ii) For any uw € H*(0,T;(Lo(Q))3), we have

1 th 2 1 tk

Hk—f/ u(t)dt| < 773/ | () |2t
T Jgk—1 0 4 th—1

Proof. The proof for (ii) can be obtained easily as follows:

2

R B
§(u +u7) — . u(t)dt
e

2

2T k—1

1/t (t — tF D)t — t)ug (t)dt

tk

sﬁ (/tt(t — M2t - t>2dt> </t '““(t”th)

73t
SI/ | ()2 dt.
tk—1
This completes the proof of the lemma. O

Theorem 2.1. Let (E",H", P") and (E}, H}, P}) be the solutions of (2.1)-(2.3) and (2.16)-
(2.18) at time t™ = nr, respectively. Furthermore, assume that

E;, P, € L*(0,T; H*(curk Q2)),

Etta V x EttaPtt; V x Htt c Lz(O,T, (Lz(Q))S),
E,Pc L>™(0,T; H*(curl;Q)), H € L>(0,T; (H*(Q))%).
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Then there is a constant C = C(T, €q, [0, €5, €00, to, B, H, P), independent of both the time step
T and the mesh size h, such that

s (1B = Bl + 11" ~ Hilo +|[P" — Pl < C(h + 77

Proof. Denote
& =T,E* — By, nf = QuH" — Hy, & =11, P* — P}

Integrating (2.6)-(2.8) in time over I* = [t*=1 ¢*], dividing by 7, then subtracting the resultants
from (2.16)-(2.18), respectively, we obtain the error equations

1 =k
- %(gh, ¢)

(€5 — €xc)€0 =

() coes(:68,0) = (0, V x 9) + 0 €, 0)

= €peoo (0, (I, E¥ — EX), ¢) — (QhH’“ 1 H(s)ds,V x ¢>

T Jrk

_ _ 1 1 — 1
{6~ o (HhEk ~ = E(s)ds,¢> - (Hth _ 2 P(s)ds,qS) ;
to T Jrk to T JIk

(id) oGk, ) + (V x o)

— (6 (QuE* — HY), ) + (v « (B - E(s)ds>,w) :

T Jrk
1

(s — €x0)€0
= (s.(mP* — P*).9)

(65 — €x0)€0

-~ =k - ko~
(i) 6:8.9)+ i (66) - 1 6d)

+; (Hth 1 P(s)ds,&) 1 <HhEk 1 E(s)ds,é) .

(es — €00 )€0t0 T S to T Jrx

—k ~ —=k
Choosing ¢ = 27&,,,9¢ = 2Tﬁ;€” ¢ = 27&;, in the above respective error equations, adding the
resultants together, using the projection property of Q;, and the fact V x U, C V},, we obtain

k— k—
eoeoo(ns,’znénfh 1||8)+uo<|n,’:||3|nh 1|3)

1 FKN2 (| Fk—1(2
+ ooy (1A - e
(s — €00 )€0 | 1=k 1o 1 =k 5 2 7k g
) -z
wor|Cm =g - 2.8
—27e0en (5T(HhE’“ - E’f),gﬁ) —or (H’“ L[ H(s)ds, v x 52)
T Jrk

s — €oo 1 i\ 2 1 _
4 or (& =)o (HhE’c ~ = E(s)ds,g’;) Sl <Hth . P(s)ds,g§>
to T Jrk to T Jrk

+ 27 (v X (HhE"‘ - = E(s)ds),nﬁ> " <6T(Hth - P’“),éh>
T J1k (Es - 600)60
2T —k 1 =k 2T —k 1 =k
N — | PR > —— P - — (I, E — - E
+ e e)eotn ( h . (3)d5,5h> i ( h 7 ) (S)ds,fh)

8
:Z(Err)i. (2.23)
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In the rest of the proof, we will frequently use the basic arithmetic-geometric mean inequality

1
lab| < da® + 51;2, (2.24)
and the inequality
_ 1 _ 1 _
[k |? = i\uk +uF? < 2<uk|2 + JuF 1|2). (2.25)

Using inequalities (2.24) and (2.25), Lemma 2.3, and estimate (2.14), we obtain

—k 1
(Err)1 <27eoens[01][€, 1[5 + E\Iér(HhE’“ — E")||3]

2

dt
0

2 (B - B)()

_ €0€x
<cocuertn (IEHIR + 6113 ) + 55
1 Ik

k|2 k—1)2 €0€c 201 2
<€0€xaT01 <|§h||0 + ||fh |0) + 20, -Ch /Ik ||Etl|a,curldt'

Similarly, using integration by parts, the boundary condition (2.4), and Lemma 2.3, we have
k1o 1 —=k 1 9
(Err)2 <27 |€0€ocb2||€pllo + ——— IV x (H), — = [ H(s)ds)|[g
€0€o0 - 409 T J1k

_ T4
<eoesoTOa [ [IEFIIG + 11EE TG ) + 7/ IV x Hu(s)|[ods.
€0€c0 - 802 J 1k

j

By similar arguments, we have

P
WE ~E'+E -~ | E(s)ds

=k
(ET"")?) SQT(GS - 600)60 [53|§h||g + -
I

1
t2 - 435
<@—@xww{mmawﬂlﬁ)

€5 — €00 )EOT —k —k —k 1
+7( > )0 ILE —E|2+|E 77/ E(s)ds||?
t0(53 T JI*

s@—qamw%@$%+msw@

(€5 — €xo)e0T [

+
t263

(0% - T3
O (B gy + B2 ) + 7 [ 1B(o s

Using the fact that €, is usually a multiple of €, [29,30], i.e., €5 = aeo for some constant a > 1,
and the inequality

k(|2 k—1)2 2

I1E ||a,curl +IE ||a,curl < 2||E||L°°(O,T;H"(Curl;9))’

we can simplify (Err)s further as follows

(EwhSM—1m¢mT%Qwﬂ%+me%)

(€s — €xc)€0T 20 2 3 2
+t%7§3 Ch ||E||LN(O7T;HQ(CM1;Q)) T L [[Ew(s)llods| -

With analogous calculations, we can obtain the rest estimates.
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2
(Err)s <eoem - 2704]|EN]12 + 606;;454 thp’“ - % [ Pas|
<cocasra{IEH1E + 1165113)
L [P et + [ 1P
€0€oal204 0.1;1 (curloy) T
(Brv)s <po- 2065 1R + 2 |V B - B 4 B - L [ Bjanp

SuonSs(H??'ﬁH% n ||m’il||3)

o °
[ Ch? ||E||L°°(0THa(curl ) Z/Ik (V% Ett)(5)|gds} ;

" =k 1
(Brvja <zre” Bl + g5 6.1, P - PW}

T

_l’_
Ho - 405

2
dt;
0

E*

<errasIGHIR -+ 1657118 ) + 5

7]
ot (HhP P)

<o IGH1R + 1657118 ) + 55 - €1 / 1P

O
WP P +P — - | P(s)ds

(Err); <27¢* [57
Ik

j

2 [
£h|‘0+4t%57||

£k Sl
ge*m(mhna e 1||3)

t26 {ChQQHP”Qw 0,T;He (curl; Q)) / |[Pr(s |0ds} ;
we 10 (€5 — €co)en - 2T —k —k —k 1 2
8 > TE 8 e h - - —
(Err)s <271€"83]|&, 116 + 5 I, —-E +FE E(s)d
tO '458 T Jrk 0

<erds (|5,’z||3 n |é£—1||3>

3
20 2 T 2
+ e | OB - preccurton + 7, 1B (s

t25
where
1
(€s — €x0)€0
Substituting the estimates (Err); into (2.23), dropping the bracket terms on the left hand
side of (2.23) due to the same argument as (2.9), then summing up from k = 1ton (n < M —1),
and using the bound nT < T and the facts &) = n) = 52 = 0, we obtain

1 -
cocaclIGRIIE + mollklI + (IR I3
S o0

€=

§2eoemr<61 +62+ (a—1)d3 + 64> Z 1115 + 2007 - 85 Z |11

2T Ch?> 9
+)60(66+67+68)2|£h||0 . /||Et|| s

(€5 — €oo k=1
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crt (7 ) e (11 1 )
+? o [IV>x Hu(s)llods + Ch <53+5+58>|E| = (0,T;He (curl;))
vort (20 L) [N imaeas + on (L L) ypp2
65 s ) Jo tt 0 5a | On Lee (0,T;He (curl;))
1 1 T
+ort (5 + 5)/ 1P (s)|3ds
4 7 0
074/T Ch*> [T
+ = V x Eu(s)||2ds + / P,|?  .ds,
| IV < Bellds + =5 [P g

where in the above we absorbed the explicit dependence of those physical parameters into the
generic positive constant C.

Choosing those §; small enough so that the nth terms in the summation can be controlled
by the left hand side terms, we have

1

cococl ER1E + ol 8 + (- IERII
n—1 B
<Cr Y (IEk1R + InklI3 + 16K13) + C (a2 + 74),
k=1

which, along with the discrete Gronwall inequality [11, p.153] and the triangle inequality, con-
cludes the proof. O

Remark 2.2. In practical applications, multiple pole Debye model is often used. For example,
Hurt’s five pole model is used for muscle [30]. The N (N > 1) pole Debye medium can be
described by the system of equations [31]:

OFE N (€sk — €00 )€0 1
— =V xH — E -— " F E — Py,
€0€s0 5 X + - k

Tk
k=1 k=1
OH
— =-VxFE
Ho o1 X L,
1
Py ! Pk:iEa kilv"'aNa
(esk — €xo)€0 Ot (€sk — €00)€0Tk Tk

where 75 is the kth relaxation time, and ez is the zero-frequency permittivity of the kth
relaxation.

Extension of the Crank-Nicolson scheme (2.16)-(2.18) to the N pole Debye model is straight-
forward: replacing the last two terms of (2.16) as a summation from k = 1 to N, and replacing
(2.18) by N similar equations. The new scheme can be realized as follows: first solve a similar
system of (2.21)-(2.22) for (EZ,HE), then update all PZ (k=1,---,N) in parallel. Similar
results as Lemmas 2.1-2.2 and Theorem 2.1 can be proved by following the same arguments
used for one pole model.

Remark 2.3. If the solution under consideration has enough regularity, then high-order tetra-
hedral and cubic Raviart-Thomas-Nédélec spaces [25,26] can be used and similar high-order
accuracy can be proved by following the same technique used above.
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3. Lorentz Medium

We now turn to the Lorentzian two pole model, which are described by the following equa-
tions [20, 30):

60600%:V><H7J, (3.1)
Mo%:—VXE, (3.2)
H;)Wg%}’ m :E*mﬂ (3.3)

N N S "

(s — €00 )€0 ot (s — €c0)€0
with the perfect conducting boundary condition (2.4) and the initial conditions
E(x,0) = Eo(x), H(x,0)=Hy(x), J(x,0)=Jo(x), P(x,0)=Po(x) xe€Q, (3.5)

where Eg, Hy, Jy and Py are given functions. Here in addition to the notation defined earlier,
wy is the resonant frequency, v is the damping coefficient, P is the polarization vector, and J
is the polarization current.

Similar to the Debye medium, we can obtain the weak formulation for (3.1)-(3.4): Find
E € C(0,T; Hy(curl; Q)) N CL(0,T; (L2(R))3), H,J, P € C*(0,T; (L2(22))3) such that

€0€oo (if,(ﬁ) —(H,Vx¢)+(J,¢)=0, V ¢ € Ho(curl; Q), (3.6)
o (0) + (7 x By =0, ¥ € (L), (3.1
1 oJ v
(€5 — €co)€ow? (87&’ ¢1) + (€5 — €oo)€ow? (J:61)
— (B, 1) + (6 =) (P, 1) =0, YV ¢1 € (L2(9))°, (3.8)
(es—leoo)eo(%}t)’%) - m(uﬁ%) =0, Vo€ (La(2))° (3.9)

Lemma 3.1. Let (E(t), H(t),J(t), P(t)) be the solution of (3.6)-(3.9). Then for 0 <t <T,

1 1
eoeoo||E(t)||(2J+M0||H(t>||%+WHJU)H%‘F ml\%)ll%
s oo 1 s 0o
1 1
<eo€os || Bol [ + 1ol [ Hol[5 + (c.—¢ )€0w2||J0||(2)+ (e )EOHPOH%-
s oo 1 s 0o

Proof. Let ¢ = E,ov = H,¢1 = J and ¢ = P in (3.6)-(3.9), respectively, then add the
resultants together, we obtain

1d 1 1

2 (eoeso| [E@)| 2 HOIEP+—————TOP+ ————||P®)|]?

5.5 (<ol BOIE + ol HOIR + 501 + e P
174

IOl =0,

(€5 — €oo)€0WT

which concludes the proof by using the fact ¥ > 0 and integrating with respect to ¢. O
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Remark 3.1. The Lorentz model (3.1)-(3.4) can be written as

€0€cc B 0 Vx 00 E E
) poH —Vx 0 0 0 H H
a7 = B 3.10
o | e 0 0 00 7 | T8l 5 | (3.10)
—L 0 0 00 P P
(es—€oo)€0
where the matrix
0 0 -1 0
3 0 0 0 0
- , .
1o _(557500)50“)% _(55*600)60
00 L 0

(es—¢€co)€0

is skew-symmetric. The stability can be obtained by multiplying (3.10) by a row vector
(E,H,J,P).

Similar to the Debye medium case, we can formulate the Crank-Nicolson mixed finite element
scheme for (3.6)-(3.9) as follows: for k = 1,---, M, find (E}, H}, J¥, Py) € U)xV, x U, x Uy,
such that

coeoe(0, BN, ) — (HY,V x ¢) + (T, 6) = 0, Ve, (3.11)
10(8, HE ) + (V x By ,4b) = 0, Vb€ Vi, (3.12)
1 & —k
(65 — 600>€0w% (57Jh5¢1) + (65 — éoo)éow% (Jha¢1)
— (B, 1) + ﬁ(ﬁ:ﬂﬁl) =0, V ¢1 € Uy, (3.13)
1 k 1 —k _
(65 - 600)60 (57—Ph7 ¢2) - (65 - 600)60 (Jh, ¢2) =0 Vel (314)

for 0 < ¢t < T, subject to the initial conditions
E) =1,Eo(x), Hj) =QuyHo(x), Jy=1Jo(zx), P)=II,Po(). (3.15)

Choosing ¢ = Ei, ) = ﬁi, = ji and ¢g = ﬁ: in (3.11)-(3.14), respectively, then adding
the resultants together, we obtain

1 k k—1 k k—1 1 k k—1
o coes (1K1 = 1851 ) + o (AR — S 18) + s (141 ~ 1112
1
- Pk‘ 2 Pk71 2
o (IPEIR = PR + o

v

—k
Jullg=0
_EOO)GOW%H h||0 )

which easily leads to the following unconditional stability:

Lemma 3.2. We have

1 1
k k k k
corncl B+ moll HEI + s IR IR + oy 1P IS
s [e%s) 1 s o0
1 1
0 0 0 0
<eoceel BRI+ moll BRIE + (s IRIE + oy PRI
s [e%s) 1 s o0
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Note that (3.13) is equivalent to

1 T v I _
(€5 — €oo)€ow? T (€5 — €co)€ow? 2 h
1 Py + Pyt
. =0, 3.16
* (65 — €x0)€0 2 ( )

and (3.14) can be rewritten as
1T _
Pi =P ¢ 5(J’,z + J5h. (3.17)

Solving for P} from (3.17) and then substituting it into (3.16), we obtain

1 1% T
Jk - g1
BT+ < (€s — €co)EQWIT + 2(€5 — €00 )Eqw? + 4(eg — eoo)eo> h
ki 1 k—1
—F P =0 3.18
h + (65 _ 600>€0 h ’ ( )

where we denote

1 v T

(€5 — €oo)EQWIT * 2(es — €xo)ow?  4(€s — €xo)€0

8=

Then substituting (3.18) into (3.11), we can rewrite (3.11) as follows:

o1 1
(“5=+ 35 ) (Bh0) - (LT <0

15
~ (2= - D) B+ T )
- L )+ (Pihg), VoeUL  (3.19)

B(€s — €c0)€QWIT 20(es — €co)€0

On the other hand, we can rewrite (3.12) as
1o [ prk 1 ko MO prke1 1 k-1
7(Hh7¢)+§(VXEh7¢)_7(Hh aq/})_i(VXEh 71/))a V¢€Vh (320)

Hence, the Crank-Nicolson mixed finite element scheme (3.11)-(3.14) can be programmed as
follows: at each time step, we first solve a system of (3.19)-(3.20) for Ef and H}, then update
J§ by (3.18), and finally update P} by (3.17). By the same technique used for Debye medium,
the coefficient matrix of the system (3.19)-(3.20) can be proved to be non-singular.

Theorem 3.1. Let (E",H",J",P") and (E}, HY,,J}, P}) be the solutions of (3.1)-(3.4) and
(3.11)-(3.14) at time t™ = n1, respectively. Then there is a constant C' = C(T), €q, o, €s, €oos W1,
v,E,H, J, P), independent of both the time step T and the mesh size h, such that

En— n Hn_ n n__ Pn_ n
ey (' allo +11 llo + 117" = Tl + h|o)

<C(h* +12).
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Proof. Denote
& =T,E* —Ef, np=QuH'—H}, &), =1,J"—J;, &, =1,P" - P}.

Integrating (3.6)-(3.9) in time over I*, dividing by 7, then subtracting the resultants from
(3.11)-(3.14), respectively, we obtain the error equations

(1) coeoo(0-EE,0) — (T, V % 6) + (Erp b)
260600(5T(HhEk - Ek)v¢)
- (Qth 21 H(s)ds,V x (;5) + (Hth - %

T Jrk

J(s)ds. <z>) |

Ik
(i) po(0eml,v) + (V x &, )

106, (QuH* — H¥), ) + (v «,E" -1 E(s)ds»«p) ,

T Jrk
1 & v _k K 1 k
(i12) m(@fma ¢1) + m(fma ¢1)—(&n, ¢1)+m(§2h7 1)
o 1 E_ 1k 174 —k . l
_(Es — 600)6001% <§T(Hh’] J )7 (bl) + (fs — 600)60“)% (HhJ T /Ik J(S)d87 (bl)
- (HhEk 1 E(s)ds, gbl) + _ (Hth 1 P(s)ds, ¢1>,
T Jrk (65 - 6oo)EO T Jrk
. 1 k 1 —k
(iv) m(érf%,éﬁz) - m(flm%)

S (6T(Hth - P’“),@) SN S (th 2 /I k J(s)ds,</>2) .

(s — €c0)€0 (€s — €c0)€0 T

—k —k —k
Choosing ¢ = 27¢,;,,9 = 2Tﬁ§, O1 = 27&),, 2 = 27&,;, in the above equations, respectively,
then adding the resultants together, we obtain

. . 1 , .
coc IEEIR 165 1R ) + o (IE1E — k18 + 7oy (el = ki )
1 k12 _ ||ek—1)2 2Tv ZF 12
+ e (11 - 15 13) + LR
k kN =k —k 1 —k
=2Tep€co (0 (I, E" — E¥), &) — 27 | H — = [ H(s)ds,V x &,
T Jrk
— 1 — — 1
+2r (Hth - f/ J(g)dg,@“i) +or (v < (ILE" - = E(s)ds)mﬁ)
T Jr1k T JIk
2T —k 2Ty | —k
S CHR—F NG vy L ) 7117—7/.1 d
b = I8+ e (13- L [ Tasgl,
—k 1 —k 2T —k 1 —k
—2r(II, E — — E(s)d —— |, P — — P(s)d
T( h T I (8) Saglh) + (68 —600)60 < h 7 i (5) 57£1h>
+27T(5 (I, P* — P*), & ) 2" (m 7’21/ J(s)ds, s
(€5 — €c0)€0 T 152h (s — €0 )€ h T Jre 752k )

The rest proof follows exactly the same way as we did for the Debye medium case. O
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Remark 3.2. Similar to the Debye medium, a Lorentz medium having N (N > 1) pole pairs
is often used and can be described by the following system of equations [31]:

N

OFE
m%E?ZVXH—E}%
k=1
OH
g E
Ho ot V x )
1 oJ 1
2 : - 2J1:G1E—7P17
(€51 — €oo)€owi O (€s1 — €co)€0WT (€51 — €x0)€0
1 oP; 1
= Jl>
(€51 — €0 )€n Ot (€51 — €x0)€0
1 aJN UN 1
JNn=GNE———— Py,
(€sn — €co)€ow?, Ot + (€sn — €co)EQW3; N N (€sN — €00 )€0 N
1 0Py L
(€sN — €s0)eo Ot (€sn — €o0)€0 N

Here the constants vy > 0,G, > 0,k=1,--- N, and ij:l Gp=1.

Note that we rewrite and generalize the original equations of [31] into the above form in
order to see clearly that similar results as Lemmas 3.1-3.2 and Theorem 3.1 can be extended
directly to the multiple pole Lorentz model. For example, Lemma 3.1 should be extended to

N
1 1
€0€oo || E(t 2—}— H(t 2+ (Jt2+Pt2>
oes OIS + moll BN + 32 ( (o= s IO + = Il
<eoe ||Eo||2+M0|Ho||2+§:<1 Tl — |Pko||2)
= [ee] - .
0 0 =\ (s — €oo) 0w, O (esk — €00)€0 0

4. Isotropic Cold Plasma

The governing equations that describe electromagnetic wave propagation in isotropic non-
magnetized cold electron plasma are [20,30]:

oE

COE—VXH—J, (41)
0H

MOW =-V X E, (42)
Lo vy g (4.3)

60&]% E 60(4)12) N
with the perfect conducting boundary condition (2.4) and the initial conditions
E(x,0) = Eo(x), H(x,0)=Hy(x), J(x,0)=Jo(x), zecQ, (4.4)

where Eq, Hy and J are given functions. Here in addition to the notation defined earlier, wy,
is the plasma frequency, J is the polarization current, and v is the electron-neutral collision
frequency. Note that v = 0 reduces to the collisionless case.
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Similar to the Debye medium, we can obtain the weak formulation for (4.1)-(4.3): Find
E € C(0,T; Hy(curl; Q)) N CH(0,T; (L2(R))3), H, J € C*(0,T; (L2(Q))3) such that

€ (aa]f, ¢> — (H,V x ¢) + (J,$) =0, Y ¢ € Hy(curl; Q), (4.5)
110 (a(,f,lp) +(Vx E,¢) =0, Vo € (La())?, (4.6)
2 (Gro)taaen - @ =0 Yoem@® . an
Lemma 4.1. Let (E(t), H(t), J (1)) be the solution of (4.5)-(4.7). Then for 0 <t <T,
Ol BOI + rol OIE + 1T 01E < ollBoll + moll ol + 110l

Proof. Let ¢ = E;ov = H,¢1 = J and ¢ = P in (4.5)-(4.7), respectively, we can easily
obtain

1d 1 v
—— E®)|[ H(®)|l3 J()5 J@)|g=0
2ﬁ(wlﬂb+mH(Mmkwg(mo+%%|(% ,
which concludes the proof by using the fact v > 0 and integrating with respect to t. d
Remark 4.1. The plasma model (4.1)-(4.3) can be written as
P cF 0 Vx 0 E E
g poH | = -Vx 0 0 H |+B| H |, (4.8)
owz 0 0 0 J J
where the matrix
00 -1
B=1] 0 0 0
1 0 z

- eowg
is skew-symmetric. The stability can be obtained by multiplying (4.8) by a row vector (E, H, J).

Similar to the Debye medium case, we can formulate the Crank-Nicolson mixed finite element
scheme for (4.5)-(4.7) as follows: for k = 1,---, M, find (E}, HY,J¥) € U x V}, x Uy, such
that

—k —k
€o(0- B}, ¢) — (H}, V x ¢) + (T4, 0) = 0, Ve Uy, (4.9)
10(6,HE ) + (V x By 1) = 0, Vb€V, (4.10)
1 b Voo =k —k
e — —(F = 4.11
60"‘]12; (57'Jha¢1)+ GOWZ% (Jha(z)l) ( h7¢1) 0; V¢>1 EUh, ( )
for 0 < ¢t < T, subject to the initial conditions
E) =1,Eo(z), H) =QunHo(z), J)=1,Jo(x). (4.12)

Choosing ¢ = E:,d; = ﬁf and ¢; = j: in (4.9)-(4.11), respectively, and adding the
resultants together, we obtain

1 k k—1
E {60 (||Eh|3 - HEh ||3
1

k|2 k—1)|2 k|2 k=12 Vo2
o (A ~ IR + g (17408 - W18 ) |+ L2 1 =

which easily leads to the following unconditional stability:
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Lemma 4.2. Let EfY, H} and J} be the solution of (4.9)-(4.12). Then
1 1
k k k
col | B3 IIE + pol I HLI[S + —5 1IR3 < eol IERIS + pol I + —— | T3115.
Eowp 60w1

Notice that the scheme (4.9)-(4.11) for the plasma medium is reduced to the scheme (3.11)-
(3.14) for the Lorentz medium (except differences in coefficients) by dropping the last term of
(3.13) and the equation (3.14). Hence the previous proof for the Lorentz medium can be carried
out directly to the plasma medium, in which case we have the following optimal error estimate:

Theorem 4.1. Let (E",H",J") and (E}, H},J}) be the solutions of (4.5)-(4.7) and (4.9)-
(4.11) at time t™ = nr, respectively. Then there is a constant C = C(T, o, po,wp, v, E, H,J),
independent of both the time step T and the mesh size h, such that

n _ mn n_ n n_ gn < o 2.
max, (118" = Bl + 1E" ~ Hjllo+ |97 = il ) < C(h + )

5. Conclusions

In this paper we have studied mixed finite element methods for the time-dependent Maxwell’s
equations in dispersive media. We propose a general framework that allows us to obtain a uni-
fied analysis for all three most popular dispersive medium models. Our error analysis show
that the proposed Crank-Nicolson scheme is optimally convergent in the Lo norm for regular
meshes. Since this is our first comprehensive study of the dispersive medium models (especially
the multiple pole models), more advanced algorithms such as the mixed discontinuous Galerkin
method and posteriori error estimators will be explored in the future.

Acknowledgments. The work of the first author is supported by Natural Science Foundation
grant DMS-0810896. The authors would like to thank the referees for helpful comments and
suggestions.
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